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Lung cancer is the leading cause of cancer deaths among both men and women,

representing approximately 25% of cancer fatalities each year. The treatment

landscape for non-small cell lung cancer (NSCLC) is rapidly evolving due to the

progress made in biomarker-driven targeted therapies. While advancements in

targeted treatments have improved survival rates for NSCLC patients with

actionable biomarkers, long-term survival remains low, with an overall 5-year

relative survival rate below 20%. Artificial intelligence/machine learning (AI/ML)

algorithms have shown promise in biomarker discovery, yet NSCLC-specific

studies capturing the clinical challenges targeted and emerging patterns

identified using AI/ML approaches are lacking. Here, we employed a text-

mining approach and identified 215 studies that reported potential biomarkers

of NSCLC using AI/ML algorithms. We catalogued these studies with respect to

BEST (Biomarkers, EndpointS, and other Tools) biomarker sub-types and

summarized emerging patterns and trends in AI/ML-driven NSCLC biomarker

discovery. We anticipate that our comprehensive review will contribute to the

current understanding of AI/ML advances in NSCLC biomarker research and

provide an important catalogue that may facilitate clinical adoption of AI/ML-

derived biomarkers.

KEYWORDS

NSCLC, lung adenocarcacinoma, machine learning, biomarkers, non-small cell
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Introduction

Lung cancer is the leading cause of cancer deaths among both men and women (1),

representing approximately 25% of cancer deaths each year (2). Lung cancer is divided into

two main histological subtypes: small-cell lung cancer (SCLC) and non-small cell lung

cancer (NSCLC). NSCLC constitutes approximately 85% of all lung cancer cases and is the

focus of our study. The treatment landscape of NSCLC is rapidly evolving due to progress

in biomarker-driven targeted therapies. Mutations in 11 genes (EGFR, KRAS, ALK, ROS1,

BRAF, NTRK1, NTRK2, NTRK3, MET, RET, ERBB2) have been reported as FDA-

recognized biomarkers predicting patients’ response to targeted therapies. Similarly, IHC

(Immunohistochemistry) quantified PD-L1 (CD274) expression, microsatellite instability,
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and Tumor Mutation Burden (TMB) have been used in clinical

settings to assess whether NSCLC patients could benefit from

Immune Checkpoint Inhibitor (ICIs) (Table S1A).

Biomarkers are being used at an ever-increasing rate to predict

disease risk, prognosis, and treatment response. Several national and

international efforts have been established to standardize and catalogue

disease biomarkers. BEST (Biomarkers, EndpointS, and other Tools), a

joint task force between the FDA and NIH, was formed to standardize

biomarker definitions in different contexts of clinical use (3). The

EDRN (Early Detection Research Network) catalogues biomarkers that

may improve detection of early-stage cancers (4). The

Pharmacogenomics Knowledgebase (PharmGKB) curates the impact

of genetic variation on drug response and catalogues pharmacogenetic

biomarkers (5). The FDA regulates and catalogues pharmacogenomic

biomarkers in drug labeling (6). Resources such as OncoKB, COSMIC,

ClinVar, and ICGC (incorporating TCGA and Cancer Genome Project

data) provide prevalence information and clinical significance

assertions for genetic biomarkers in cancer (7–10). The My Cancer

Genome from Vanderbilt University (11) offers an integrative database

summarizing the potential clinical impact of genetic as well as protein

expression and genomic instability biomarkers. Similarly, TCIA (The

Cancer Imaging Archive) and IBSI (Imaging Biomarker

Standardization Initiative) were formed to curate and standardize

image biomarkers (12, 13). Professional societies such as the NCCN

(National Comprehensive Cancer Network), ESMO (European Society

for Medical Oncology), ASCO (American Society of Clinical

Oncology), CAP (College of American Pathologists), IASLC

(International Association for the Study of Lung Cancer), and AMP

(Association for Molecular Pathology) provide clinical guideline

recommendations for disease biomarker testing to help improve

diagnosis and selection of targeted therapies.

These important efforts contribute to improving the delivery of

personalized treatment decisions. Advancements in targeted

treatments in the last 20 years have improved survival of NSCLC

patients with actionable biomarkers (14). However, the long-term

survival rate of NSCLC is still poor with an overall relative 5-year

survival rate of less than 20% (15). Clinically utilized biomarkers for

NSCLC were identified using traditional statistical approaches and are

currently assumed to be mutually exclusive in therapeutic decision-

making. However, there is growing evidence showing that actionable

biomarkers of NSCLC can co-occur within the same patient’s tumor

(16–18) and it is crucial to evaluate both linear and non-linear effects

of the disease biomarkers. In this regard, machine learning algorithms

promise more flexible model building and the ability to recognize

non-linear, complex patterns in high dimensional datasets. Notably,

several AI/ML-enabled medical devices have been FDA-approved and

are being used in clinical settings for automated tissue segmentation

(i.e., the use of computer algorithms to identify and distinguish

different structures within medical images) and feature extraction

(i.e., identification of specific patterns from the medical images to aid

in diagnosis) from lung CT (Computed Tomography) images (19).

Similarly, several deep learning approaches have been developed to

aid whole slide image analysis (20, 21) and promise to enable

enhanced performance in digital pathology workflows.

Overall, machine learning algorithms have made noteworthy

contributions to NSCLC diagnostic workflows and promise
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growing applications in biomarker discovery. In this study, we

sought to evaluate trends in AI/ML applications in NSCLC

biomarker research. Using a text-mining approach, we identified

215 studies that reported potential biomarkers of NSCLC using AI/

ML algorithms. We catalogued these studies with respect to BEST

(3) biomarker sub-types and summarized emerging patterns and

trends in AI/ML-driven NSCLC biomarker discovery We

emphasize that our focus in this study was to compile potential

use-cases for AI/ML in NSCLC biomarker research. Therefore, we

did not capture the model performance metrics of the studies we

reviewed, nor did we appraise the validity of the prediction models.

For quantitative sources on AI/ML model appraisal, we recommend

the readers to refer to guidelines such as CHARMS (22), MLP-

BIOM (23), TRIPOD (24), and PROBAST (25).

Methods

NSCLC terms

We downloaded the EMBL-EBI Experimental Factor Ontology

(EFO) (26) obo file on April 28th, 2022. We extracted all disease IDs

under the EFO:0003060; non-small cell lung cancer disease

category. A total of 22 NSCLC sub-types (Figure 1A) and 85

additional synonymous disease IDs were present in the EFO

dataset, which collectively formed the NSCLC terms category

(Table S1B).
AI/ML terms

We used the following four terms to represent the AI/ML terms

category: machine learning, artificial intelligence, deep learning,

neural network.
Text mining strategy

We downloaded MEDLINE/PubMed abstracts in xml format

from the National Library of Medicine on May 4th, 2022. We used

custom Python scripts to extract PubMed IDs from abstracts that

include at least one of the NSCLC and at least one of the AI/ML

terms. This approach (Figure 1B) identified a total of 491 articles

that likely contain the findings of AI/ML studies on NSCLC.
Literature review approach

We reviewed each of the 491 manuscripts and excluded 31

manuscripts that were not classified as a research article or were not

written in English. We evaluated the remaining 460 manuscripts

and identified 215 that reported AI/ML models that were developed

to identify NSCLC biomarkers.

Specifically, we required that the models incorporated at least

one data type aligning with the BEST Glossary (3) biomarker

definition (i.e., a molecular, histologic, radiographic, or

physiologic characteristic that is measured as an indicator of
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normal biological processes, pathogenic processes, or biological

responses to an exposure or intervention). Across the 215 studies,

we were able to categorize biomarker data types into four broad

groups: (i) Molecular Biomarkers (e.g., gene expression, genotype,

DNA methylation), (ii) Histologic Biomarkers (e.g., Whole Slide

Image, Cytology microphotographs), (iii) Radiologic Biomarkers

(e.g., Computed Tomography (CT), Magnetic Resonance Imaging

(MRI), PET/CT (Positron Emission Tomography/Computed

Tomography)), and (iv) Multimodal Biomarkers (i.e., a

combination of different modes or types of data).

We also required that the outcome of the AI/ML models can be

categorized under one of the following seven biomarker categories: (i)

Susceptibility/Risk, (ii) Diagnostic, (iii) Prognostic, (iv) Predictive, (v)

Response, (vi) Safety, and (vii) Surrogate. The first six biomarker

categories were defined based on the BEST Glossary (3) definitions.

The last biomarker category, Surrogate Biomarkers, were defined as

biomarkers that were not directly measured but were inferred using

AI/ML applied to other, often less invasive, patient data (Figure 1B;

Please see Box 1. Glossary, for Biomarker category definitions).
Results

AI/ML-derived susceptibility/risk
biomarkers of NSCLC

The risk of developing a complex disease is explained by a

combination of genetic and environmental factors. For NSCLC,
Frontiers in Oncology 03
cigarette smoking is the number one environmental risk factor with

smokers being 15-30 times more likely to develop NSCLC than

non-smokers (27). Among non-smokers, NSCLC is observed

significantly more frequently in females than males, suggesting

sex is a risk factor beyond cigarette smoking (28). Exposure to

asbestos, radon, or other pollutants have also been reported as

environmental risk factors of NSCLC (29). While NSCLC is

considered a disease of the elderly with a median patient age of

70 at diagnosis, a subset of NSCLC patients (1-10%) are diagnosed

at younger ages (<40 years) (30), indicating potential germline or

distinct somatic driver mutations may be present in different patient

age groups. Genome-wide association studies focusing on germline

genetic variants have reported 16 independent loci associated with

risk of developing NSCLC (31) (Table S1C). Polygenic risk score

models based on the collective effect of these germline genetic

variants were shown to successfully predict NSCLC risk beyond age

and smoking years (32). While somatic genetic variants are

important biomarkers used in selection of targeted therapies, they

are not suitable for NSCLC risk assessment, as accessing lung tissue

samples cannot be justified for routine risk assessment purposes.

Similarly, using non-invasive genetic approaches such as circulating

tumor DNA (ctDNA) sequencing is not suitable for risk prediction

because ctDNA is at low concentrations even in early-stage

cancers (33).

Susceptibility/Risk Biomarkers are defined as biomarkers that

indicate the potential for developing a disease or medical condition

in an individual who does not currently have clinically apparent

disease or the medical condition (3). Using our approach
BA

FIGURE 1

Literature Review Methodology (A) NSCLC disease subtypes based on the EMBL-EBI Experimental Factor Ontology (EFO) database. (B) Study design
used to identify manuscripts that implemented AI/ML algorithms to discover new biomarkers for NSCLC.
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(Figure 1B), we found that machine learning studies focused

primarily on integrating behavioral risk factors, family history,

and environmental factors into NSCLC risk modeling. We found

only one study that applied ML to identify biomarkers that could be

used for NSCLC risk prediction (34) (Table S1D). In this study,

Umu et al. reported that ML models of circulating serum RNA

levels can predict NSCLC risk 6-8 years before manifestation of

disease symptoms and provided evidence that feature selection

approaches (i.e., selecting the most discriminative variables while

eliminating the redundant or irrelevant variables; please see

Pudjihartono et al. (35) for a summary on feature selection

algorithms) and histology-specific data subsets may enhance

model performance metrics [for model performance metrics

including accuracy, recall, specificity, precision, F1-score, please

see Hicks et al. (36)].
AI/ML-derived diagnostic biomarkers
of NSCLC

Early symptoms of NSCLC including shortness of breath,

fatigue, coughing, and loss of appetite are often mistaken for

other conditions due to their non-specific nature. The US

Preventive Services Task Force recommends annual risk screening

using low-dose CT for high-risk individuals who are between 50

and 80 years old and have at least a 20-pack-year smoking history

(37). However, despite these efforts approximately 55% of NSCLC

patients present with locally advanced or metastatic disease at the

time of diagnosis (38). When NSCLC is suspected, the initial
Frontiers in Oncology 04
evaluation is performed using imaging tools including chest X-

ray, CT, or PET/CT scan. Diagnosis requires histological

confirmation using tissue samples stained with Hematoxylin and

Eosin (H&E). When tissue morphology is insufficient for proper

classification, immunohistochemistry (e.g., TTF-1, Napsin A, CK7,

P63, CK5/6) is recommended to aid differential diagnosis (39).

While molecular testing of somatic mutations could contribute to

diagnosis of NSCLC, current use cases of such testing are primarily

l imited to informing the treatment plans of a lready

diagnosed patients.

Diagnostic biomarkers are defined as biomarkers that are used

to detect or confirm the presence of a disease or condition of

interest or to identify individuals with a subtype of the disease (3)

(Figure 2A). Using the approach shown in Figure 1B, we identified

69 studies that used machine learning approaches to identify

potential diagnostic biomarkers of NSCLC (Table S1E). Overall,

most diagnostic efforts concentrated around building models that

could be used to distinguish the two most common histological

subtypes of NSCLC; lung adenocarcinoma (LAD) and squamous

cell carcinoma (SCC) (41–61). Additionally, several studies have

reported AI/ML models and proposed biomarkers that could be

used to distinguish NSCLC or LAD from healthy control/non-

malignant samples (43, 53, 59, 62–74), as well as for differential

diagnosis of NSCLC and SCLC (75–78) (Figure 2B).

A body of literature has reported diagnostic AI/ML models

leveraging CT or PET/CT radiologic datasets (Table S1E). These

studies primarily used radiomics or CNN (Convolutional Neural

Network)-based approaches to extract image features. Radiomics-

based approaches are often criticized for having high variability due
BOX 1 Glossary of biomarker types.

Descriptions of the Susceptibility/Risk, Diagnostic, Prognostic, Predictive, Response, Safety biomarkers were retrieved from the BEST (Biomarkers, EndpointS, and other
Tools) Resource (3). BEST defines a biomarker as a defined characteristic that is measured as an indicator of normal biological processes, pathogenic processes, or
responses to an exposure or intervention, including therapeutic interventions. Molecular, histologic, radiologic, or physiologic characteristics are types of biomarkers.
*Biomarkers that predict histological disease subsets were included under the “Diagnostic Biomarkers” category. Biomarkers that predict molecular or potential molecular
subsets were included under the “Surrogate Biomarkers” category.

Biomarker
Type

Description

Susceptibility/
Risk Biomarkers

A biomarker that indicates the potential for developing a disease or medical condition in an individual who does not currently have
clinically apparent disease or the medical condition.

Diagnostic
Biomarkers*

A biomarker used to detect or confirm presence of a disease or condition of interest or to identify individuals with a subtype of
the disease.

Prognostic
Biomarkers

A biomarker used to identify likelihood of a clinical event, disease recurrence or progression in patients who have the disease or medical
condition of interest.

Predictive
Biomarkers

A biomarker used to identify individuals who are more likely than similar individuals without the biomarker to experience a favorable or
unfavorable effect from exposure to a medical product or an environmental agent.

Safety Biomarkers A biomarker measured before or after an exposure to a medical product or an environmental agent to indicate the likelihood, presence, or
extent of toxicity as an adverse effect.

Response
Biomarkers

A biomarker used to show that a biological response, potentially beneficial or harmful, has occurred in an individual who has been
exposed to a medical product or an environmental agent.

Surrogate
Biomarkers

A biomarker that was not directly measured but was inferred using AI/ML applied to other, often less invasive, patient data.
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to use of manual/semi-automatic tumor segmentation techniques as

well as for relying on pre-defined mathematical equations/hand-

crafted features. Unlike radiomics-based approaches, CNN-based

study designs often build end-to-end algorithms that automate the

tissue segmentation, feature extraction, and classifier training steps.

Although CNNs offer the potential to reduce human introduced

bias, they require larger training datasets compared to radiomics-

based approaches and offer less interpretability. In this regard, we

identified several studies that integrated radiomics and CNN-based

approaches to improve model prediction accuracy while providing

clinical interpretability (52, 79–82).

Histology-based diagnosis of NSCLC subtypes can be complex as

visual inspections by pathologists are prone to subjective assessments

and may result in different interpretations. CNNs trained on H&E-

stained Whole Slide Images (WSIs) have shown encouraging results

for automated differential diagnosis of LAD vs. SCC as well as for

histologic subtyping of LAD growth patterns (60, 83, 84). Despite

these efforts, challenges related to the interpretability of CNN-based

classifiers as well as computational constraints of high-resolution

WSI datasets continue to be obstacles to their widespread clinical

utility. Deep feature visualization (i.e., the process of generating visual

representations of the features learned from deep neural networks)

and resolution-based knowledge distillation (i.e., an approach to

transfer knowledge from a high-resolution neural network to a

smaller lower-resolution one) were among the emerging

approaches to improve interpretability and computational

feasibility of deep learning solutions for digital pathology (67, 85).

Molecular biomarkers, in particular somatic driver mutations,

are increasingly being used to guide treatment plans for NSCLC

patients. Molecular testing of tumor tissue biopsies is currently the
Frontiers in Oncology 05
gold standard practice to identify actionable molecular biomarkers,

but the invasive nature of this process limits its use in routine

diagnostic screening. Emerging non-invasive liquid biopsy tests also

have limited applications for routine diagnostic screening, as

ctDNA is at low concentrations in early-stage cancers (33). An

ideal diagnostic biomarker requires low invasiveness and easy

detection to allow early diagnosis. However, we found that ML

studies that leveraged molecular biomarkers for diagnostic purposes

have mainly used genome-wide gene expression data derived from

lung tissue. A recurrent finding from these studies was that non-

coding RNA expression signatures could differentiate NSCLC/LAD

tissue from normal tissue (43, 59, 72, 73). Recapitulating known

biology, ML algorithms that used lung gene expression levels to

distinguish LAD vs. SCC have reported TP63, a known IHC marker

for differentiating LAD vs. SCC, as well as several keratin-related

genes (e.g., KRT5, KRT6A, KRT14, SERPINB13) among the top

discriminative features (i.e., top attributes impacting model’s ability

to differentiate between different classes) (48, 56). In liquid biopsy-

based diagnostic studies, gene-expression signatures from tumor-

educated platelets and small extracellular vesicles as well as cfDNA

(cell-free DNA) fragmentation patterns (DELFI score; proportion

of short (100-150 bp) to long (86–155) cfDNA fragments) were

reported as potential biomarkers for NSCLC diagnosis (63, 68, 76).
AI/ML-derived prognostic biomarkers
of NSCLC

NSCLC prognosis has been correlated with several clinical and

demographic parameters including but not limited to the histologic
B

A

FIGURE 2

AI/ML Applications for Diagnostic Biomarker Discovery (A) Lung cancer, NSCLC, and LAD histologic subtypes, respectively. Subtype frequencies were
retrieved from Schabath et al. (40) (B) Bar graph of the top five model outcomes/topics where AI/ML algorithms have been developed to identify
potential diagnostic biomarkers for NSCLC. Color coding indicates the broad biomarker data type used in these studies (i.e., Molecular, Histologic,
Radiologic, Multimodal data types). The acronyms are as follows: SCLC, Small Cell Lung Cancer; NSCLC, Non-Small Cell Lung Cancer; LAD, Lung
Adenocarcinoma; SCC, Squamous Cell Carcinoma; LCC, Large Cell Carcinoma.
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subtype, disease stage, patient performance status, age, sex, blood

hemoglobin and calcium levels, blood neutrophil-to-lymphocyte

ratio, and serum lactate dehydrogenase and alkaline phosphatase

levels (87, 88) (Figure 3A). Disease prognosis as well as the

therapeutic options for NSCLC also depend on the molecular

biology of the tumor (87) (Figure 3B). Similarly, Minimal

Residual Disease (MRD) (i.e., small number of cancer cells that

may remain in the body after cancer treatment and even when

patient is in remission) levels have recently started being used in

predicting NSCLC relapse risk (89).

Prognostic biomarkers are defined as biomarkers that are used

to identify the likelihood of a clinical event, disease recurrence, or

progression in patients who have the disease or medical condition

of interest (3). Prognostic biomarkers are often confused with

predictive biomarkers because predictive biomarkers are

associated with prognostic outcomes in response to receiving a

particular treatment. With NSCLC having FDA recognized

predictive biomarkers (Table S1A), cataloguing prognostic

biomarkers independent of predictive biomarkers can be

misleading because biomarkers that were once associated with

unfavorable outcomes can now be associated with favorable

outcomes in response to targeted therapies. To identify a

predictive biomarker, BEST recommends a comparison of a

treatment to a control in patients with and without the biomarker

(3). However, upon reviewing AI/ML studies of NSCLC biomarker

research, we found that published prognostic and predictive

biomarker studies are often confounded in single-arm

evaluations. Acknowledging these issues, we used proxy

definitions and catalogued studies as “Prognostic” when the

prognostic outcomes were investigated regardless of the patients’

treatment status and as “Predictive” when prognostic outcomes

were investigated in patient cohorts that were exposed to a specific

medical product or an environmental agent.

We identified 58 manuscripts that reported AI/ML models to

identify potential prognostic biomarkers of NSCLC (Table S1F).

The most frequently studied prognostic outcomes were LAD

Survival (79, 87, 90–104), NSCLC Survival (105–117), LAD

Lymph Node Metastasis (98, 118–124), NSCLC Staging (66, 125–

130), and NSCLC Recurrence (131–133) (Figure 3C).

Time-to-event is the typical outcome variable when the metric

of prognosis is a survival phenotype. However, native ML models

cannot handle time-to-event data while accommodating censored

observations. Reflecting this, we found that ML studies predicting

NSCLC/LAD survival mainly formulated the survival analysis as a

classification problem and transformed time-to-event data into

dichotomized endpoints (90–94, 96, 100, 102, 103, 106, 108–111,

113, 116, 117, 134, 135). To this end, utilizing Random Survival

Forests (RSF) for continuous time-to-event survival prediction and

those aiming to identify optimal time-to-event ML models were

emerging (98, 99, 101, 105), but further applications and research in

this area are warranted.

Prognostic ML studies using CT and PET/CT datasets were

primarily based on pre-treatment images (79, 93, 105, 109, 111, 115,

126, 127, 129, 130, 133, 136). These studies emphasized the need for

improved multi-institution data integration and image

harmonization approaches to help build robust prognostic models
Frontiers in Oncology 06
(105, 109, 126). Prognostic molecular and multimodal ML studies

mainly leveraged tumor gene expression datasets (Table S1F).

Tumor microenvironment (TME) gene expression signatures

have been investigated frequently in the context of developing

prognostic ML models for NSCLC (92, 96, 99, 100, 110, 137,

138). In addition to TME immune gene signatures, other

components such as hypoxia, pyroptosis, and intercellular

communication were prioritized to build prognostic gene models

for NSCLC (92, 96, 137).
AI/ML-derived predictive biomarkers
of NSCLC

Clinical response to drugs can be influenced by many factors,

including patient age, sex, body mass index, concomitant therapies,

genetic make-up, circadian and seasonal variations, and drug

absorption, distribution, metabolism, excretion (ADME) profiles.

Precision/Personalized Medicine aims to customize treatment

regimens based on known variables that predict response to

available therapies. Pharmacogenetics and Pharmacogenomics

efforts currently are the major driving forces enabling Precision

Medicine in NSCLC treatment. Mutations in 11 genes (EGFR,

KRAS, ALK, ROS1, BRAF, NTRK1, NTRK2, NTRK3, MET, RET,

ERBB2), IHC quantified PD-L1 (CD274) expression, microsatellite

instability, and Tumor Mutation Burden (TMB) constitute the FDA

recognized predictive biomarkers predicting response to NSCLC

therapies (Table S1A; Figure 3B). The FDA requires that

Companion Diagnostics (CDx) tests/devices are used when

screening these predictive biomarkers to accurately identify

pat ient cohorts who are l ike ly to benefi t f rom the

therapeutic products.

BEST defines predictive biomarkers as biomarkers that are used

to identify individuals who are more likely than similar individuals

without the biomarker to experience a favorable or unfavorable

effect from exposure to a medical product or an environmental

agent (3). In this study, as described in the previous section, we used

proxy definitions due to the single arm study designs of the

published AI/ML-based prognostic and predictive biomarker

studies. We catalogued studies as “Prognostic” when the

prognostic outcomes were investigated regardless of the patients’

treatment status and as “Predictive” when prognostic outcomes are

investigated in patient cohorts that were exposed to a specific

medical product or an environmental agent. We identified 34

manuscripts that used ML approaches to identify potential

predictive biomarkers of NSCLC (Table S1G). The most

frequently studied predictive outcomes were NSCLC/LAD

Response to ICIs (96, 100, 139–152), NSCLC Response to

Radiotherapy (86, 114, 153–156), NSCLC Response to Tyrosine

Kinase Inhibitors (TKIs) (151, 157–159), and NSCLC Response to

Chemoradiotherapy (160–162) (Figure 3D).

Three tumor-centric biomarkers; PD-L1 expression (≥ 1% or ≥

50% of tumor cells), Microsatellite Instability (mutations in ≥30% of

microsatellites/mismatch repair deficient), and Tumor Mutation

Burden (TMB-H; ≥10 somatic mutations/Mb) are FDA-approved

biomarkers for ICIs used to treat NSCLC (Figure 3B). However,
frontiersin.org

https://doi.org/10.3389/fonc.2023.1260374
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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only a fraction of the biomarker-positive NSCLC patients(20-30%)

respond to ICI therapies (163). Among the ML studies we compiled,

16 reported predictive biomarkers for ICIs (96, 100, 139–152). In

addition to the FDA-approved biomarkers, TMB and PD-L1 tumor

proportion score (143, 145), TME-related immune gene signatures
Frontiers in Oncology 07
(141, 148), neutrophil-to-lymphocyte ratio (142, 143), and mutant

allele tumor heterogeneity (MATH) (145) were reported as

potential biomarkers predicting response to ICIs.

Mutations in eight genes (EGFR, ALK, ROS1, NTRK1, NTRK2,

NTRK3, MET, RET) are FDA-approved biomarkers predicting
B

C D

A

FIGURE 3

AI/ML Applications for Prognostic and Predictive Biomarker Discovery (A) Commonly studied prognostic factors of NSCLC. LDH and ALP stand for
Lactate Dehydrogenase and Alkaline Phosphatase, respectively. (B) FDA-approved Predictive Biomarkers for Non-Small Cell Lung Cancer. Gene,
drug names, and biomarkers were retrieved from the Table of Pharmacogenomic Biomarkers in Drug Labeling (6) in December, 2022. The list of ALK
and ERBB2 oncogenic mutations is included in Table S1A. *EGFR Exon 20 in-frame insertions (excluding A763_Y764insFQEA) are drug resistance
biomarkers for Erlotinib; Gefitinib; Afatinib. (C) Bar graph of the top five model outcomes/topics where AI/ML algorithms have been developed to
identify potential prognostic biomarkers for NSCLC. Color coding indicates the broad biomarker data type used in these studies (i.e., Molecular,
Histologic, Radiologic, Multimodal data types) (D) Bar graph of the top five model outcomes/topics where AI/ML algorithms have been developed to
identify potential predictive biomarkers for NSCLC. Color coding indicates the broad biomarker data type used in these studies (i.e., Molecular,
Histologic, Radiologic, Multimodal data types). ICIs, Immune Checkpoint Inhibitors; TKIs, Tyrosine Kinase Inhibitors; RT, Radiotherapy;
CRT, Chemoradiotherapy.
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response to NSCLC TKIs (Figure 3B). For biomarker positive NSCLC

patients, the overall response rate to TKIs is more than 60% (164, 165).

Through our literature search, we identified four studies that leveraged

AI/ML to identify predictive biomarkers for TKIs in NSCLC patients

(151, 157–159) and two in LAD-specific cohorts (87, 166). These

studies mainly reported radiomics-based predictive models (151, 157,

158, 166). There was a report of a liquid-biopsy based protein signature

in patients with ALK rearrangements predicting response to crizotinib

(159) and an OncoCast ML framework that revealed that mutations in

TP53 and ARID1A define a high-risk group with shorter survival in

patients who received TKI therapies (87).

Stereotactic body radiation therapy (SBRT) is the standard of

care treatment for early-stage NSCLC patients who are not

candidates for surgery (153). For qualified patients, local control

rate with SBRT treatment is around 90% but, as with surgical

patients, distant failure is observed in about 20% of patients (167).

Accurate prediction of response to SBRT in NSCLC patients can

help identify patients who are more likely to benefit from upfront

SBRT vs. systemic therapies. To this end, radiological image-only

(114, 154, 155) and multimodal (86, 153, 156) classifiers have been

reported, with consistent findings that CNNs demonstrate superior

predictive power compared to pre-defined tumor image features

(114, 154), and that inclusion of the biologically effective dose

(BED) of SBRT improves predictive abilities of the models built

(86, 153).

Concurrent chemoradiotherapy (CCRT) is a standard

treatment option for stage II and stage III NSCLC patients with

unresectable locally advanced cancer. The overall response rate to

CCRT is around 80% (168). Identifying patient subsets who may

benefit from intensified CCRT is important for better treatment

planning. We identified three studies that reported predictive

biomarkers for CRT (160–162) (Figure 3D). All three studies

were based on PET/CT data and here ad-hoc consensus and

fusion ML approaches were shown to increase the prediction

accuracies of the resulting models (161, 162).
AI/ML-derived safety biomarkers of NSCLC

The FDA Adverse Event Reporting System (FAERS) is the

primary surveillance tool that contains adverse events and safety

concerns that are attributed to marketed drugs (169). Early detection

of treatment-related adverse events is important for symptom

management and successful treatment. Non-specific cancer

treatments including radiotherapy and chemotherapy are mainly

associated with hematologic (e.g., anemia, neutropenia, fatigue),

gastrointestinal (e.g., nausea, vomiting), and dermatological (e.g.,

skin rashes, hair loss) toxicities. Pneumonitis is among the most

severe of toxicities attributed to lung radiotherapy. Targeted therapies

have a more variable spectrum of adverse events relative to non-

specific cancer treatments (169, 170). TKIs are commonly associated

with reversible symptoms including skin changes, vomiting, and

diarrhea. However, more serious drug-specific adverse events such

as interstitial lung disease and pericarditis have also been reported.

Similarly, adverse events from ICIs range from reversible symptoms

(e.g., dizziness, pyrexia) to more serious off-target inflammations that
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are referred to as immune-related adverse events (irAEs) (Figure 4A).

While mild adverse effects can be managed symptomatically,

moderate or severe toxicities necessitate dose reduction or

treatment breaks, ultimately impacting drug efficacies. Similarly,

many promising combination therapies for NSCLC face challenges

due to increased toxicities of drug combinations (171), highlighting

the need to identify safety biomarkers that can help tailor treatment

approaches or guide the design of clinical trials.

Safety biomarkers are defined as biomarkers measured before or

after an exposure to a medical product or an environmental agent to

indicate the likelihood, presence, or extent of toxicity as an adverse

effect (3). We found seven studies that used AI/ML to identify safety

biomarkers that can be used to predict adverse events in response to

NSCLC treatments. Potential safety biomarkers were reported for

radiation pneumonitis (172–175), radiotherapy-induced lung fibrosis

(176), ICI-induced cardiac toxicities (177), and to distinguish

radiotherapy-induced vs. ICI-induced pneumonitis in patients who

were treated both with radiotherapy and ICIs (178) (Figure 4B).

Radiation pneumonitis (RP) is a common (15-40%) complication

of lung radiotherapy (179). The severity of RP is tracked using the

National Cancer Institute Common Toxicity Criteria with radiation

pneumonitis grade ≥ 2 (RP2) being symptomatic and limiting daily

living activities. We identified four studies that developed MLmodels

to predict RP2 outcome (172–175) and one study that built a classifier

to distinguish radiation vs. ICI induced pneumonitis (178). Here, the

concepts of integrating latent and hand-crafted variables (175),

dosimetric and radiomic features (173), as well as clinical and

baseline cytokine levels (174), were employed to improve the

accuracy of RP2 risk prediction models.

Radiation induced lung fibrosis (RILF) is a severe side effect of

radiotherapy that significantly impacts quality of life and can lead to

non-cancer related death. RILF is classified from grade 0 to grade 5

depending on the clinical manifestation. Accumulating evidence

suggests that genetic background as well as cytokines involved in

tissue reorganization and immune response modulation are

important factors contributing to RILF pathogenesis (180). We

identified one ML study that built a classifier to predict RILF risk

(176). This study highlighted baseline circulating CCL4 levels, along

with dosimetric and clinical parameters as top discriminating

features predicting grade ≥ 2 risk (176).

ICI-associated cardiotoxicity is rare but often fatal.

Combination immune therapy has been shown to be a risk factor

for ICI-associated cardiac events (181). Using our literature search

approach, we identified one study that built ML models to predict

cardiac events in patients receiving ICI therapy (177). In this study,

Heilbroner et al. reported increased age, extremes of weight,

presence of cardiac history, low percentage of lymphocytes, and

high percentage of neutrophils among the top predictors of ICI-

associated cardiotoxicity risk (177).
AI/ML-derived surrogate biomarkers
of NSCLC

Identification of biomarkers from tissue biopsies is challenging

due to their invasive nature of collection and small tissue volume,
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limiting their usefulness for performing repeated measurements,

additional tests, and longitudinal monitoring. Non-invasive CDx

assays (e.g., cobas EGFR Mutation Test v2, FoundationOne Liquid

CDx, Guardant360 CDx) of ctDNA have been approved for certain
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NSCLC biomarkers (182). Alternative efforts continue to be

pursued to detect approved and potential biomarkers of NSCLC.

To this end, AI/ML algorithms have been applied to use relatively

non-invasive patient data as a substitute to predict clinically
B

C

D E

A

FIGURE 4

AI/ML Applications for Safety and Surrogate Biomarker Discovery (A) NSCLC non-specific and targeted therapies and examples of their known
adverse events. Note that adverse events associated with KRAS and Serine/threonine kinase inhibitors are not included. Representative adverse
events were pulled from Open Targets Pharmacovigilance tables, which are based on the FDA Adverse Event Reporting database (169, 170) (B) Bar
graph of the model outcomes/topics where AI/ML algorithms have been developed to identify potential safety biomarkers for NSCLC. Color coding
indicates the broad biomarker data type used in these studies (i.e., Molecular, Histologic, Radiologic, Multimodal data types). (C) An example
illustration of “Biomarker Quantification” (i.e., Direct assay) vs. “Surrogate Biomarker” Prediction (i.e., AI/ML applied to indirect assay data) (D) Bar
graph of the surrogate biomarker types where biomarker prediction was made through applying AI/ML to other indirect data types. Color coding
indicates the broad biomarker data type used in these studies (i.e., Molecular, Histologic, Radiologic, Multimodal data types). (E) A heatmap of the
indirect biomarker data types that were leveraged through AI/ML applications to predict corresponding surrogate biomarker types. Heatmap density
indicates the number of ML studies that used the data types shown on the y-axis to infer NSCLC biomarkers displayed on the x-axis.
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approved or other potential biomarker types, which are collectively

referred as the surrogate biomarkers in this study (Figure 4C).

Under the surrogate biomarker category, we identified 60 ML

studies (Table S1I). The top predicted biomarkers were EGFR

mutation status (44, 58, 183–209), PD-L1 expression status (190,

210–215), ALK mutation status (94, 216–219), KRAS mutation

status (44, 194, 197, 220), and TMB subtype (221–223)

(Figures 4D, E).

In clinical practice, EGFR and KRAS mutations are routinely

detected using DNA-based assays including real-time PCR and

sequencing. The detection of PD-L1 expression is based on IHC

assays and is considered suboptimal (224). ALK mutations or

rearrangements can be detected through both DNA- and protein-

based assays. There is currently one FDA-approved CDx test for

TMB status, which is solid biopsy and sequencing based (182). As a

complementary method to existing biomarker tests, we found

several ML studies that have demonstrated the value of using CT

or PET/CT datasets to predict EGFR (58, 188, 190–195, 197, 198,

200, 201, 203–209), PD-L1 (190, 211–215), ALK (216–219), KRAS

(44, 190, 194, 197, 220), and to some extent TMB (223) status.

Besides the promise of using radiological image data to predict

surrogate molecular biomarkers, the proposed models were also

shown to provide potential utility in understanding tumor

heterogeneity in which biological inference from different image

pixels were shown to reflect intra-tumor heterogeneity (207–209).

In addition to noninvasive radiological data, invasive yet

potentially time-efficient and tissue saving alternatives were also

reported to be useful in predicting surrogate biomarkers. For

example, Sha et al. developed a deep learning model that could

predict PD-L1 status from H&E stained WSIs in NSCLC patients

(210). Similarly, Chen et al. developed ML models that were trained

on H&E stained WSIs to predict multiple genetic aberrations (ALK,

BRAF, EGFR, ROS1 mutation status) and transcriptional subtypes

(proximal-inflammatory, proximal-proliferative, terminal

respiratory unit) of LAD (94), highlighting the potential of AI/

ML approaches to infer different molecular characteristics through

the repeated use of the same biological material.
Discussion

Biomarker discovery is a multifaceted process with many

applications in healthcare such as identification of high-risk

patients, improving diagnostic accuracies, as well as predicting

prognostic outcomes and sensitivity to therapeutics. Despite the

advancements in targeted therapies, approximately 30% of NSCLC

patients do not harbor known driver mutations, and about 55% do

not carry actionable mutations (225, 226). Additionally, even

among patients who respond to targeted therapies, adverse events

and acquired resistance may interrupt treatment plans, leading to

disease progression. Expanding the repertoire of NSCLC

biomarkers is critical for both the development of innovative

treatments as well as for monitoring disease progression and

adverse events. Here, to our knowledge, we report the first

comprehensive review of AI/ML applications in the NSCLC

biomarker space, catalogue the clinical challenges that are
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targeted by these studies, and summarize emerging patterns that

could inform researchers and clinicians in this field.

Formally, ML is a sub-field of AI and the approaches used

across the 215 manuscripts we catalogued could have fit under the

ML category, however we used AI/ML interchangeably as this was

the case in most published manuscripts. Similarly, the difference

between ML and traditional statistics has been the subject of many

controversies (227). ML can be built upon both statistical and

algorithmic frameworks and common statistical methods can be

used for both inferential and predictive modeling. We therefore

relied on authors’ self-declaration regarding the use of AI/ML

methods in predicting potential biomarkers for NSCLC.

Additionally, starting in 2014, guidelines such as CHARMS (22),

MLP-BIOM (23), TRIPOD (24), and PROBAST (25) have been

published to improve the reporting and appraisal of the prediction

models used for diagnostic and prognostic purposes. However, we

did not evaluate the manuscripts based on these checklists as our

goal was to catalogue the ongoing AI/ML efforts in NSCLC

biomarker research rather than assessing the immediate clinical

utility of the proposed models or biomarkers.

We catalogued 215 studies identified with respect to the BEST

(3) biomarker sub-types (Figure 1B). We did not find any AI/ML-

derived biomarkers that could fit under the Response Biomarker

category (i.e., a biomarker used to show that a biological response,

potentially beneficial or harmful, has occurred in an individual who

has been exposed to a medical product or an environmental agent).

We instead included a new biomarker category, which we referred

to as Surrogate Biomarkers, where AI/ML algorithms have been

applied to relatively non-invasive patient data to predict the

presence of clinically approved or other potential biomarkers of

NSCLC. While biomarker discovery is often formulated as a feature

selection problem (228), we also included studies that did not select

features but had reported classification utility with respect to

relevant organismal phenotypes under each biomarker category.

As expected, the models proposed have not been evaluated for

their clinical utility. However, the clinical questions, computational

challenges, and emerging solutions discussed here can serve as a

reference for clinicians and data scientists leveraging biomarker

datasets and AI/ML in medicine. Transfer learning methods to relax

training set requirements, data harmonization algorithms to

minimize technical variability in data generation, the contexts of

feature selection and stability to allow interpretable models are

among areas that are rapidly advancing. In addition to the

stochastic nature of AI/ML models, tumor-specific temporal and

spatial molecular heterogeneities, the dynamic composition of the

TME, and limitations in tumor tissue access continue to further

challenge the evolving landscape of biomarker modeling for

NSCLC. Non-invasive approaches including liquid biopsy-based

biomarkers and surrogate biomarkers inferred through the use of

AI/ML, hold promise to navigate these limitations and advance our

understanding of the dynamic nature of tumor progression.

Longitudinal data generated through non-invasive means can,

however, pose a new challenge; the data generated can be

overwhelmingly large as well as complex to analyze and interpret

efficiently using traditional methods. The use of automated AI/ML

tools in clinical monitoring may thus be essential to facilitate
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efficient analysis of the substantial amounts of longitudinal

biomarker data.

Of note, while AI/ML models have been used (229) and show

potential for numerous applications in clinical trials, including

opportunities to enhance trial design, safety monitoring, and

predictive analytics, there are currently no FDA-released

guidelines or performance metrics specific to the use or

evaluation of AI/ML algorithms in clinical trials (230). To this

end, we anticipate that FDA guidelines for regulating AI/ML-based

medical devices (231) and CONSORT-AI (232) recommendations

for reporting AI-interventions in trials will facilitate the

development of a formalized regulatory process, enabling effective

and robust use of AI/ML in clinical trials.

Identification, cataloguing, and continuous updating of emerging

biomarkers can expedite the clinical adoption of the innovative

biomarkers and technologies. Here, we provided an overview of the

fast-growing AI/ML applications in NSCLC biomarker discovery

space and discussed the gaps and challenges in the field. By

compiling relevant literature on NSCLC biomarker discovery, we

revealed a comprehensive picture of the clinical challenges that are

commonly targeted using AI/ML approaches and highlighted

potential biomarkers and signatures that once adequately appraised

may be translated into clinical decision support systems.
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Çalışkan and Tazaki 10.3389/fonc.2023.1260374
60. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, et al.
Classification and mutation prediction from non-small cell lung cancer histopathology
images using deep learning. Nat Med (2018) 24(10):1559–67. doi: 10.1038/s41591-018-
0177-5

61. Zhu X, Dong D, Chen Z, Fang M, Zhang L, Song J, et al. Radiomic signature as a
diagnostic factor for histologic subtype classification of non-small cell lung cancer. Eur
Radiol (2018) 28(7):2772–8. doi: 10.1007/s00330-017-5221-1

62. Wang S, Wang Q, Fan B, Gong J, Sun L, Hu B, et al. Machine learning-based
screening of the diagnostic genes and their relationship with immune-cell infiltration in
patients with lung adenocarcinoma. J Thorac Dis (2022) 14(3):699–711. doi: 10.21037/
jtd-22-206

63. Li W, Zhu L, Li K, Ye S, Wang H, Wang Y, et al. Machine learning-assisted dual-
marker detection in serum small extracellular vesicles for the diagnosis and prognosis
prediction of non-small cell lung cancer. Nanomaterials (Basel) (2022) 12(5). doi:
10.3390/nano12050809

64. Li C, Tian C, Zeng Y, Liang J, Yang Q, Gu F, et al. Integrated analysis of MATH-
based subtypes reveals a novel screening strategy for early-stage lung adenocarcinoma.
Front Cell Dev Biol (2022) 10:769711. doi: 10.3389/fcell.2022.769711

65. Pedraz-Valdunciel C, Giannoukakos S, Potie N, Gimenez-Capitan A, Huang CY,
Hackenberg M, et al. Digital multiplexed analysis of circular RNAs in FFPE and fresh
non-small cell lung cancer specimens. Mol Oncol (2022) 16(12):2367–83. doi: 10.1002/
1878-0261.13182

66. Lu H, Gao NL, Tong F, Wang J, Li H, Zhang R, et al. Alterations of the human
lung and gut microbiomes in non-small cell lung carcinomas and distant metastasis.
Microbiol Spectr. (2021) 9(3):e0080221. doi: 10.1128/Spectrum.00802-21

67. Lin CK, Chang J, Huang CC, Wen YF, Ho CC, Cheng YC. Effectiveness of
convolutional neural networks in the interpretation of pulmonary cytologic images in
endobronchial ultrasound procedures. Cancer Med (2021) 10(24):9047–57. doi:
10.1002/cam4.4383

68. Goswami C, Chawla S, Thakral D, Pant H, Verma P, Malik PS, et al. Molecular
signature comprising 11 platelet-genes enables accurate blood-based diagnosis of
NSCLC. BMC Genomics (2020) 21(1):744. doi: 10.1186/s12864-020-07147-z

69. Huang L, Wang L, Hu X, Chen S, Tao Y, Su H, et al. Machine learning of serum
metabolic patterns encodes early-stage lung adenocarcinoma. Nat Commun (2020) 11
(1):3556. doi: 10.1038/s41467-019-14242-7

70. Noreldeen HAA, Du L, Li W, Liu X, Wang Y, Xu G. Serum lipidomic biomarkers
for non-small cell lung cancer in nonsmoking female patients. J Pharm BioMed Anal
(2020) 185:113220. doi: 10.1016/j.jpba.2020.113220

71. Shen N, Du J, Zhou H, Chen N, Pan Y, Hoheisel JD, et al. A diagnostic panel of
DNA methylation biomarkers for lung adenocarcinoma. Front Oncol (2019) 9:1281.
doi: 10.3389/fonc.2019.01281

72. Smolander J, Stupnikov A, Glazko G, Dehmer M, Emmert-Streib F. Comparing
biological information contained in mRNA and non-coding RNAs for classification of
lung cancer patients. BMC Cancer. (2019) 19(1):1176. doi: 10.1186/s12885-019-6338-1

73. Wang Y, Fu J, Wang Z, Lv Z, Fan Z, Lei T. Screening key lncRNAs for human
lung adenocarcinoma based on machine learning and weighted gene co-expression
network analysis. Cancer biomark (2019) 25(4):313–24. doi: 10.3233/CBM-190225

74. Xiao Y, Wu J, Lin Z, Zhao X. A deep learning-based multi-model ensemble
method for cancer prediction. Comput Methods Programs Biomed (2018) 153:1–9. doi:
10.1016/j.cmpb.2017.09.005

75. Xie Z, Zhang H. Analysis of the diagnosis model of peripheral non-small-cell
lung cancer under computed tomography images. J Healthc Eng. (2022) 2022:3107965.
doi: 10.1155/2022/3107965

76. Mathios D, Johansen JS, Cristiano S, Medina JE, Phallen J, Larsen KR, et al.
Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat
Commun (2021) 12(1):5060. doi: 10.1038/s41467-021-24994-w

77. Chen BT, Chen Z, Ye N, Mambetsariev I, Fricke J, Daniel E, et al. Differentiating
peripherally-located small cell lung cancer from non-small cell lung cancer using a CT
radiomic approach. Front Oncol (2020) 10:593. doi: 10.3389/fonc.2020.00593

78. O'Shea K, Cameron SJ, Lewis KE, Lu C, Mur LA. Metabolomic-based biomarker
discovery for non-invasive lung cancer screening: A case study. Biochim Biophys Acta
(2016) 1860(11 Pt B):2682–7. doi: 10.1016/j.bbagen.2016.07.007

79. Wang C, Shao J, Lv J, Cao Y, Zhu C, Li J, et al. Deep learning for predicting
subtype classification and survival of lung adenocarcinoma on computed tomography.
Transl Oncol (2021) 14(8):101141. doi: 10.1016/j.tranon.2021.101141

80. Wang X, Li Q, Cai J, Wang W, Xu P, Zhang Y, et al. Predicting the invasiveness
of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-
task learning and deep radiomics. Transl Lung Cancer Res (2020) 9(4):1397–406. doi:
10.21037/tlcr-20-370

81. Xia X, Gong J, Hao W, Yang T, Lin Y, Wang S, et al. Comparison and fusion of
deep learning and radiomics features of ground-glass nodules to predict the
invasiveness risk of stage-I lung adenocarcinomas in CT scan. Front Oncol (2020)
10:418. doi: 10.3389/fonc.2020.00418

82. Lu L, Wang D, Wang L, E L, Guo P, Li Z, et al. A quantitative imaging biomarker
for predicting disease-free-survival-associated histologic subgroups in lung
adenocarcinoma. Eur Radiol (2020) 30(7):3614–23. doi: 10.1007/s00330-020-06663-6
Frontiers in Oncology 13
83. Wei JW, Tafe LJ, Linnik YA, Vaickus LJ, Tomita N, Hassanpour S. Pathologist-
level classification of histologic patterns on resected lung adenocarcinoma slides with
deep neural networks. Sci Rep (2019) 9(1):3358. doi: 10.1038/s41598-019-40041-7

84. Gertych A, Swiderska-Chadaj Z, Ma Z, Ing N, Markiewicz T, Cierniak S, et al.
Convolutional neural networks can accurately distinguish four histologic growth
patterns of lung adenocarcinoma in digital slides. Sci Rep (2019) 9(1):1483. doi:
10.1038/s41598-018-37638-9

85. DiPalma J, Suriawinata AA, Tafe LJ, Torresani L, Hassanpour S. Resolution-
based distillation for efficient histology image classification. Artif Intell Med (2021)
119:102136. doi: 10.1016/j.artmed.2021.102136

86. Hindocha S, Charlton TG, Linton-Reid K, Hunter B, Chan C, Ahmed M, et al. A
comparison of machine learning methods for predicting recurrence and death after
curative-intent radiotherapy for non-small cell lung cancer: Development and
validation of multivariable clinical prediction models. EBioMedicine. (2022)
77:103911. doi: 10.1016/j.ebiom.2022.103911

87. Shen R, Martin A, Ni A, Hellmann M, Arbour KC, Jordan E, et al. Harnessing
clinical sequencing data for survival stratification of patients with metastatic lung
adenocarcinomas. JCO Precis Oncol (2019) 3. doi: 10.1200/PO.18.00307

88. Shimizu K, Okita R, Saisho S, Maeda A, Nojima Y, Nakata M. Preoperative
neutrophil/lymphocyte ratio and prognostic nutritional index predict survival in
patients with non-small cell lung cancer. World J Surg Oncol (2015) 13:291. doi:
10.1186/s12957-015-0710-7

89. Frisone D, Friedlaender A, Addeo A. The role and impact of minimal residual
disease in NSCLC. Curr Oncol Rep (2021) 23(12):136. doi: 10.1007/s11912-021-01131-w

90. Dessie EY, Chang JG, Chang YS. A nine-gene signature identification and prognostic
risk prediction for patients with lung adenocarcinoma using novel machine learning
approach. Comput Biol Med (2022) 145:105493. doi: 10.1016/j.compbiomed.2022.105493

91. Liu Y, Yang M, Sun W, Zhang M, Sun J, Wang W, et al. Developing prognostic
gene panel of survival time in lung adenocarcinoma patients using machine learning.
Transl Cancer Res (2020) 9(6):3860–9. doi: 10.21037/tcr-19-2739

92. Liu LP, Lu L, Zhao QQ, Kou QJ, Jiang ZZ, Gui R, et al. Identification and
validation of the pyroptosis-related molecular subtypes of lung adenocarcinoma by
bioinformatics and machine learning. Front Cell Dev Biol (2021) 9:756340. doi:
10.3389/fcell.2021.756340

93. Cho HH, Lee HY, Kim E, Lee G, Kim J, Kwon J, et al. Radiomics-guided deep
neural networks stratify lung adenocarcinoma prognosis from CT scans. Commun Biol
(2021) 4(1):1286. doi: 10.1038/s42003-021-02814-7

94. Chen L, Zeng H, Xiang Y, Huang Y, Luo Y, Ma X. Histopathological images and
multi-omics integration predict molecular characteristics and survival in lung
adenocarcinoma. Front Cell Dev Biol (2021) 9:720110. doi: 10.3389/fcell.2021.720110

95. Min KW, Kim DH, Noh YK, Son BK, Kwon MJ, Moon JY. Cancer-associated
fibroblasts are associated with poor prognosis in solid type of lung adenocarcinoma in a
machine learning analysis. Sci Rep (2021) 11(1):16779. doi: 10.1038/s41598-021-96344-1

96. Shi R, Bao X, Unger K, Sun J, Lu S, Manapov F, et al. Identification and
validation of hypoxia-derived gene signatures to predict clinical outcomes and
therapeutic responses in stage I lung adenocarcinoma patients. Theranostics. (2021)
11(10):5061–76. doi: 10.7150/thno.56202

97. Deng F, Shen L, Wang H, Zhang L. Classify multicategory outcome in patients
with lung adenocarcinoma using clinical, transcriptomic and clinico-transcriptomic
data: machine learning versus multinomial models. Am J Cancer Res (2020) 10
(12):4624–39.

98. Cai Q, He B, Zhang P, Zhao Z, Peng X, Zhang Y, et al. Exploration of predictive
and prognostic alternative splicing signatures in lung adenocarcinoma using machine
learning methods. J Transl Med (2020) 18(1):463. doi: 10.1186/s12967-020-02635-y

99. Xue L, Bi G, Zhan C, Zhang Y, Yuan Y, Fan H. Development and validation of a
12-gene immune relevant prognostic signature for lung adenocarcinoma through
machine learning strategies. Front Oncol (2020) 10:835. doi: 10.3389/fonc.2020.00835

100. Bao X, Shi R, Zhao T, Wang Y. Mast cell-based molecular subtypes and
signature associated with clinical outcome in early-stage lung adenocarcinoma. Mol
Oncol (2020) 14(5):917–32. doi: 10.1002/1878-0261.12670

101. Ma B, Geng Y, Meng F, Yan G, Song F. Identification of a sixteen-gene
prognostic biomarker for lung adenocarcinoma using a machine learning method. J
Cancer. (2020) 11(5):1288–98. doi: 10.7150/jca.34585

102. Li Y, Ge D, Gu J, Xu F, Zhu Q, Lu C. A large cohort study identifying a novel
prognosis prediction model for lung adenocarcinoma through machine learning
strategies. BMC Cancer. (2019) 19(1):886. doi: 10.1186/s12885-019-6101-7

103. Shin B, Park S, Hong JH, An HJ, Chun SH, Kang K, et al. Cascaded wx: A novel
prognosis-related feature selection framework in human lung adenocarcinoma
transcriptomes. Front Genet (2019) 10:662. doi: 10.3389/fgene.2019.00662

104. Choi H, Na KJ. A risk stratification model for lung cancer based on gene
coexpression network and deep learning. BioMed Res Int (2018) 2018:2914280. doi:
10.1155/2018/2914280

105. Amini M, Hajianfar G, Hadadi Avval A, Nazari M, Deevband MR, Oveisi M,
et al. Overall survival prognostic modelling of non-small cell lung cancer patients using
positron emission tomography/computed tomography harmonised radiomics features:
the quest for the optimal machine learning algorithm. Clin Oncol (R Coll Radiol).
(2022) 34(2):114–27. doi: 10.1016/j.clon.2021.11.014
frontiersin.org

https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1038/s41591-018-0177-5
https://doi.org/10.1007/s00330-017-5221-1
https://doi.org/10.21037/jtd-22-206
https://doi.org/10.21037/jtd-22-206
https://doi.org/10.3390/nano12050809
https://doi.org/10.3389/fcell.2022.769711
https://doi.org/10.1002/1878-0261.13182
https://doi.org/10.1002/1878-0261.13182
https://doi.org/10.1128/Spectrum.00802-21
https://doi.org/10.1002/cam4.4383
https://doi.org/10.1186/s12864-020-07147-z
https://doi.org/10.1038/s41467-019-14242-7
https://doi.org/10.1016/j.jpba.2020.113220
https://doi.org/10.3389/fonc.2019.01281
https://doi.org/10.1186/s12885-019-6338-1
https://doi.org/10.3233/CBM-190225
https://doi.org/10.1016/j.cmpb.2017.09.005
https://doi.org/10.1155/2022/3107965
https://doi.org/10.1038/s41467-021-24994-w
https://doi.org/10.3389/fonc.2020.00593
https://doi.org/10.1016/j.bbagen.2016.07.007
https://doi.org/10.1016/j.tranon.2021.101141
https://doi.org/10.21037/tlcr-20-370
https://doi.org/10.3389/fonc.2020.00418
https://doi.org/10.1007/s00330-020-06663-6
https://doi.org/10.1038/s41598-019-40041-7
https://doi.org/10.1038/s41598-018-37638-9
https://doi.org/10.1016/j.artmed.2021.102136
https://doi.org/10.1016/j.ebiom.2022.103911
https://doi.org/10.1200/PO.18.00307
https://doi.org/10.1186/s12957-015-0710-7
https://doi.org/10.1007/s11912-021-01131-w
https://doi.org/10.1016/j.compbiomed.2022.105493
https://doi.org/10.21037/tcr-19-2739
https://doi.org/10.3389/fcell.2021.756340
https://doi.org/10.1038/s42003-021-02814-7
https://doi.org/10.3389/fcell.2021.720110
https://doi.org/10.1038/s41598-021-96344-1
https://doi.org/10.7150/thno.56202
https://doi.org/10.1186/s12967-020-02635-y
https://doi.org/10.3389/fonc.2020.00835
https://doi.org/10.1002/1878-0261.12670
https://doi.org/10.7150/jca.34585
https://doi.org/10.1186/s12885-019-6101-7
https://doi.org/10.3389/fgene.2019.00662
https://doi.org/10.1155/2018/2914280
https://doi.org/10.1016/j.clon.2021.11.014
https://doi.org/10.3389/fonc.2023.1260374
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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