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Spatial transcriptomics in
glioblastoma: is knowing the
right zip code the key to the
next therapeutic breakthrough?
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Spatial transcriptomics, the technology of visualizing cellular gene expression

landscape in a cells native tissue location, has emerged as a powerful tool that

allows us to address scientific questions that were elusive just a few years ago.

This technological advance is a decisive jump in the technological evolution that

is revolutionizing studies of tissue structure and function in health and disease

through the introduction of an entirely new dimension of data, spatial context.

Perhaps the organ within the body that relies most on spatial organization is the

brain. The central nervous system’s complex microenvironmental and spatial

architecture is tightly regulated during development, is maintained in health, and

is detrimental when disturbed by pathologies. This inherent spatial complexity of

the central nervous system makes it an exciting organ to study using spatial

transcriptomics for pathologies primarily affecting the brain, of which

Glioblastoma is one of the worst. Glioblastoma is a hyper-aggressive,

incurable, neoplasm and has been hypothesized to not only integrate into the

spatial architecture of the surrounding brain, but also possess an architecture of

its own that might be actively remodeling the surrounding brain. In this reviewwe

will examine the current landscape of spatial transcriptomics in glioblastoma,

outline novel findings emerging from the rising use of spatial transcriptomics,

and discuss future directions and ultimate clinical/translational avenues.
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Introduction

Developmental patterning, the process of determination of final

fate and ultimate locations for all cells originating from the initial

cluster of stem cells in a developing embryo, is essential for normal

development of a multicellular organism. A chief driving factor

behind developmental patterning is cellular location and exposure

to gradient signaling cascades such as SHH and WNT pathway

signaling (1–6). Further developmental complexity is setup within

nearly all organ systems throughout the body relying on

interactions between cellular neighbors (7–9). During early

embryonal development, brain undergoes complex developmental

patterning for separation of central nervous system (CNS) and

peripheral nervous system (PNS) as well as the development and

migration of cells throughout the cerebral cortex ranging from axon

guidance to synapse formation (4, 10–13). Firmly rooted in this

developmental complexity is cellular location, which until recently

was almost entirely missing from the field of large-scale

genomic sequencing.

Understanding cellular behavior in its native location and organ

system is fundamental to not only basic developmental biology but

also to defining a pathological condition and developing relevant

therapeutics. Since the development of mRNA analysis techniques,

our understanding of diseases such as cancers have evolved

exponentially. By analyzing the overall gene expression profile of

the cancer cells, it was not only possible to better define the disease

and its behavior, but it has also led to development of several

targeted therapies that greatly increased the chance of survival for

cancer patients (14, 15). However, as our ability to experimentally

probe gene expression advanced from microarray to bulk

sequencing and finally to single cell sequencing, and our

experimental models and questions became more and more

complex, one constant has been missing, location.

Experimentally, the most reliable forms of gene expression

analysis have relied on tissue dissociation and even with the

advent of single cell sequencing, barcoding for cells has only been

able to track cell types, not their original position within their tissue

of residence. Dissociation of tissue, especially with complex spatial

organization such as the brain, induces cellular stress and exposes

cells to foreign environments which impacts the overall

transcriptional profile and ultimate results of the experiments

(16–18). Even with careful experimental protocols and controls as

well as “gentile” dissociation techniques, removing a cell or tissue

from its spatial architecture surely loses valuable information on

function or disease state.

A pathological condition where the tissue microenvironment

plays a curial role in disease progression and therapeutic resistance

is glioblastoma (GBM). GBM is the most common primary brain

cancer in adults, with limited prognosis and strong resistance to all

current therapies (19–21). Multiple factors including intra-tumoral

and intra-patient heterogeneity (22–26), systemic immune

suppression (26–29), and limited chemotherapeutic access

because of the blood brain barrier (30, 31) (BBB) all combine to

render GBM as one of the most aggressive and deadly cancers. One

of the hypothesized reasons for the aggressiveness and treatment

resistance displayed by GBM is its complex spatial organization,
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seemingly seeking to mimic the spatial architecture of its

s u r r ound in g m i c r o env i r onmen t . Th e GBM tumor

microenvironment (TME) is comprised of endothelial cells,

neurons, astrocytes, oligodendrocytes, microglia, tumor-associated

macrophages, tumor-infiltrating lymphocytes, and noncellular

components such as apocrine and paracrine signaling molecules,

exosomes, extracellular matrix (ECM) components, and secreted

ECM remodeling enzymes (32, 33). Each of these components play

not only individual roles but also orchestrate an incredibly complex

and spatially distinct TME in which GBM can evade immune

system detection and uncontrollably proliferate.

In recent years, single cell and bulk RNA sequencing, as well as

fluorescence in-situ hybridization (FISH) have been utilized to

study microenvironmental heterogeneity and conduct crude

spatial profiling (through location specific biopsy sampling

throughout tumors (34)) within the GBM field. This has

illustrated the vast intra and inter tumor heterogeneity that is

now associated with GBM (35–40). The Ivy Gap project

conducted the most comprehensive “spatial sequencing”

experiment before the advent of spatial transcriptomics through

bulk sequencing and pathological study (in-situ hybridization) of

biopsy resections from the leading edge, infiltrating tumor, cellular

tumor, pseudopalisading cells, and microvascular proliferation (34).

The data was released online publicly in 2018 along with a web

browser for interactive gene searching throughout the dataset and

has amassed nearly 400 citations. Prior to the Ivy Gap work,

Sottoriva and colleagues developed a multisampling scheme for

11 GBM patients which was accomplished using Fluorescence

Guided Multi Sampling (FGMS) (41). Across the specimens copy

number alterations as well as clonal lineage tracking was conducted

revealing distinct subclones and unique tumor regions present

throughout patients (41). Although transformative for their time,

all the above technologies fail to meet the true definition of a spatial

transcriptomics experiment conducted within a maintained cellular

or tissue environment. This is critical because dissociation of GBM

into single cell suspension often requires special techniques as well

as enzymes that can alter cell behavior ex vivo (16, 17, 42). The

newest tissue histology based technological development in the

spatial sequencing field aims to address the limitations of previous

research tools and allows for spatial visualization of gene expression

at near single cell levels, while still providing thousands of capture

points for cells affording critical data density (43).
Spatial transcriptomics

A spatial transcriptomics (ST) experiment starts from a tissue

section frozen and sliced to preserve the tissue spatial architecture.

While many techniques are available for profiling gene expression

spatially across a tissue, the most widely used are the commercial

platforms Visium (from 10x Genomics) and GeoMx (from

Nanostring) (43). Each of these platforms is compatible with

frozen or formalin-fixed paraffin-embedded (FFPE) tissue. In a

Visium ST experiment, a tissue sample is sectioned and placed onto

a slide containing 4992 spots, with each spot containing millions of

capture oligonucleotides with spatial barcodes unique to that spot.
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The tissue is imaged, typically via Hematoxylin and Eosin (H&E)

staining. Following imaging, the tissue is permeabilized to release

mRNAwhich then binds to the capture oligonucleotides, generating

a cDNA library consisting of transcripts bound by barcodes that

preserve spatial information. Data from a 10x spatial

transcriptomics experiment consists of the tissue image coupled

with RNA-sequencing data collected from each capture spot.

Data from a GeoMx experiment is structurally similar in that

high-resolution expression data is collected at several locations

across a tissue, but typically at lower spatial resolution compared

to a Visium experiment. In a GeoMx experiment, a tissue sample is

mounted onto a glass slide and incubated with a panel of

photocleavable oligonucleotide probes specific to particular

mRNAs and/or proteins. High-resolution images of the tissue are

obtained in the GeoMx DSP instrument from immunofluorescent

staining, colorimetric immunohistochemistry, or in-situ

hybridization techniques. These images are used for manually

selecting regions for expression profiling. These so-called regions

of interest (ROIs) are selectively exposed to UV light which cleaves

the oligonucleotide tags from the probes or antibodies bound to

their targets within the selected regions. The cleaved oligonucleotide

tags are then collected and hybridized to a complementary barcode

array which is subsequently read by a fluorescence scanner to

produce digital counts for each target within the ROIs;

alternatively, the cleaved tags can be prepared for sequencing. In

either case, the GeoMx technology provides the high-resolution

images used to select the ROIs along with count data (or sequenced

reads) at each ROI (Figure 1).
Bioinformatic analysis of spatial
transcriptomic data

There are several software tools and packages available for pre-

processing and analysis of ST data including SpaceRanger,

GeomxTools, Spacemake, and STutility (10x Genomics Space
Frontiers in Oncology 03
Ranger 2.0.1, GeomxTools 3.4.0) (44, 45). SpaceRanger is part of

the Visium suite of tools while GeomxTools is specific to GeoMx

experiments; Spacemake and STutility are applicable to general spatial

transcriptomics experiments. Seurat, Scanpy, and other pipelines

originally developed for bulk or single-cell RNA-seq analysis have

been extended to facilitate ST data pre-processing and analysis. While

the details of the pipelines vary, a typical workflow includes alignment

of the sequenced reads, quality control, normalization, integration,

clustering, and downstream analyses (Figure 2). We briefly discuss

each of these steps below, first for Visium and then for GeoMx data

[detailed reviews of multiple ST technologies and computational

methods are provided in (43, 46, 47)].

Sequenced reads can be aligned to a reference transcriptome

using any of several alignment tools. Due to its relatively high

accuracy, low biases, and speed, STAR is a widely used approach in

ST experiments and the default approach implemented is

SpaceRanger (10x Genomics Space Ranger 2.0.1). To ensure the

accuracy and reliability of the data, it is important to perform

quality control following alignment. SpaceRanger provides

sequencing and spot-specific metrics to diagnose sequence and

spot quality. Given that Visium provides fastq files, most metrics

provided in SpaceRanger are the same as those used in fastqc for

quality control of bulk or single-cell RNA-seq data. Specifically,

percentage of valid barcodes, percentage of valid UMIs, and

sequencing saturation metrics are provided and can be used to

identify overall sequencing quality; mean reads per spot, median

UMI counts per spot, and percentage of genes detected may be used

to filter out low-quality spots. The fraction of reads in spots under

the tissue is specific to ST experiments and provides a measure of

reads with tissue-associated barcodes. Low fraction reads may

indicate that many of the reads were not assigned to tissue

covered spots due to high levels of ambient RNA, or poor tissue

orientation. Finally, spot-swapping is present in most experiments

(spot-swapping occurs when reads from a given tissue spot bind

probes at a nearby spot) and should be adjusted for using

SpotClean (48).
FIGURE 1

Sketch representation of the slide mounting process of spatial sequencing along with a simulated representation of the data output of a spatial
transcriptomics experiment.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1266397
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shireman et al. 10.3389/fonc.2023.1266397
Following alignment and quality control, normalization is often

performed to adjust for differences in expression levels that result

from technical artifacts so that expressionmay be compared within or

between samples. As discussed in (49), many systematic sources of

variation affect a gene’s observed expression level and should ideally

be adjusted for including capture efficiency, amplification biases,

differences in total RNA content, and sequencing depth of the spot

(or region) at which expression is measured. It is difficult to estimate

many of these factors in practice, however, and consequently most

often normalization amounts to adjusting for differences in

sequencing depth. Some of the most popular approaches for

scRNA-seq - logged transcripts per million (log(TPM+1)) or scran

- have become the most widely used for ST experiments although it is

becoming clear that new methods would prove useful, especially in

ST experiments where cell density is highly variable (50). In these

experiments, normalization methods that account for the effect of cell

density on total counts per spot are required.

Following normalization, clustering is often done to identify cell

subtypes followed by characterization either by identifying marker
Frontiers in Oncology 04
genes that are highly expressed in the cluster, or those highly

expressed relative to other clusters via differential expression (DE)

analysis. While the H&E stain (or related image) provides much

insight into cell subtypes, molecular determination of subtypes can

lead to refined characterizations.

Methods for clustering and identification of DE genes that were

widely used for scRNA-seq continue to be used in ST data analysis.

These include k-means and graph-based methods such as Louvain,

and Leiden for clustering; and the Wilcoxon rank-sum test and

DESeq for identification of DE genes. These latter DE methods do

not appropriately accommodate replication at the cell and sample

level, and, because of this, pseudo-bulk approaches have been

recommended (51). Unfortunately, the recommendation was

largely based on a biased assessment and pseudo-bulk approaches

are proving to be critically underpowered (52); mixed effects models

provide a good balance that accommodates sample-to-sample

variability while preserving information about variability cell-to-

cell (52). In addition to approaches well-established in scRNA-seq

analysis that are being applied in the ST domain, novel methods are
FIGURE 2

Schematic representation of a typical informatics pipeline used to handle spatial transcriptomic data from either GEOMX or Visium platforms.
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beginning to emerge that leverage correlation inherent in spatial

data specifically. BayesSpace, for example, leverages information

from spatial neighborhoods to improve cluster identification; it also

allows for the identification and characterization of cell types at sub-

spot resolution. Other methods such as SpaGCN and MUSE

incorporate histology information to identify clusters. Similarly,

many methods including Trendsceek, scHOT, SpatialDE, SPARK,

and SpatialDE2 have been developed to identify genes with average

expression that varies spatially (53–56); SpatialCorr can be used to

identify spatial changes in the correlation between pairs (or groups)

of genes (57). While these approaches have proven invaluable for

characterizing gene expression across a tissue, the technology is

limited to expression derived from multiple cells. Consequently,

deconvolution and/or mapping methods that integrate ST with

single-cell data are required to obtain a more detailed

characterization of the cell-type architecture underlying tissue

regions, and to infer cellular networks (58). Deconvolution

methods that combine ST with scRNA-seq data can be used to

estimate the proportions of specific cell types present at each spot

(59–65). While useful, most of these methods assume that the

spatial and single-cell datasets have congruent cell types, and biases

in inferred cell fractions are introduced when this is not the case

(e.g. when cell types are present in the ST data, but not present in

the scRNA-seq reference dataset). Recent methods such as

spSeudoMap are being developed specifically to mitigate this type

of bias (60). Since deconvolution methods provide estimates of cell

type proportions, but not expression estimates for individual cells,

they cannot be used to discover spatially determined cell states and/

or to infer cell-cell interactions. Recent methods such as

CytoSPACE (66), COMMOT (67), and SpaTalk (68) have been

developed toward this end.

In summary, the methods most used for analysis of ST data

were initially developed for bulk or scRNA-seq. A typical workflow

for Visium data uses SpaceRanger for alignment using the default

method STAR; data are then often imported into Seurat for

normalization, clustering, and DE analysis via the default

methods scran, k-means on UMAP principal components, and

the Wilcoxon rank-sum test, respectively. GeoMx provides a similar

pipeline with STAR for alignment followed by estimating gene

expression levels, filtering, normalization, and further analysis. As

discussed above, many methods have been developed specifically

for ST data that improve upon the basic methods implemented in

SpaceRanger and GeoMxTools. Most were developed for Visium

data with applications to GeoMx data possible, with the caveat that

some methods require contiguous spots which are not available in

GeoMx. In addition, there may be technical artifacts in GeoMx data

that are not accommodated by common statistical assumptions and

new methods are required (69).
Glioblastoma tumor heterogeneity
and microenvironment

Intratumoral heterogeneity of the GBM tumor microenvironment

(TME) is the difference in genetic, molecular, and physical structures
Frontiers in Oncology 05
of the tumor cells, and their native cell counterparts, all present within

the native tumor microenvironment (70, 71). Because of the multitude

of complex cell types present within the normal brain, intratumoral

heterogeneity of GBM is vast and complicated by the interaction

between the tumor cells and the surrounding tissue. These differences

in genetic makeup and unique microenvironmental interaction are

thought to play a role in treatment resistance and disease recurrence

(72, 73). With the evolution of the molecular technologies and

computational advances of more robust sequencing methods it has

been observed that GBM possesses remarkable heterogeneity both

within single tumors as well as across individual patients. Increase in

the heterogeneity of a particular GBM has been shown retroactively to

impact survival (70). The importance of tumoral heterogeneity on

prognosis and development of therapeutics for pathologies such as

cancer has long been evident. To systematically categorize this

heterogeneity across a wide range of cancer The Cancer Genome

Atlas (TCGA) project was started. TCGA compiles oncogenomic,

methylomic, transcriptomic and proteomic data from tumor samples

that were annotated with clinical (and in some cases MRI) data (74).

This bulk database serves as a foundational catalog of genomic

abnormalities that drive tumorigenesis, by categorizing the genomic

changes of a large cohort of cancer samples (38). Subgroup analysis

using specifically GBM tumors revealed associated mutations such as

PIK3R1, NF1, and ERBB2. This genomic information enabled GBM

to be sub-typed and further classified at the level of RNA expression

into proneural, neural, and mesenchymal subtypes (38). The end goal

of this gene-based classification is to understand if it’s possible to

target more focused and personalized inhibitors to the specific

subtypes of GBM rather than one-sized fits all chemotherapy and

radiotherapy approaches.

As sequencing technology advanced and single cell RNA seq

(scRNAseq) was developed further interrogation of GBM tumor

samples uncovered more complex “hybrid” states at the single cell

level. In these states bulk tumors were found to consist of

heterogeneous mixtures of individual cells corresponding to

different GBM subtypes, rather than every cell within a tumor

being a consistent subtype (35). This finding reflects aberrant

developmental programs or interconversion between phenotypic

states, leading to crossing over of the various subtypes with regards

to their RNA profile (35). Hybrid states were most notably detected

among classical and proneural subtypes (progenitor states) or the

mesenchymal and neural substrates (differentiated states). Later

research defined developmental arc’s between proneural/classical

subtypes and the mesenchymal subtype, as well as a propensity

towards a shift to the mesenchymal subtype after standard of care

therapy (39, 75). This granular information obtained from

scRNAseq, which may be critical to developing successful

therapies in the future, was covered up in bulk RNAseq due to

average based cutoffs biasing for only large effect sizes.

Within the GBM TME there are also a myriad of complex cell

types that makeup the surrounding normal brain tissue as well as

the patrolling and invading lymphocytes attempting to respond to

tumor growth. These cell types include but are not limited to

microglia, neurons, macrophages, T-cells, MDSC’s, astrocytes,

and oligodendrocytes (24, 33, 41, 72, 73, 76). As the composition
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of the TME has been more fully elucidated with research studies

looking into the functional consequences of interaction with these

surrounding cells have begun to illuminate a dynamic cellular

crosstalk between GBM itself and its TME. Studies examining

GBM and its complex TME have uncovered critical insights

including wide immunosuppression (29, 77–80), integration with

neuronal firing (81–84), hijacking of angiogenesis (85–89), changes

in cellular metabolism (29, 90, 91), and disruption of normal ph.

and oxygen levels (29, 92).

Although scRNAseq is a clear advancement over bulk RNAseq

in furthering our understanding of GBM heterogeneity and has

significantly added to the identification of potential therapeutic

molecular targets, it is still limited in its ability to capture cellular

behavior in its native ecosystem. Furthermore, FISH can provide

true spatial gene expression information but due to the limitations

of multiplexing is only available for a small number of targets. The

culmination of all this research gives a glimpse of how complex both

GBM and its TME are, however, until the advent spatial

transcriptomics a final piece of the puzzle remained missing.
Spatial transcriptomics in glioblastoma

Initiatives such as Ivy Gap have made significant contributions

to understanding glioblastoma and its complex microenvironment,

however, its limited sample size along with the need for sample

dissociation prior to sequencing are critical limitations. These

limitations make clear the need for a sequencing method that can

take spatial location into account and allowing for a more complete

picture of GBM TME and its interaction with the surrounding

tissue microenvironment.

Recent work involving both single cell and spatial

methodologies is just beginning to highlight novel and promising

discoveries (Table 1) that may potentially lead to the next

therapeutic breakthrough. The most complex study done to date

integrating spatial transcriptomics with metabolomics and

proteomics (through MALDI and Mass Cytometry) was

conducted by Ravi, Will, and Kueckelhaus et al (76). The authors

discovered 5 unique and spatially distinct transcriptomics profiles

among their 28 sample GBM cohort termed radial glia, reactive

immune, neuronal development, spatial OPC and reactive hypoxia.

Validation of both the bulk sequencing original molecular subtypes

(38) and further single cell transcriptomic profiles (35, 75) was also

conducted but not noted to have significant spatial enrichment

within a specific tumor location among the analyzed samples. The

most interesting observation from that study is the metabolic shift

between glycolysis and the pentose phosphate pathway within the

spatially localized necrotic core of tumors (reactive hypoxia

compartment) leading to an accumulation of copy number

variat ion mutations in the surrounding cel ls due to

environmental pressures of low oxygen driving DNA mutations.

The authors hypothesize that these highly mutated cells may be the

source of some of the remarkable plasticity under therapeutic

pressure exhibited by GBM as they migrate between the hypoxic/

necrotic core and the leading edge of the tumor (76). A critical
Frontiers in Oncology 06
weakness of the study, noted by the authors within the manuscript,

is the bias towards regions with a dense population of tumor

samples rather than more sparse regions to allow for the

integration of scRNA sequencing and spatial sequencing.

Ravi et al. conducted a similar study using 12 patient tumor

samples but this time focusing less on the tumor spatial structure

and more on the structure of the TME, and specifically the tumor

surrounding T-cells (93). They define a specific subset of myeloid

cells that are HMOX1+ tend to localize spatially to mesenchymal

like tumor regions and drive T-cell exhaustion. The release of IL-10

is said to be the main driver of this T-cell immunosuppression

which can be rescued through inhibition of the JAK-STAT pathway.

Barber et al. also conducted a spatial transcriptomics study

comparing core and periphery of GBM IDH-WT samples that

were either MGMTmethylated or unmethylated (94). They found a

significant increase in proteins such as CD4, CD14, CD68, CD8A,

B7-H3, PDL-1, CD19, FOXP3, CD44, and STAT3 was associated

within the cores of methylated tumors but not unmethylated

tumors. Furthermore, this difference was not seen when

peripheral edges were compared, possibly indicating that cells

with the most diversity resided away from the rapidly advancing

peripheral tumor edge (94).

Ren and colleagues examined both diffuse midline glioma as

well as GBM using spatial transcriptomics and note that both tumor

types display niche specific microenvironments and transcriptional

programs (95). Specifically, tumor cores were enriched for

oligodendrocyte precursor like cells while radial glia like stem

cells are enriched within the invasive niche. This invasive niche

was also found to be the most neuron rich spatial environment.

Along with these spatial niches there are corresponding regulatory

programs and drivers such as FAM20C that drive the invasive

growth of the radial glia stem like cells along the proliferative edge.

Finally, Kim et al. corroborated these niche specific transcriptional

programs as well as differing response to hypoxia within tumor

samples (96). It was observed that hypoxia specific response genes

were found mainly in VEGF low spatial ROI’s although the authors

note patient to patient variability in this response. Furthermore,

neuropathologic findings was found to positively correlate with

computationally assigned scores in both microvascular proliferation

and overall neoplastic scores indicating that the computational

deconvolution used throughout this study was indeed real world

validated (96).

Taken together, these early studies conducted thus far using

spatial transcriptomics on GBM and other high grade brain tumors

definitively show that there are region specific and distinct gene

expression programs throughout the tumors. These programs

display similar amounts of intertumoral heterogeneity as was

hypothesized when bulk and single cell sequencing studies were

conducted in GBM, however, in some of the larger sample studies,

patient specific variations can be observed such as the hypoxic niche

and proliferative edge programs (76). Critically, the literature is still

inconclusive between the true functions of these transcriptional and

spatial niches as in vivo and in vitro controlled experimentation

is needed.
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TABLE 1 All published primary spatial transcriptomics studies in GBM.

Title Authors Publication
Date/
Journal

Spatial
Technology

Major finding Samples
used

Number
of

samples

Spatially resolved
multi-omics
deciphers
bidirectional
tumor-host
interdependence in
glioblastoma

Vidhya M. Ravi, Paulina Will, Jan
Kueckelhaus, Na Sun, Kevin
Joseph, Henrike Salie, Lea
Vollmer, Ugne Kuliesiute, Jasmin
von Ehr, Jasim K. Benotmane,
Nicolas Neidert, Marie Follo,
Florian Scherer, Jonathan M.
Goeldner, Simon P. Behringer,
Pamela Franco, Mohammed
Khiat, Junyi Zhang, Ulrich G.
Hofmann, Christian Fung, Franz
L. Ricklefs, Katrin Lamszus,
Melanie Boerries, Manching Ku,
Jurgen Beck,Roman Sankowski,
Marius Schwabenland,Marco
Prinz, Ulrich Schuller, Saskia
Killmer, Bertram Bengsch, Axel K.
Walch, Daniel Delev, Oliver
Schnell, Dieter Henrick, Heiland

June 13, 2022,
Cancer Cell

Visium 10X Found the spectrum of regional
transcriptional programs of
GBM, mapped their
microenvironmental landscape
including metabolic and tumor-
host cellular interactions.
Uncovered insights into the bi
and unidirectional interactions
between the microenvironment
and the spatial-temporal
alterations in transcriptional
heterogeneity of GBM. Found a
strong association between
inflammatory response and the
age of the donor, suggesting that
aging may have an impact on
tumor differentiation. Was
concluded that tailored
therapeutic approaches are
required.

Patient
tissue
specimens

28

T-cell dysfunction
in the glioblastoma
microenvironment
is mediated by
myeloid cells
releasing IL10

Vidhya M. Ravi, Nicolas Neidert,
Paulina Will, Kevin Joseph, Julian
P. Maier, Jan Kückelhaus, Lea
Vollmer, Jonathan M. Goeldner,
Simon P. Behringer, Florian
Scherer, Melanie Boerries, Marie
Follo, Tobias Weiss, Daniel Delev,
Julius Kernbach, Pamela Franco,
Nils Schallner, Christine Dierks,
Maria Stella Carro, Ulrich G.
Hofmann, Christian Fung, Roman
Sankowski, Marco Prinz, Jürgen
Beck, Henrike Salie, Bertram
Bengsch, Oliver Schnell, Dieter
Henrik Heiland

February 17,
2022, Nature
Communications

Visium 10X Combine single-cell RNA
sequencing along with spatially
resolved transcriptomic
sequencing to gain spatial
insights into the complex
crosstalk, cellular states, and
cellular plasticity leading to the
immunosuppressive environment
found in GBM. Spatial
transcriptomics was used to
identify the spatial overlap of
cells; was observed that the
HMOX1+ myeloid cells were
spatially correlated with T cell
exhaustion and the mesenchymal
state of glioblastoma. Also
confirmed the presence of
HMOX1+ myeloid cells to result
in the reduction of the effector t
cell population.

Patient
tissue
specimens

8

Spatial
transcriptomics
reveals niche-
specific enrichment
and vulnerabilities
of radial glial
stem-like cells in
malignant gliomas

Yanming Ren, Zongyao Huang,
Lingling Zhou, Peng Xiao, Junwei
Song, Ping He, Chuanxing Xie,
Ran Zhou, Menghan Li, Xiangqun
Dong, Qing Mao, Chao You,
Jianguo Xu, Yanhui Liu, Zhigang
Lan, Tiejun Zhang, Qi Gan, Yuan
Yang, Tengyun Chen, Bowen
Huang, Xiang Yang, Anqi Xiao,
Yun Ou, Zhengzheng Su, Lu
Chen, Yan Zhang, Yan Ju,
Yuekang Zhang, Yuan Wang

February 23,
2023, Nature
Communications

Visium 10X Integrated short and long read
spatial transcriptomic datasets to
provide a comprehensive spatial
profiling of DMG and GBM.
Revealed niche-specific glioma
ecosystems and regulatory
programs. Identified four gene
expression modules that are
conserved across tumor samples,
and showed the similarities that
DMB and GBM share, despite its
unique driver mutations and age
of onset.

Patient
tissue
specimens

10

Highly
Multiplexed
Spatially Resolved
Proteomic and
Transcriptional
Profiling of the
Glioblastoma
Microenvironment
Using Archived
Formalin-Fixed

Youngmi Kim, Patrick Danaher,
Patrick J Cimino, Kyle Hurth,
Sarah Warren, John Gold, Joseph
M Beechem, Gabriel Zada, Troy A
McEachron

January 1, 2023,
Modern
Pathology

NanoString
GeoMx

Spatial tech allowed for highly
multiplexed digital antibody-
based protein profiling on serial
sections for an integrated
multianalyte approach.
Demonstrated applicability of an
integrated multiparametric
approach to characterize the
tumor microenvironment of
archived formalin-fixed tissues.

Patient
tissue
specimens

3

(Continued)
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Spatial transcriptomics and its role in
future of personalized medicine

The most challenging aspect of any new research technology is

its eventual integration into the clinic to try to better patient

outcomes. GBM represents a disorder desperately in need of new

therapeutic developments ranging from prognostic biomarker

discovery to novel interventions aimed at prolonging survival. To

successfully translate new discoveries into clinic the barriers of

efficacy and safety, which are much higher than the common basic

science barrier of statistical significance, must be surpassed. This

translational step is where many of the current bioinformatic

advances in GBM have fallen short. For example, studies have

demonstrated repeatedly that specific molecular subtypes exist

within patients (35, 38, 75), and that tumor heterogeneity is

pervasive, however, no clinical benefit or defined molecular target

has yet to emerge. A patient presenting to the clinic with proneural

GBM and a highly heterogeneous tumor (as defined by NGS) is

treated exactly the same as a patient presenting with low tumor

heterogeneity and a mesenchymal subtype. To date the only

significant prognostic markers that exist in the GBM space are

IDH mutation status and MGMT methylation status. It’s possible

that because GBM is such a spatially organized tumor itself, and it

resides in such a spatially complex organ system, that gene

expression values must be analyzed within the context of spatial

information to be clinically relevant.

An avenue of clinical research that could directly benefit from

spatial transcriptomics is the integration between GBM and cells that

make up its TME. A novel player in the GBM/TME interactions is

surrounding neurons. New evidence supports a key role played by

neuron cells in glioma’s TME through the existence of neural-glioma

networks (81–83). These involve both bona fide neuron-glioma

synapses and non-synaptic interconnections forming an

electrically coupled network involving multiple feedback loops

through which neurons regulate glioma growth. The identification

of the classic synaptic AMPA receptor mediated pathways as a key

element in the neuron-glioma networks underpins the finding that
Frontiers in Oncology 08
AMPAR-blocking drugs (such as perampanel) can successfully

inhibit glioma proliferation in murine models, demonstrating the

potential for agents addressing TME-glioma crosstalk as a

therapeutic strategy. Studies have also supported important roles

played by other TME cells such as tumor-infiltrating lymphoid and

myeloid immune cells (93, 97–99). These immune infiltrates in GBM

are largely immunosuppressive, in part due to T-cell dysfunction/

exhaustion, which can be partly explained by crosstalk between

myeloid and lymphoid cells (100, 101). This immunosuppression

has been clinically manifested in the failure of various types of

immunotherapy treatments trialed in GBM. Spatial transcriptomics

may illuminate novel connections or gene expression patterns within

niche areas that promote neuronal/GBM interactions or conversely

demonstrate that some areas of the tumor such as the hypoxic core

contain the most immunosuppressive signatures.

Another avenue for spatial transcriptomics to make clinical

inroads is in discovery of novel biomarkers of disease progression.

Biomarkers of response to standard of care in gliomas remain

extremely limited, with MGMT promoter methylation and IDH

mutation status as the only predictive biomarkers currently in

clinical use in malignant gliomas (102). This dearth of biomarkers

can be largely explained by the limited understanding of glioma’s

unique TME. Spatial transcriptomics holds great promise in

enabling a better understanding of how TME influences tumor

evolution and response to therapy. Examples of the TME’s role in

uncovering patient response to therapy among other cancers

include the role of tumor-infiltrating lymphocytes (TILs) in

predicting response of HER-2 negative breast cancer to paclitaxel-

based regimens (103). Efforts at characterizing other tumor’s TME

have resulted in novel classifying schemes of treatment response,

with examples in hypopharyngeal carcinoma suggesting its role in

distinguishing responders from non-responders (104). This raises

the potential of similar advances in GBM as more evidence emerges

of GBM’s specific TME biology.

The effects of different therapeutics on GBM and its TME can

also be more fully taken into consideration using spatial

transcriptomics. The gold standard chemotherapy for GBM is
TABLE 1 Continued

Title Authors Publication
Date/
Journal

Spatial
Technology

Major finding Samples
used

Number
of

samples

Paraffin-
Embedded
Specimens

Advanced
Molecular
Characterization
Using Digital
Spatial Profiling
Technology on
Immunooncology
Targets in
Methylated
Compared with
Unmethylated
IDH-Wildtype
Glioblastoma

H Barber, A Tofias, B Lander, A
Daniels, J Gong, Y Ren, X Ren, Y
Liang, P White, K M Kurian

February 24
2021, Journal of
Oncology

NanoString
GeoMx

There was a statistical increase in
specific ROIs (CD4, CD14,
CD68, CD8A, B7-H3, PDL-1,
CD19, FOXP3, CD44, and
STAT3) protein expression in
methylated versus unmethylated
GBM tumor core.
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temozolomide (TMZ), however, the impact of temozolomide in the

TME modulation remains unclear, with some reports suggesting its

potential use as an enhancer of immune activation in regimens

combining TMZ with immunotherapy (105), whilst others have

suggested its contribution to the TME’s immunosuppressive

behavior through Treg enrichment, partially reversible through

IL-2 (27, 106). Radiation which is also part of the standard of

care in GBM treatment is also not fully explored spatially with

evidence suggesting there is existence of potential targets to

radiosensitize gliomas, including TGF-B (107). However, recent

evidence has also supported the potential role of radiation in

transforming glioma’s TME into a tumor-permissive environment

(107, 108) with astrocyte-derived transglutaminase 2 (TGM2)

secreted by irradiated astrocytes contributing to tumor stemness

and radioresistance.

Immunotherapy represents another example of the importance

of the TME and tumor-TME interactions. In GBM, multiple

approaches have been attempted and continue to be proposed,

including CAR-Ts (85, 109–111), dendritic cell vaccines (112–114),

immune checkpoint blockade (79, 86, 115), oncolytic virus (116–

119) and others. While human clinical trials have been mostly

negative so far, emerging evidence has supported the role of TME in

identifying and in conditioning response to immunotherapy.

Spatially categorized tumor explants and spatial-omics have

begun enabled a more comprehensive 3-Dimensional

understanding of immune cells distribution in gliomas, with

implications in predicting response to immunotherapy (120). As

spatial transcriptomics develops further this response prediction

could be further integrated with other data such as tumor

mutational burden and neoantigen load to create a more

comprehensive prediction of likely response to immunotherapy.
Frontiers in Oncology 09
Across the clinical landscape of GBM there are a wealth of

opportunities to leverage spatial transcriptomic data to create more

specific and accurate predictors of response. A change in the design

of upcoming clinical trials can also consider the spatial

transcriptomic landscape of tumors from patients on the study

offering personalized medicine specific therapies based on the

profile of an individual patient’s tumor. These more spatially

centric basic science studies and clinical trials can further

improve the discovery of novel effective drugs and patient

responders (Figure 3).
Conclusions and future directions

Advances in spatial transcriptomics may hold the key to

unraveling the highly nuanced biology behind all manner of

complex processes from development to disease. As further

technological advances are made within the field, integration of

proteomic data with spatial location seems to be a crucial next point

of exploration (96). Further integration of spatially resolvable data

with techniques such as metabolomics or sequencing at the single cell

level will also no doubt advance our collective knowledge. The authors

of many of the early spatial transcriptomics papers note that this

technology is not in direct competition with assays such as proteomics

or scRNAseq, rather that they should be used in concert to draw more

data dense and meaningful conclusions. Indeed, integration of these

technologies with other technologies such as proteomics,

metabolomics, tissue multiplexing, and the development of higher

single cellular resolution is already underway (Table 2). The transition

from largely two-dimensional thin tissue slides into full three-

dimensional organoids will also push the field of spatial
FIGURE 3

Graphic representation of the benefits of spatial transcriptomics for GBM brain tumors when compared to canonical bulk RNA-Sequencing and also
highlighting potential future directions of spatial transcriptomics.
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transcriptomics forward. Researchers have begun to push this

boundary with 3D metabolic profiling in tonsil tissue with Mass

Spectrometry ion beamsmeasuring and stacking 5 nanometer sections

across a total of 150 sections of human tonsil (121). As more complex

integration of data is performed, more nuanced bioinformatics and

statistical corrections also need to be put in place to handle the

resulting highly dimensional and variable datasets. Although the

advances possible with this technology are exciting and within

reach, care needs to be taken to accurately check and QC the

resulting data. More accepted and universal bioinformatics pipelines

that are maintained and standardized (as is the case forWES and RNA

sequencing) will also be critical in ensuring the accuracy and

reproducibility of results from these studies.

Within the landscape of disease, the greatest challenge will be

drawing not only biologically meaningful but clinically meaningful

conclusions and data from these experiments. Current research

further characterizing the subtypes of GBM have yielded little

clinical results thus far, perhaps the combination of spatial data

from both the TME and native tissue microenvironment can enable

discovery of targeted treatments. New directions for spatial

sequencing experiments in GBM can begin to explore more in-

depth tumor-neuronal interactions which have already been

documented in the literature (81–83). Direct contact with tumor

trafficked immune cells or surrounding astrocytes or microglia can

also be more thoroughly investigated as it’s been hypothesized that

GBM can assert its effects both locally through contact as well as

more globally through manipulation of cytokine and chemokine

secretion (122–125). Furthermore, as spatial technology continues

to approve and resolution approaches the single cell level locations

along the edges of tumor and normal brain containing more sparse

cell populations, rather than densely populated tumor areas, can
Frontiers in Oncology 10
begin to be more closely examined. Study of these regions may

prove vital as they are on the edge of a rapidly advancing tumor and

may display a preconditioned phenotype necessary for eventual

tumor growth.

Finally, the last critical dimension of sequencing that has eluded

the biological and bioinformatics community is time. Over time

spatial architecture changes and interactions between cells are

formed and broken, with the power to now see these interactions

in their native spatial landscape revolutionary discoveries stand to

be made both in normal and disease models. This type of

technological advance would be well suited for fields such as

embryology or brain development where expression changes over

time drive vast cellular architectural changes. These experiments

could also be utilized for in vitro organoid modeling of things such

as vascular development, or the growth of tumors from an early

seeding stage. Although this could be somewhat crudely done

currently with just serial spatially profiled experiments,

technological advances in microscopy and sequencing that would

allow for continuous profiling of a single specimen could be

revolutionary. Additionally, with serial spatial experiments, as

well as the development of technologies that can label cell

interactions such as RABID seq (126), authentic cellular

interaction can be visualized to understand normal developmental

trajectories as well as abnormal disease progression.

To truly make meaningful gains in patient survival in a disease

as devastating as GBM researchers need to make use of all the tools

at their disposal. Spatial transcriptomics represents a worthwhile

tool added to the investigator arsenal, however, our tools are only as

good as the questions we use them on. As our methods evolve so too

must our hypotheses in order to fully realize our ultimate goal of

ending GBM.
TABLE 2 Current spatial transcriptomics services and platforms. (Offered as of the time of publication of this review.).

Platform Company Spatial Technology Cellular
Resolution

Uses/Highlights

GEOMX Nanostring Whole Transcriptome with possible
protein targeting, ROI selection
needed

10um Cellular barcodes can be quickly counted on Ncounter machines
or NGS sequenced. Many off the shelf targeting panels available.

COSMX Nanostring Whole Transcriptome with possible
protein targeting

Single cell or
subcellular

Currently in development/limited release. Similar to GEOMX but
greater resolution.

Visium 10x
Genomics

Full gene expression profiling using
NGS no ROI selection needed

1-10 cells per spot Can be integrated with protein detecting using IHC. Can detect
transcripts across the entire tissue section.

Xenium 10x
Genomics

Detection of 100’s to 1000’s of RNA
targets as well as multiplexed protein

Single cell or
subcellular

Can be expression tuned as well as detect highly degraded
transcripts.

Cell DIVE Leica Multiplex imaging Whole tissue imaging
down to single cell
level

Possible linking of multiplex imagers through software to enable
higher throughput research.

Lunaphore-
Comet

Lunaphore Multiplexed Imaging Whole tissue imaging Easy project design with use of off the shelf antibodies.

MERSCOPE Vizgen Multiplexed Imaging (MERFISH) In-Situ single cell
spatial genomics

Ability to profile large tissue sections down to cellular/subcellular
levels with high sensitivities and multiplexing possibilities.

Chip
Cytometery

Canopy
Biosciences

Multiplex Imaging Whole tissue imaging Serial multiplexing allows for use of many chosen markers as well
as reintegration of sample at a later time.
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