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Early prediction of neoadjuvant systemic therapy (NAST) response for triple-

negative breast cancer (TNBC) patients could help oncologists select

individualized treatment and avoid toxic effects associated with ineffective

therapy in patients unlikely to achieve pathologic complete response (pCR).

The objective of this study is to evaluate the performance of radiomic features of

the peritumoral and tumoral regions from dynamic contrast-enhancedmagnetic

resonance imaging (DCE-MRI) acquired at different time points of NAST for early

treatment response prediction in TNBC. This study included 163 Stage I-III

patients with TNBC undergoing NAST as part of a prospective clinical trial

(NCT02276443). Peritumoral and tumoral regions of interest were segmented

on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST.

Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix

(GLCM) features were calculated. Area under the receiver operating

characteristic curve (AUC) and Wilcoxon rank sum test were used to determine

the most predictive features. Multivariate logistic regression models were used

for performance assessment. Pearson correlation was used to assess intrareader

and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26

testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic
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features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75

for training and testing sets. The Pearson correlation showed significant

correlation between readers. In conclusion, Radiomic features from DCE-MRI

are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic

models based on these features can improve early noninvasive treatment

response prediction in TNBC patients undergoing NAST.
KEYWORDS

triple-negative breast cancer, dynamic contrast-enhanced MRI, neoadjuvant systemic
therapy, radiomic analysis, pathologic complete response
1 Introduction

Triple-negative breast cancer (TNBC) accounts for

approximately 10% to 20% of breast cancers but almost 30% to

40% of breast cancer–related deaths (1). TNBC is defined by a

profile of negative immunohistochemical staining of the receptors

for progesterone, estrogen, and human epidermal growth factor

(HER2) and therefore not responsive to endocrine or HER2-

targeted therapies (2). In addition, TNBC, when not responsive to

chemotherapy, is generally associated with a poor prognosis with a

high recurrence rate and a low long-term survival rate (3).

In patients with TNBC, neoadjuvant systemic therapy (NAST)

with chemotherapy agents such as anthracyclines, taxanes, and

cyc lophosphamide , carboplat in plus Food and Drug

Administration–approved immunotherapy agents such as

pembrolizumab is usually administered before surgery to

downstage the tumor (2, 4–8). Patients with a pathologic

complete response (pCR) to NAST have favorable long-term

overall survival and event-free survival, whereas patients without

a pCR to NAST have higher recurrence and mortality rates (9, 10).

However, only 50% to 60% of TNBC patients achieve a pCR to

NAST. Thus, early prediction of NAST response is crucial to avoid

exposure of predicted non-responders to ineffective NAST and

unnecessary toxicity of neoadjuvant immunotherapy. Early

prediction of NAST response can also help oncologists triage

patients to a clinical trial and has the potential to better

personalize therapy.

Dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI) and the associated temporal enhancement curves can

be used in pharmacokinetic modeling to determine the vascular

properties of a tumor, such as the integrity and density of the tumor

micro-vessels (11). Volumetric changes along with quantitative and

semiquantitative kinetic parameters derived from DCE-MRI have

been found to be applicable for breast cancer diagnosis,

measurement of breast tumor size, classification of breast tumors,

and detection of residual breast cancer after NAST (12–18).

In recent years, several studies have been conducted to assess

the role of quantitative radiomic imaging features extracted from

MRI images in predicting prognosis and treatment response in

patients with breast cancer (19, 20). Wu et al. (21) studied
02
quantitative radiomic features from DCE-MRI extracted before

and after one cycle of NAST and demonstrated that these features

could be used to develop a clinical biomarker for the prediction of

the tumor response to NAST. Other investigators also studied

radiomic features from DCE-MRI images for the early prediction

of tumor response to NAST (12, 19, 21–24). In addition, radiomic

features of breast MRI images have been widely investigated for the

noninvasive characterization of tumors (25–28).

Studies suggest that peritumoral features assessed by MRI could

provide vital information on the tumor microenvironment, cancer

development, chemoresistance, and treatment response (29, 30).

While previous studies have shown the potential of radiomic

analysis in predicting response to NAST, most of these studies

have focused on the tumoral region alone. Furthermore, few studies

have explored the performance of radiomic models, specifically in

patients with TNBC, and even fewer have evaluated the

performance of models based on features extracted from DCE-

MRI images obtained at multiple time points during NAST.

In this study, we systematically evaluated the performance of

models based on radiomic features of both the peritumoral and

tumoral regions from DCE-MRI images at baseline (BL), after two

cycles (C2), and after four cycles (C4) of NAST for early prediction

of response to NAST in TNBC.
2 Materials and methods

2.1 Patient population

In this institutional review board–approved study, we included

163 patients with biopsy-confirmed stage I-III TNBC enrolled in

the prospective clinical trial “ARTEMIS: A Robust TNBC

Evaluation FraMework to Improve Survival (NCT02276443)”.

Informed consent was obtained from all the patients before

enrollment in this trial. The inclusion and exclusion criteria are

shown in Figure 1. TNBC was defined from standard pathologic

assays of biopsy specimens as negative for estrogen receptor and

progesterone receptor (<10% of tumor staining) and negative for

HER2 (immunohistochemistry score < 3, gene copy number not

amplified) (31).
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All patients in this study received NAST consisting of dose-

dense doxorubicin and cyclophosphamide for four cycles, followed

by paclitaxel every two weeks for four cycles or weekly for a total of

12 doses. All patients underwent DCE-MRI scans at baseline (BL),

after 2 cycles(C2) and after 4 cycles(C4) of NAST, followed by

surgery after the completion of NAST. Patient demographic data,

clinical information, and pathologic findings were obtained from

patients’ medical records. Patients were classified as, having a pCR

or a non-pCR according to the findings on the pathologic review of

surgical specimens. pCR was defined as the absence of invasive

carcinoma in the breast and axillary lymph nodes.
2.2 DCE-MRI acquisition

For all the patients, DCE-MRI images were acquired on a GE

3.0 T MR750w whole body scanner (Waukesha, WI) with a bilateral

8-channel phased array coil. The patients were imaged in a prone

and feet-in-first position. The imaging protocol included a DCE-

MRI series based on the differential subsampling with cartesian

ordering (DISCO) sequence. Typical MRI scan parameters used for

the DISCO acquisition were as follows: field of view = 34 × 34 cm,

slice thickness = 3.0 mm, slice spacing = -1.5 mm, flip angle = 12°,

repetition time = 7.6 ms, echo time 1/echo time 2 = 1.1/2.3 ms, total

acquisition time = 7 minutes, acquisition matrix = 320 ×320,

number of acquired slices = 60-115, temporal resolution = 8-15.5

s, receiver bandwidth = ± 166.7 kHz, and number of excitations =

0.69. During the DCE-MRI acquisition, each patient was injected

with a single bolus of gadobutrol (Gadovist, Bayer Health Care)

contrast agent (0.1 mL/kg at ~2 mL/s followed by a saline flush)

after at least one mask phase was obtained.
Frontiers in Oncology 03
2.3 Image processing and
feature extraction
Manual tumor segmentations, followed by semiautomatic

refinement of regions of interest (ROIs), were carried out on 2.5-

minute early-phase DCE subtraction images by two fellowship-trained

breast radiologists with eight years (MB) and five years (RMM) of

experience, respectively. The tumoral region was defined as the region

exhibiting contrast enhancement on the DCE images. All the

segmentations on BL, C2, and C4 images were performed using an

in-house image analysis software program (Image-I v2.0) coded in

MATLAB (MathWorks Inc, Natick, MA, USA; RRID: SCR_001622)

(31). Additionally, peritumoral regions were automatically generated

by expanding the tumor ROIs outward with a fixed thickness of

10 mm (Figure 2) (32). A tumor bed was segmented for the cases with

no visible tumor enhancement at C2 and/or C4.

A total of 310 radiomic features per imaging time point were

extracted separately from the segmented tumor and peritumoral

ROIs using an in-house source code based on MATLAB (Figure 3).

Of the 310 features extracted, 10 were the first order (FO) histogram

features (minimum; maximum; mean; standard deviation; 1st, 5th,

95th, and 99th percentiles; skewness; and kurtosis), and the

remaining 300 features were gray-level co-occurrence matrix

(GLCM) features generated as 60 rotation-invariant features

obtained from five different gray levels. For each of the five gray

levels (8, 16, 32, 64, and 256), the mean, range, and angular variance

of the following 20 GLCM features were calculated to generate the 60

rotation-invariant features: autocorrelation, correlation, contrast,

cluster prominence, cluster prominence, cluster shade, dissimilarity,

energy, homogeneity, maximum probability, sum of squares/
FIGURE 1

Inclusion and exclusion criteria for the study patients.
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variance, sum average, sum variance, sum entropy, difference

variance, difference entropy, information measure of correlation 1,

information measure of correlation 2, inverse difference normalized,

and inverse difference moment normalized (33).
2.4 Statistical analysis

The absolute differences (ADs) and the relative differences (RDs)

of radiomic features between the three imaging time points (C4 vs. BL

[C4BL], C4 vs. C2 [C4C2], and C2 vs. baseline [C2BL]) were

calculated. The calculated radiomic features and their differences

from peritumoral and tumoral regions were compared between the

patients with pCR and non-pCR using the Wilcoxon rank sum test
Frontiers in Oncology 04
and Fisher’s exact test. The patient cohort was split into a training set

(n=109, 67%) and a testing set (n=54, 33%) in a 2:1 ratio.

For the univariate analysis, area under the receiver operating

characteristic curve (AUC) was measured for each radiomic feature

from peritumoral and tumoral ROIs at all three imaging time

points. Furthermore, AUCs were calculated for the ADs and RDs

in the features between these time points. For multivariate analysis,

logistic regression with elastic net regularization was performed for

texture feature selection. The tuning parameter was optimized by

using five-fold cross-validation based on the mean cross-validation

AUC. Furthermore, independent testing was performed using the

testing data set.

A second set of tumor segmentation was produced

independently by a fellowship-trained breast radiologist (SP) with
B CA

FIGURE 3

Workflow of DCE-MRI radiomic analysis for prediction of pCR. (A) Segmentation of regions of interest in DCE-MRI images (B) Extraction of first
order radiomic features and GLCM features (C) Statistical models for feature selection and prediction of pCR.
B C

D E F
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FIGURE 2

Examples of peritumoral regions automatically generated by the expansion of the tumor ROIs outward. Top row, Fifty-seven-year-old woman with a
right breast TNBC (red contour) that measured 1.7 x 1.5 x 1.5 cm at BL (A), 1.4 x 1.2 x 0.9 cm at C2 (B), and 1.2 x 0.8 x 0.7 cm at C4 (C). Final surgical
pathology showed pCR. Bottom row, Seventy-eight-year-old woman with a left breast TNBC (red contour) that measured 2.6 x 2.0 x 1.8 cm at BL
(D), 2.8 x 1.5 x 1.4 cm at C2 (E), and 2.2 x 1.7 x 1.3 cm at C4 (F). Final surgical pathology showed non-pCR. Peritumoral segmentations are shown
with yellow contours. The area between the yellow and red contours (thickness = 10 mm) was used for peritumoral features measurement.
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12 years of experience. The same methodology used to extract

features from the initial set of ROIs was applied to extract radiomic

features from these new ROIs. The Pearson correlation coefficient

was calculated to measure the linear relationship of each feature

between two data sets. For the Pearson correlation coefficient, a

value of 1 indicates a perfect positive correlation, 0 indicates no

correlation, and -1 indicates a perfect negative correlation.

Interreader differences were evaluated using the Wilcoxon signed-

rank test. The ratio of interreader to intrareader variance was

assessed to determine the degree of agreement between two sets

of measurements. A lower ratio indicates greater agreement

between the readers, suggesting that the measurements are

reproducible and consistent.

Statistical analyses were conducted using R software (version

4.0.3, R Development Core Team, Vienna, Austria; RRID:

SCR_001905). A p-value less than 0.05 was considered

statistically significant.
3 Results

3.1 Patient characteristics

Of the 218 TNBC patients from the ARTEMIS trial who were

assessed for eligibility, 55 were excluded from this study, leaving 163

TNBC patients in the final cohort (Figure 1). Patient characteristics

are reported in Table 1. Seventy-eight patients (48%) had a pCR,

and 85 (52%) had a non-pCR. There were no statistically significant

differences in demographic and clinical characteristics between the

patients who achieved a pCR and those who did not.
3.2 Univariate analysis

Forty-six radiomic features (21 extracted from the peritumoral

region and 25 from the tumoral region) achieved statistical

significance in predicting the pCR status of a patient and had AUC

at least 0.70 for both the training and testing cohorts (Tables 2, 3).

Two tumoral radiomic features (RD-C4BL_percentile 5 and RD-

C4BL_percentile 1) had AUC greater than 0.80 for both the training

and testing cohorts. The AUCs for the 21 significant features from the

peritumoral region ranged from 0.70 to 0.82 for the training cohort

and 0.70 to 0.77 for the testing cohort (Table 2). Similarly, the AUCs

for the 25 significant features from the tumoral region ranged from

0.70 to 0.84 for the training cohort and 0.70 to 0.81 for the testing

cohort (Table 3). None of the 46 features that were significant and

had AUC at least 0.70 in both the training and testing cohorts were

GLCM features. Additionally, none of the features extracted from

BL and C2 had AUC at least 0.70 for both the training and

testing cohorts.
3.3 Multivariate analysis

Multivariate analysis identified 13 radiomic models with AUC

at least 0.75 for the training and testing cohorts (Table 4).
Frontiers in Oncology 05
The multivariate radiomic models with the best AUCs in the

testing cohort were based on peritumoral FO features acquired at

BL, C2, and C4 along with their ADs and RDs (model 1: AUC in the

training cohort, 0.95 [95% confidence interval (CI): 0.91-0.98],

AUC in the testing cohort, 0.79 [95% CI: 0.65-0.92]) and a model

based on features from both the peritumoral and tumoral regions

(model 2: AUC in the training cohort, 0.96 [95% CI: 0.93-0.99],

AUC in the testing cohort, 0.78 [95% CI: 0.65-0.91]). The receiver

operative characteristic curves for model 1 and model 2 are shown

in Figure 4.

The radiomic models based on peritumoral features at BL only,

C2 only, a combination of BL and C2, as well as the models based on

tumoral features at BL only, a combination of C2 and C4, had AUCs

less than 0.70 for testing cohorts. However, the radiomic models

based on peritumoral features at C4 only, a combination of BL and

C4, a combination of C2 and C4, as well as tumoral features at C2

only, C4 only, a combination of BL and C2, and a combination of

BL and C4 had AUCs greater than 0.70 for both training and testing
TABLE 1 Clinical and pathologic characteristics of patients with TNBC
undergoing NAST included in the study.

Characteristic
Non-pCR (n =
85) (52%)

pCR (n = 78)
(48%)

P
value

Median age (range),
years

50 (31–78) 48 (23-78)

T category, n (%)

T1 12 (14.1) 19 (24.4)

T2 59 (69.4) 53 (67.9)

T3 13 (15.3) 5 (6.4)

T4 1 (1.2) 1 (1.3)

N category, n (%) 0.850

N0 55 (64.7) 53 (68.0)

N1 19 (22.4) 17 (21.8)

N2 4 (4.7) 3 (3.8)

N3 7 (8.2) 5 (6.4)

Clinical stage, n (%) 0.690

I 11 (12.9) 11 (14.1)

II 59 (69.4) 55 (70.5)

III 15 (17.7) 12 (15.4)

Histologic type, n (%) 0.741

Invasive ductal
carcinoma

76 (89.4) 73 (93.6)

Metaplastic 8 (9.4) 5 (6.4)

Apocrine 1 (1.2) 0 (0)

Type of surgery, n (%) 0.575

Breast-conserving
surgery

47 (55.3) 49 (62.8)

Total
mastectomy

38 (44.7) 29 (37.2)
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cohorts (Table 5). The radiomic model based on tumoral features

from BL, C2 and C4 had an AUC of 0.99 [95% CI: 0.99-1.00] in the

training cohort and an AUC of 0.73 [95% CI: 0.59-0.87] in the

testing cohort. The radiomic models based on peritumoral features

from BL, C2 and C4 with/without tumoral features from BL, C2,

and C4 had AUCs greater than 0.75 for both training and testing

cohort (Table 4).
3.4 Interreader variability analysis

The Pearson correlation analysis showed that both GLCM and

FO features exhibited strong interreader correlation. Specifically,

the correlation coefficient was greater than 0.8 for 83% (25/30) of
Frontiers in Oncology 06
original FO features, 60% (18/30) of AD FO features, and 67% (20/

30) of RD FO features. For GLCM, the correlation coefficient was

greater than 0.8 for 100% (300/300) of original and AD GLCM

features and 90% (271/300) of RD GLCM features. For the ratio of

interreader to intrareader variance for the FO features, the mean

was 5.6 × 10 -3 and the median was zero, indicating high agreement

between the interreader datasets. The standard deviation was 0.02,

indicating a slight variation in agreement between the readers

across FO features. The range was relatively narrow, 0 to 0.08,

suggesting that most features had a high level of agreement between

the readers. There was no variability in the measurements between

the readers for any of the GLCM features. The ratios were all zero,

indicating a high level of agreement and consistency between

the readers.
TABLE 2 Significant features (AUC ≥ 0.70 for both training and testing sets) extracted from the peritumoral region as identified from univariate
analysis.

Feature Training (n = 109) Testing (n = 54)

AUC 95% CI AUC 95% CI

C4

Peritumoral_DCE_C4_FO_Percentile.95 0.80 0.72-0.88 0.71 0.56-0.86

Peritumoral_DCE_C4_FO_Maximum 0.79 0.71-0.88 0.70 0.55-0.85

Peritumoral_DCE_C4_FO_Percentile.99 0.79 0.70-0.88 0.70 0.55-0.85

Peritumoral_DCE_C4_FO_Mean 0.78 0.70-0.87 0.73 0.59-0.87

Peritumoral_DCE_C4_FO_Percentile.5 0.70 0.60-0.80 0.73 0.60-0.87

AD C4BL

Peritumoral_DCE_AD-C4BL_FO_Percentile.99 0.79 0.71-0.88 0.74 0.61-0.88

Peritumoral_DCE_AD-C4BL_FO_Maximum 0.78 0.69-0.86 0.72 0.58-0.87

Peritumoral_DCE_AD-C4BL_FO_Percentile.95 0.78 0.69-0.86 0.76 0.62-0.90

Peritumoral_DCE_AD-C4BL_FO_Mean 0.76 0.68-0.85 0.77 0.63-0.91

Peritumoral_DCE_AD-C4BL_FO_Percentile.5 0.70 0.61-0.80 0.70 0.56-0.85

RD C2BL

Peritumoral_DCE_RD-C2BL_FO_Maximum 0.70 0.60-0.80 0.70 0.56-0.85

RD C4BL

Peritumoral_DCE_RD-C4BL_FO_Percentile.95 0.82 0.74-0.90 0.76 0.63-0.90

Peritumoral_DCE_RD-C4BL_FO_Percentile.99 0.82 0.74-0.90 0.76 0.62-0.89

Peritumoral_DCE_RD-C4BL_FO_Maximum 0.82 0.74-0.90 0.75 0.61-0.89

Peritumoral_DCE_RD-C4BL_FO_Mean 0.81 0.73-0.90 0.77 0.64-0.90

Peritumoral_DCE_RD-C4BL_FO_Standard.Deviation 0.76 0.66-0.85 0.70 0.54-0.84

Peritumoral_DCE_RD-C4BL_FO_Percentile.5 0.75 0.66-0.84 0.70 0.55-0.85

RD C4C2

Peritumoral_DCE_RD-C4C2_FO_Percentile.95 0.82 0.74-0.90 0.72 0.58-0.86

Peritumoral_DCE_RD-C4C2_FO_Percentile.99 0.79 0.70-0.88 0.72 0.58-0.86

Peritumoral_DCE_RD-C4C2_FO_Mean 0.79 0.70-0.88 0.72 0.58-0.86

Peritumoral_DCE_RD-C4C2_FO_Maximum 0.76 0.66-0.85 0.70 0.55-0.84
fro
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4 Discussion

In this study, we used longitudinal DCE-MRI images obtained

before the start of doxorubicin and cyclophosphamide-based NAST

and after two and four cycles of NAST to assess radiomic features

from the peritumoral and tumoral regions for early prediction of

NAST response in TNBC patients. In the univariate analysis, we

identified 46 radiomic features able to predict pCR with an AUC at

least 0.70 for both the training and testing cohorts. Furthermore, in
Frontiers in Oncology 07
the multivariate analysis, we found that 13 multivariate radiomic

models had AUC at least 0.75 for both the training and testing

cohorts for early prediction of NAST response in TNBC.

Our results revealed that FO radiomic features from DCE-MRI

were better predictors of treatment response than GLCM features.

None of the 300 GLCM features had AUC at least 0.70 for both the

training and testing cohorts; thus, their usefulness in predicting

NAST response could not be established. The interreader variability

analysis showed high reliability and reproducibility with a slightly
TABLE 3 Significant features (AUC ≥ 0.70 for both training and testing sets) extracted from the tumoral region as identified from univariate analysis.

Feature Training (n = 109) Testing (n = 54)

AUC 95% CI AUC 95% CI

C4

Tumor_DCE_C4_FO_Mean 0.81 0.73-0.89 0.72 0.57-0.86

Tumor_DCE_C4_FO_Percentile.5 0.80 0.72-0.88 0.71 0.57-0.86

Tumor_DCE_C4_FO_Percentile.1 0.79 0.70-0.88 0.74 0.60-0.88

Tumor_DCE_C4_FO_Minimum 0.74 0.64-0.83 0.77 0.63-0.90

AD C4BL

Tumor_DCE_AD-C4BL_FO_Percentile.99 0.80 0.71-0.88 0.73 0.59-0.87

Tumor_DCE_AD-C4BL_FO_Percentile.95 0.79 0.70-0.87 0.76 0.62-0.90

Tumor_DCE_AD-C4BL_FO_Percentile.5 0.79 0.70-0.87 0.81 0.69-0.94

Tumor_DCE_AD-C4BL_FO_Mean 0.79 0.70-0.87 0.77 0.63-0.90

Tumor_DCE_AD-C4BL_FO_Percentile.1 0.78 0.70-0.87 0.81 0.69-0.93

Tumor_DCE_AD-C4BL_FO_Maximum 0.78 0.70-0.87 0.72 0.58-0.87

Tumor_DCE_AD-C4BL_FO_Minimum 0.71 0.61-0.81 0.76 0.62-0.90

AD C4C2

Tumor_DCE_AD-C4C2_FO_Percentile.1 0.76 0.68-0.85 0.71 0.57-0.85

RD C2BL

Tumor_DCE_RD-C2BL_FO_Maximum 0.70 0.60-0.80 0.71 0.57-0.85

RD C4BL

Tumor_DCE_RD-C4BL_FO_Mean 0.84 0.77-0.92 0.78 0.64-0.91

Tumor_DCE_RD-C4BL_FO_Percentile.95 0.83 0.76-0.91 0.75 0.62-0.89

Tumor_DCE_RD-C4BL_FO_Maximum 0.83 0.76-0.91 0.75 0.61-0.89

Tumor_DCE_RD-C4BL_FO_Percentile.99 0.83 0.76-0.91 0.75 0.61-0.89

Tumor_DCE_RD-C4BL_FO_Percentile.5 0.83 0.75-0.90 0.80 0.68-0.93

Tumor_DCE_RD-C4BL_FO_Percentile.1 0.82 0.74-0.90 0.81 0.69-0.93

Tumor_DCE_RD-C4BL_FO_Minimum 0.79 0.70-0.87 0.79 0.65-0.92

RD C4C2

Tumor_DCE_RD-C4C2_FO_Mean 0.84 0.77-0.92 0.71 0.57-0.85

Tumor_DCE_RD-C4C2_FO_Percentile.5 0.83 0.75-0.90 0.77 0.65-0.90

Tumor_DCE_RD-C4C2_FO_Percentile.1 0.80 0.72-0.89 0.76 0.63-0.89

Tumor_DCE_RD-C4C2_FO_Percentile.99 0.79 0.71-0.88 0.70 0.56-0.85

Tumor_DCE_RD-C4C2_FO_Minimum 0.70 0.59-0.80 0.76 0.62-0.89
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better interreader agreement in GLCM features than in FO features.

GLCM features capture texture information of the image, which is

less subjective and more reproducible across readers than the FO

features, which are mostly visual features. Furthermore, the features

extracted from baseline DCE-MRI images and the models using

features only from baseline DCE-MRI images showed poor

performance in terms of AUC. Similar to this finding, Panthi

et al. have previously reported that the tumor size measurements

(longest dimension, tumor volume, enhanced tumor volume and
Frontiers in Oncology 08
functional tumor volume) extracted from DCE-MRI images at

baseline showed poor performance. The tumor measurements

extracted at C2, C4, and their relative differences (C2 vs BL and

C4 vs BL) showed good correlation with the treatment response

with a maximum AUC of 0.84 [95% CI: 0.76-0.92] for functional

tumor volume at C4 (31). The possible explanation of these findings

is that tumor biology can evolve over the course of treatment. The

radiomic features measured after the initiation of NAST may

capture these changes in tumor biology better than features
TABLE 4 Testing and training AUC for the 13 logistic regression models that achieved AUC at least 0.75 for both training and testing sets using
radiomic features from BL, C2, and C4.

Radiomic model Training (n = 109) Testing (n = 54)

AUC 95% CI AUC 95% CI

Peritumoral_DCE_AD-C4BL_FO 0.79 0.71-0.88 0.76 0.62-0.90

Peritumoral_DCE_RD-C4BL_FO 0.88 0.82-0.94 0.76 0.63-0.90

Peritumoral_DCE_BL_C2_C4_FO 0.95 0.92-0.99 0.76 0.62-0.90

Peritumoral_DCE_BL_C2_C4_AD-C2BL_RD-C2BL_AD-C4BL_RD-C4BL_AD-C4C2_RD-C4C2_FO 0.95 0.91-0.98 0.79 0.65-0.92

Tumoral_DCE_AD-C4BL_FO 0.82 0.74-0.90 0.76 0.63-0.90

Tumoral_DCE_RD-C4BL_FO 0.87 0.80-0.93 0.78 0.64-0.91

Tumoral_DCE_BL_C4_AD-C4BL_RD-C4BL_FO 0.88 0.81-0.94 0.75 0.61-0.90

Peritumoral_Tumoral_DCE_AD-C4BL_FO 0.79 0.71-0.88 0.76 0.62-0.89

Peritumoral_Tumoral_DCE_RD-C4BL_FO 0.89 0.84-0.95 0.77 0.64-0.91

Peritumoral_Tumoral_DCE_BL_C4_AD-C4BL_RD-C4BL_FO 0.91 0.86-0.96 0.75 0.61-0.90

Peritumoral_Tumoral_DCE_C2_C4_AD-C4C2_RD-C4C2_FO 0.93 0.88-0.98 0.75 0.61-0.89

Peritumoral_Tumoral_DCE_BL_C2_C4_FO 0.97 0.95-0.99 0.76 0.62-0.90

Peritumoral_Tumoral_DCE_BL_C2_C4_AD-C2BL_RD-C2BL_AD-C4BL_RD-C4BL_AD-C4C2_RD-C4C2_FO 0.96 0.93-0.99 0.78 0.65-0.91
fro
BA

FIGURE 4

Receiver operator characteristic curves for the testing datasets of two multivariate models. (A) Model 1, using FO features from the peritumoral
region at BL, C2, and C4 and the differences between these time points. (B) Model 2, using FO features from both the peritumoral and tumoral
regions BL, C2, and C4 and the differences between these time points.
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measured at baseline, contributing to the better predictive

performance of the features measured after NAST initiation.

In our study, almost 50% (6/13) of the radiomic models with

AUC at least 0.75 for both the training and testing cohorts were

based on a combination of peritumoral and tumoral features. The

inclusion of the peritumoral features along with the tumoral

features may have improved the performance of radiomic models

by capturing the infiltrative tumor margins and information about

the tumor microenvironment. Additionally, peritumoral features

have the potential to aid in predicting treatment response, as tumor

behavior heterogeneity likely reflects variation both of the tumor

and surrounding environment.

MRI-based radiomic analysis has shown promise in predicting

treatment response in breast cancer (12, 19, 22, 23, 34). Cain et al.

used pretreatment tumor features from 151 patients with TNBC

and HER2-enriched breast cancer in a multivariate machine

learning model and showed an AUC of 0.707 for pCR prediction

(35). In a study including 83 breast cancer patients, Pesapane et al.

extracted 136 representative radiomic features of the tumoral region

from pretreatment T1-weighted contrast-enhanced MRI images to

predict the response to NAST. Their radiomic model had an AUC

of 0.64 (95% CI, 0.51-0.75), which increased to 0.83 (95% CI, 0.73-

0.92) after the investigators combined the radiomic model with

clinical and biological features (36). Similarly, Fan et al. performed a

radiomic analysis of pretreatment DCE-MRI images in 57 patients

and demonstrated that combining features from the tumoral region

and background parenchyma significantly improved the

performance of their radiomic model (19). Li et al, in a study of

33 patients, compared AUCs for pretreatment images and images

obtained after one cycle of NAST and observed better predictive

AUCs after one cycle of treatment (37). In contrast to the

aforementioned studies, we created multivariate radiomic models

based on DCE-MRI images at three imaging time points to extract

features from peritumoral as well as tumoral regions in a much

larger cohort limited to patients with TNBC.

Braman et al. conducted a study including 117 breast cancer

patients (with hormone-receptor-positive, HER2-negative, triple-

negative, and HER2-positive disease) and showed that combined

peritumoral and tumoral radiomic features obtained at baseline

could be utilized to predict pCR to neoadjuvant chemotherapy (22).
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These authors reported an AUC of 0.74 for the testing cohort, which

was slightly lower than the AUC of 0.79 for the testing cohort in our

study, which had a larger patient pool, was limited to patients with

TNBC, and was based on radiomic features obtained at multiple

time points. Caballo et al. (38) used a four-dimensional machine

learning radiomics approach to assess breast cancer response to

NAST. They extracted 348 features from peritumoral and tumoral

regions from DCE-MRI images to develop predictive radiomic

models. These authors reported a multivariate model with an

AUC of 0.71 for the data set of 251 patients (107 with luminal A

subtype, 47 with luminal B subtype, 25 with HER2-enriched

subtype, and 72 with TNBC). Furthermore, their study showed

that the predictive performance improved when the radiomic

models were tailored to specific subtypes of breast cancer. Caballo

et al. found an AUC of 0.80 in 72 TNBC patients (38), which is

comparable to the testing-group AUC of 0.79 in our study of 163

TNBC patients.

Fan et al. reported a study in which clinical features and

radiomic features from the tumoral region before and after two

cycles of treatment were acquired for 114 patients with primary

breast cancer. These authors observed an AUC of 0.57 for the

models based on pretreatment features and an AUC of 0.77 for the

model based on posttreatment features. The combined model based

on pretreatment features, posttreatment features, relative net

feature change, Jacobian maps, and clinical features had an AUC

of 0.81 (39). Our findings are consistent with their findings in that

our findings showed improvement in the predictive performance

with a combined model with features from BL, C2, C4, and their net

feature changes.

Our study has several limitations. First, our study was

conducted on a single scanner platform at a single institution,

and therefore our findings will need to be validated on other

scanner platforms and at different institutions. Second, although

our study is the largest radiomic analysis reported to date for

treatment response prediction in TNBC patients, additional

validation may be necessary in a larger study with better

statistical power and was only tested on patients with

preoperative AC chemotherapy. Finally, the peritumoral regions

were uniformly defined with a fixed dilation of 10 mm around the

tumor ROIs for all patients, regardless of tumor size. Future studies
TABLE 5 Logistic regression models that achieved AUC > 0.70 for both training and testing sets using first order radiomic features from BL, C2, and
C4.

Radiomic model Training (n = 109) Testing (n = 54)

AUC 95% CI AUC 95% CI

Peritumoral_DCE_C4_FO 0.86 0.79-0.93 0.71 0.57-0.85

Peritumoral_DCE_BL_C4_FO 0.90 0.84-0.96 0.73 0.59-0.87

Peritumoral_DCE_C2_C4_FO 0.93 0.88-0.97 0.74 0.60-0.88

Tumoral_DCE_C2_FO 0.87 0.80-0.94 0.71 0.56-0.85

Tumoral_DCE_C4_FO 0.81 0.73-0.89 0.71 0.57-0.85

Tumoral_DCE_BL_C2_ FO 0.81 0.73-0.89 0.72 0.58-0.86

Tumoral_DCE_BL_C4_FO 0.89 0.83-0.95 0.74 0.61-0.88
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with different dilation radii based on individual tumor properties

can offer a more comprehensive understanding of the role of the

peritumoral region in response prediction.
5 Conclusions

In summary, our study shows that radiomic models based on

peritumoral and tumoral features from longitudinal DCE-MRI

images were able to serve as noninvasive biomarkers for early

prediction of NAST response in patients with early-stage TNBC.

Radiomic features extracted after four cycles of treatment and their

change relative to baseline were better predictors of response than

those from baseline only. Further, FO radiomic features showed

better predictive performance than GLCM features.
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