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Opioids and immune checkpoint
inhibitors differentially regulate a
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triple-negative breast cancer
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Background: Opioids are the primary analgesics for cancer pain. Recent clinical

evidence suggests opioids may counteract the effect of immune checkpoint

inhibition (ICI) immunotherapy, but the mechanism for this interaction is

unknown. The following experiments study how opioids and immunotherapy

modulate a common RNA expression pathway in triple negative breast cancer

(TNBC), a cancer subtype in which immunotherapy is increasingly used. This

study identifies a mechanism by which opioids may decrease ICI efficacy, and

compares ketamine, a non-opioid analgesic with emerging use in cancer pain,

for potential ICI interaction.

Methods: Tumor RNA expression and clinicopathologic data from a large cohort

with TNBC (N=286) was used to identify RNA expression signatures of disease.

Various drug-induced RNA expression profiles were extracted from multimodal

RNA expression datasets and analyzed to estimate the RNA expression effects of

ICI, opioids, and ketamine on TNBC.

Results: We identified a RNA expression network in CD8+ T-cells that was

relevant to TNBC pathogenesis and prognosis. Both opioids and anti-PD-L1 ICI

regulated RNA expression in this network, suggesting a nexus for opioid-ICI

interaction. Morphine and anti-PD-L1 therapy regulated RNA expression in

opposing directions. By contrast, there was little overlap between the effect of

ketamine and anti-PD-L1 therapy on RNA expression.

Conclusions: Opioids and ICI may target a common immune network in TNBC

and regulate gene expression in opposing fashion. No available evidence

supports a similar interaction between ketamine and ICI.
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opioids, ketamine, immune checkpoint inhibition, anti-PD-L1, tumor-infiltrating
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1267532/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1267532/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1267532/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1267532/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1267532&domain=pdf&date_stamp=2023-09-14
mailto:mincerj@mskcc.org
https://doi.org/10.3389/fonc.2023.1267532
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1267532
https://www.frontiersin.org/journals/oncology


Scarpa et al. 10.3389/fonc.2023.1267532
Introduction

Despite their poor side-effect profile and potential for abuse and

addiction, opioids remain the primary treatment for cancer pain

(1). Retrospective studies show that opioids may worsen cancer

progression, an effect that varies based upon cancer type/subtype

(2–4) and individual tumor genomics (5–9). Opioid-induced

immunomodulation is one possible explanation for the effect of

opioids on cancer. Consequently, a related but distinct question

concerning opioid analgesia for cancer pain has recently been

raised: can opioid use impact efficacy of immunotherapy?

Recent retrospective studies show that patients receiving immune

checkpoint inhibition (ICI) have worse outcomes if they are also

using opioids (10–14). While the mechanism underlying these

associations is unknown, factors could range from specific effects,

relying on direct crosstalk between ICI and opioid signaling (15), to

more general consequences of opioid-induced immunosuppression

and consequent dampening of ICI efficacy (16–18).

This study focuses on triple-negative breast cancer (TNBC), the

most immunogenic breast cancer subtype with notably poor prognosis.

Randomized controlled trials have demonstrated a substantial benefit

from the addition of ICI to chemotherapy in TNBC (19, 20), so

potential opioid-ICI interactions could be important to determine

optimal analgesic strategies. Complex interactions of thousands of

molecules are involved in TNBC pathogenesis and treatment

response (21, 22), and systems biology methods are critical to

identify how these molecules interact in networks to drive disease

(23, 24). Therefore, this study identifies groups of genes that share RNA

expression patterns in TNBC – “coexpression networks” – and

analyzes how opioids and immunotherapy regulate them.

We hypothesize that opioids and ICI regulate the RNA

expression of a common group of pathogenic genes in opposite

directions. We also compare the transcriptional effect of ICI with

ketamine, an emerging alternative to opioid analgesia for cancer

pain (25) with potential to attenuate immunosuppression (26), to

determine if ketamine and opioids compete similarly with ICI-

induced RNA expression. This study explores possible mechanisms

underlying ICI-opioid interactions in TNBC to corroborate the

clinical epidemiological literature of ICI-opioid interactions and

generate hypotheses for further experimental studies.
Methods

Using RNA expression data to identify
TNBC gene coexpression networks

This study integrates RNA expression data from several

cohorts, all publicly accessible, detailed in Table 1, and fully

described in Supplementary Methods. The entire workflow is

described in Figures 1A-F.

To study RNA expression in TNBC, we primarily examined a

cohort of 465 female TNBC patients from The Fudan University

Shanghai Cancer Center (“FUSCC”) (27). Clinical, histopathologic,

and RNA expression data was downloaded from The National Omics

Data Encyclopedia (NODE). These data included quantification of
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stromal tumor-infiltrating lymphocyte (sTIL) burden. A full

description of the cohort is included in the Supplementary Methods.

Molecules, like RNA, typically do not act in isolation, but

instead interact with hundreds or thousands of other molecules.

Genes that share similar patterns of RNA expression form

coexpression networks, where each gene can be viewed as a

network node. Nodes are connected if they share a similar pattern

of expression, and together they form functional units that mediate

phenotypes and disease (23). For the FUSCC cohort, weighted gene

coexpression analysis was used to identify these coexpression

networks (34), named arbitrarily by colors. The most connected

nodes in each network (“hubs”) were identified since hub genes are

critical to network function and likely mediators of disease (23, 35).

A second multi-ethnic dataset of TNBC patients from The Cancer

Genome Atlas (21) (“TCGA TNBC”) was used as an external

validation cohort to confirm that these networks were relevant to

TNBC. A technical description of weighted coexpression network

analysis and the methods for external validation are included in the

Supplementary Methods.
Determining the function and cell-type
specificity of gene networks

Each network was characterized by its functional pathways and

relationships to pathogenic mechanisms. This was done by

comparing genes in a network to curated libraries of genes linked

to specific biological pathways, cellular processes, and pathological

states (Supplementary Methods). Network RNA expression was

correlated with sTIL burden to determine which networks were

likely associated with intratumoral immune response. A network-

sTIL association was considered significant if Benjamini-Hochberg

corrected p-values < 0.1.

Specific cell-types have unique and characteristic RNA

expression signatures. By examining the RNA expression of a

specific tumor sample, the proportion of each cell-type in that

sample can be estimated, enabling computational estimation of the

cell-type specificity of each network (via CIBERSORT) (36)

(Supplementary Methods). A complementary approach to

localizing a network to a specific cell-type is to use higher

resolution RNA expression data, taken from a specific cell-type or

from individual cells (Supplementary Methods). Therefore, we

validated our computational estimation of cell-type specificity by

also directly comparing networks to cell-type specific (“cts_PBMC”)

and single-cell (“sc_TIL_TNBC”) RNA expression from peripheral

and TNBC intratumoral immune cells, respectively (29, 30).

Fisher’s exact test was used to estimate if genes shared by a given

network and immune cell signature overlapped at a frequency

greater than chance. A network was considered cell-type specific

if p < 0.05 and odds ratio > 1.
Identifying gene networks regulated
by opioids

The Library of Integrated Network-Based Cell Signatures

(“LINCS”) (28) database details effects of over 8000 compounds
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on expression of all genes in various cancer cell lines. Specific opioid

receptor agonists and antagonists found in this database are leu-

enkephalin, nalbuphine, naltrexone, and naloxone. Mapping data

from LINCS, we calculated the extent to which each of these drugs

alters RNA expression of genes in each network. Based on this

analysis, an opioid susceptibility metric (OSM) was calculated for

each network (Supplementary Methods). The OSM does not

estimate whether a specific opioid alters RNA expression of a

network. Instead, it estimates the common downstream effect on

RNA expression shared by various upstream opioid agonists and
Frontiers in Oncology 03
antagonists. It then calculates if a network is robustly modulated by

various upstream opioid-dependent pathways. This analysis

enabled determination of the subset of networks predicted to be

regulated by opioids and ketamine.

We also tested if human RNA expression of specific networks was

altered by morphine and ketamine in vivo. No publicly available data is

available to study how oxycodone, fentanyl, or hydromorphone alter

RNA expression of immune cells. We compared our networks to genes

whose expression is altered by morphine in peripheral immune cells

(31) (“sc_morphine_PBMC”) in general and CD8+ T-cells specifically
FIGURE 1

Schematic outline of the study design and a description of the RNA expression datasets used for (A) coexpression network analysis, (B) sTIL correlation, (C)
opioid regulation, (D) cell-type specificity, and (E, F) ICI-drug interactions. CIBERSORT, Cell-type Identification by Estimating Relative Subsets of Ribonucleic
Acid Transcripts; FUSCC, Fudan University Shanghai Cancer Center; LINCS, Library of Integrated Network-Based Cell Signatures; ORN, opioid-regulated
stromal tumor-infiltrating lymphocytes network; PBMC, Peripheral blood mononuclear cells (lymphocytes (T-cells, B-cells, NK cells), monocytes, dendritic
cells); TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer. Datasets are labeled as in Table 1.
TABLE 1 RNA expression datasets analyzed in this study.

Dataset ID
(in this study)

Biological
source

Description Use in this study Reference

FUSCC TNBC tumor Bulk RNASeq from 286 female Chinese patients with primary
TNBC

Identification of gene networks and
estimation of their cell-type specificity
(via CIBERSORT)

(27)

TCGA TNBC TNBC tumor Bulk RNASeq from 162 female TCGA patients with TNBC Validation of gene networks (21)

LINCS cancer cell
lines

Library of RNASeq of cancer cell lines before and after drug
exposure (more than 8000 compounds listed)

Drug-induced gene expression
signatures for selected opioid agonists
and antagonists

(28)

cts_PBMC PBMCs Tissue-specific RNASeq from 79 human-derived
physiologically normal tissues

Validation of cell-type specificity of
gene networks

(29)

sc_TIL_TNBC TNBC
intratumoral
immune cells

Single-cell RNASeq of intratumoral immune cells in TNBC Validation of cell-type specificity of
gene networks

(30)

sc_morphine_PBMC PBMCs Single-cell RNASeq of PBMCs from 7 opioid-dependent
individuals and 7 controls as well as control cells dosed with
morphine

Morphine gene response signature in
PBMCs

(31)

cts_morphine_CD8 CD8+ T-cells Cell-type specific RNASeq of CD8+ T-cells from 5 donors,
before and after dosing of the cells with morpine

Morphine gene response signature in
CD8+ T-cells

(32)

sc_ICI_TIL_TNBC TNBC
intratumoral
immune cells

Single-cell RNASeq of intratumoral immune cells from 22
TNBC patients who received anti-PD-L1 therapy

Anti-PD-L1 gene response signature in
TNBC intratumoral immune cells

(22)

bulk_ketamine_PBMC PBMCs Bulk RNASeq of whole blood (PBMCs) from 26 patients with
treatment-resistant depression, before and after ketamine
treatment, and 21 controls

Ketamine gene response signature in
PBMCs

(33)
FUSCC, Fudan University Shanghai Cancer Center; LINCS, Library of Integrated Network-Based Cell Signatures; PBMC, Peripheral blood mononuclear cells (lymphocytes (T-cells, B-cells, NK
cells), monocytes, dendritic cells); RNASeq, Ribonucleic acid sequencing; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer.
Note that there are three different types of RNASeq represented here: bulk, cell-type specific (cts), and single-cell (sc). Bulk RNASeq sequences RNA extracted from a large number of cells (mixed
together), hence representing average gene expression across thousands of tumor cells. Cell-type specific RNASeq is bulk RNASeq, but of a specific cell-type that has been isolated from the rest.
Single-cell RNASeq involves sequencing of RNA extracted from individual cells.
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(32) (“cts_morphine_CD8”). We determined that a network was likely

modulated by morphine if a significant number of genes in a network

had their RNA expression altered when exposed to morphine (Fisher’s

exact test p-value < 0.05, odds ratio > 1). We performed a similar

experiment to identify networks likely altered by ketamine

(“bulk_ketamine_PBMC”) (33).
ICI regulation of gene networks and
intersection with opioids

To determine the effect of ICI on tumor RNA expression, we

investigated RNA expression from individual tumor cells taken

from TNBC patients exposed to anti-PD-L1 therapy (paclitaxel and

atezolizumab) (22) (“sc_ICI_TIL_TNBC”). We compared genes in

each network with genes whose RNA expression was altered by ICI

using Fisher’s exact test (p < 0.05, odds ratio > 1). To determine if

ICI and morphine had similar effects on immune cell RNA

expression, we used the Kolmogorov-Smirnov test to test if ICI

and opioid resulted in a similar distribution of RNA expression.

Rejecting the null hypothesis suggests that ICI and opioid result in

different changes in RNA expression.
Results

Genome-wide RNA expression revealed
TNBC coexpression networks

A first step for identifying how opioids and immunotherapy may

interact mechanistically in TNBC is to identify a robust molecular

signature of disease (Figure 1A). Disease states are driven by changes in

RNA expression (27, 37). Molecules, like RNA, typically do not act in

isolation, but instead interact with hundreds or thousands of other

molecules (23). Groups of genes sharing similar RNA expression

patterns form coexpression networks that mediate disease (23, 24,

35). Therefore, we analyzed genome-wide RNA expression data from a

large human cohort (Table 1, “FUSCC”) and calculated coexpression

networks associated with TNBC (Nsamples=286, Ngenes=14,540,

Supplementary Methods). We identified 25 coexpression networks,

each named by arbitrarily assigned color (Figure 2A). In each network,

a gene is a represented by a node. Nodes (genes) are connected if their

RNA expression is strongly correlated, allowing us to identify the

organization and structure of RNA expression for 14,540 genes. As

demonstrated in previous studies, most nodes connect with only a few

partners, while some nodes are highly-connected (23, 38). These

highly-connected nodes – “hub genes” – are critical to the network

as a whole and likely mediators of disease, so we also identified these

hub genes for each network for downstream analyses. These networks

were externally validated in an independent TNBC cohort (Table 1,

“TCGA TNBC”) to confirm that they were robust and reproducible

(Supplementary Methods). These analyses confirmed that 18 of the 25

networks were externally replicable, and these robust and reproducible

networks were the focus of our investigation (Figure 1A,

Supplementary Figure 1). The genes coexpressed in each network are

listed in Supplementary Table 1.
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TNBC coexpression networks were
associated with oncogenic mechanisms

Next, we hypothesized that these networks were associated with

known cellular functions or biological pathways (Figures 2B-E). We

identified networks associated with neutrophil-mediated immunity

(“brown” network, p=1.5x10-15, Odds Ratio=2.99), DNA

replication machinery (“green” network, p=2.5x10-20, Odds

Ratio=39) and fatty acid biosynthesis and metabolism

(“darkgreen” network, p=1.3x10-4, Odds Ratio = 25.8). Some

networks were targets for general oncogenic transcription factors

and pathways, like cell migration (p=3.9x10-4, Odds Ratio = 3.4),

angiogenesis (p=2.6x10-3, Odds Ratio=4.1), and epithelial to

mesenchymal transition (p=1.7x-3, Odds Ratio= 3.4), evidence

that some networks were functionally oncogenic.

We next tested if these networks were regulated by mechanisms

more specific to TNBC. This analysis revealed that network hubs –

the likely mediators of network function and disease – were regulated

by known oncogenic transcription factors in TNBC (Figure 2F),

including IRF8 and SPI1, both correlated with survival and tumor

immunogenicity in TNBC (39). RUNX1, another transcription factor

targeting hub nodes, correlates with poor prognosis in TNBC (40).

Further analysis showed that proteins known to interact with hubs

are preferentially phosphorylated by MAPK and ERK pathways

(Figure 2G), independently associated with metastatic mechanisms

and prognosis in TNBC (41). These analyses supported the

hypothesis that the networks calculated here were relevant to

pathogenesis and prognosis in TNBC.
Four coexpression networks were
correlated with intratumoral
immune response

TNBC patients with more stromal intratumoral lymphocytes

(sTILs) in the tumor microenvironment (TME) have a better

prognosis, and ICI allows T-cells to destroy cancer cells. Therefore,

we reasoned that specific networks correlated with sTIL burden would

be strong candidates for a molecular signature where opioids and

immunotherapy converge (Figure 1B). Four coexpression networks –

brown, darkgreen, orange, and turquoise –were significantly correlated

with sTIL levels across the FUSCC cohort (Benjamini-Hochberg p-

value < 0.1), so we prioritized these networks in subsequent analyses.

(Figure 3A, Supplementary Figure 2).
Opioids regulated a network associated
with intratumoral immune response

Next, we hypothesized that opioids would directly target TNBC

coexpression networks associated with intratumoral lymphocyte

burden (Figure 1C). We used publicly available opioid-induced

RNA expression signatures from various opioids in various cancer

cell lines to calculate an opioid susceptibility metric (OSM) for each

network (Supplementary Methods). This data-driven approach
frontiersin.org
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estimates if RNA expression of a network is robustly altered by the

downstream effects shared by various opioids, enabling selection of

networks with high OSM for further analyses. The turquoise

network was the sTILs network most susceptible to opioids, with

the second highest OSM of all networks (Figure 3B).

We confirmed that turquoise is opioid-dependent in humans by

studying in vivo RNA expression effects of morphine in human

peripheral blood mononuclear cell (PBMCs) (31) (Table 1,

“sc_morphine_PBMC”). Though peripheral and intratumoral
Frontiers in Oncology 05
immune cells are different, they both share similar expression

patterns for opioid receptors, with high basal expression of OGFR

and low expression of mu-opioid receptor (8, 42). Morphine

strongly modulated the RNA expression of genes in the turquoise

network (p=1.8x10-22, Odds Ratio=17.5), providing further

evidence that turquoise was an opioid-regulated network (ORN)

(Figure 1C). No publicly available human RNA expression data

exist for other commonly prescribed opioids, like oxycodone,

fentanyl, or hydromorphone, precluding similar testing.
A B

G
F

C

D E

FIGURE 2

TNBC gene coexpression networks: derivation in the FUSCC cohort, functional characterization, and linkage to oncogenic mechanisms. (A)
Weighted gene coexpression analysis separates genes with expression correlated across patients in the FUSCC cohort into distinct networks, as
illustrated in the topological overlap matrix. Though not labeled, genes line the x and y axes, and any point in the matrix records the correlation
between the corresponding genes in the pair (red reflects greater correlation). Each gene is also labeled by the color of the network to which it
belongs (as derived in the coexpression analysis). Dendrograms and network colors are depicted on both axes, illustrating that the coexpression
analysis in fact results in a clustering of genes into networks. (B-E) Functional characterization of networks, illustrating functionally-relevant gene
sets that overlap significantly with each network for green, darkgreen, black, and brown networks, respectively: for each plot, the x-axis notes gene
count within each network for respective ontology(functional) categories (labeled on the y-axis). More red signifies lower p-values. All gene
pathways pictured have p < 0.05. (F) Linking gene networks to oncogenic mechanisms: protein-protein interaction network for transcription factors
targeting network hub genes. Transcription factors predicted to directly bind hub genes are in pink and their interaction partners are in gray. (G)
Kinase regulation of the transcription factor protein-protein interaction network: kinases are in blue, transcription factors are in pink, and their
intermediate protein interaction partners are in grey. Green edges represent kinase-substrate phosphorylation interactions. Grey edges are physical
protein-protein interactions.
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The ORN was localized to CD8+

T-cells in TNBC

Since opioids targeted a network associated with tumor-

infiltrating lymphocyte burden, we reasoned that opioids

primarily affected a specific lymphocyte type (Figure 1D).

Computational estimation of cell-type specificity of each network

(Supplementary Methods) revealed that the ORN was primarily a

CD8+ T-cell coexpression network (rho=0.66, Benjamini-Hochberg

p-value = 4.4x10-37) (Figure 4A). We confirmed this by comparing

the ORN with an independent CD8+ T-cell specific RNA expression

signature (29) (Table 1, “cts_PBMC”, p=1.8x10-41, Odds

Ratio=3.5) (Figure 4B).

To directly validate that the ORN is specific to T-cell RNA

expression from the TNBC microenvironment, we studied single-

cell RNA expression data collected from TNBC tumors (30)

(Table 1, “sc_TIL_TNBC”) (Figure 4B). Genes coexpressed in the

ORN were primarily genes specific to intratumoral CD8+ effector T-

cells in TNBC, further corroborating that the ORN was specific to

CD8+ in TNBC tumors (p=2.8x10-7, Odds Ratio=3.8).
Gene response to anti-PD-L1 therapy in
TNBC targeted the ORN

T-cell regulation of the TME influences tumor progression and

mediates the therapeutic activity of ICI (43, 44). Localization of the

ORN to CD8+ T-cells in the TME suggested a possible nexus for

opioid-ICI interaction (Figure 1E) if ICI targeted the ORN as well.

We tested this hypothesis by studying intratumoral RNA expression

data from TNBC patients receiving paclitaxel and atezolizumab (22)

(Table 1, “sc_ICI_TIL_TNBC”). We identified the intratumoral

RNA expression signature that predicted ICI response and

compared it to the ORN, demonstrating overlap between the
Frontiers in Oncology 06
anti-PD-L1 gene response signature and the ORN (p = 1.8x10-16,

Odds Ratio=2.2) (Figure 4C). This suggested that the ORN was

critical to immunotherapy response.
Opioids opposed gene expression
response to anti-PD-L1 therapy in the ORN

To study if opioids and anti-PD-L1 therapy had similar or

opposing effects on intratumoral RNA expression, we first studied

whether opioid and immunotherapy RNA expression signatures

intersected directly at all. This analysis showed that anti-PD-L1

response signature strongly overlapped with morphine-induced

differential expression in human CD8+ T-cells (32) (Table 1,

“cts_morphine_CD8”). (p=7.9x10-3, Odds Ratio=1.4).

Next, we examined how morphine and immunotherapy changed

RNA expression of the 72 genes common to their gene response

signatures (Figure 1F). The two pharmacological interventions typically

altered RNA expression of genes in opposing directions (Figure 4D).

For example, morphine downregulated 54% of genes upregulated in

the anti-PD-L1 signature. Further analysis showed that morphine and

anti-PD-L1 resulted in different distributions of expression fold change

for the 72 overlapping genes, suggesting they affect RNA expression

differently (D = 0.56944, Kolmogorov-Smirnov two-sided p-value=1.45

x 10-10, Supplementary Figure 3). Taken together, these two analyses

supported the conclusion that these two interventions have different

and opposing effects on the same core genes.
Ketamine did not oppose the anti-PD-L1
gene response signature

We tested whether ketamine had a similar effect (Figure 1F).When

comparing the anti-PD-L1 signature to the ketamine response
A B

FIGURE 3

Predicted modulation of gene networks by opioid agonists and antagonists. (A) Correlation of RNA expression of the turquoise network (y-axis) with
the quantity of stromal tumor-infiltrating lymphocytes (sTILs) measured by histopathologic analysis (x-axis). Each point represents a patient in the
FUSCC cohort. (B) Scaled opioid susceptibility metrics (OSM) (y-axis) for each gene network (x-axis) are presented. The OSM estimates how
susceptible the RNA expression of each network is in response to the common downstream pathway of various opioid receptor modulators. Color
of each bar corresponds to network name, labeled along the x-axis. Only those networks (N=23) with sufficient drug-induced RNA expression data
for enrichment calculations are plotted.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1267532
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Scarpa et al. 10.3389/fonc.2023.1267532
signature in PBMCs (33) (Table 1, “bulk_ketamine_PBMC”), we found

that only three genes overlapped – PER1, TSC22D3, and DUSP1 – far

fewer than the 72 genes that overlapped between the opioid and anti-

PD-L1 signatures. All three genes were modulated in the same

direction for both therapies. This suggested that ketamine and anti-

PD-L1 did not modulate the expression of common genes, and those

genes that were commonly modulated shared similar directionality.
Discussion

The mechanistic role of opioids in cancer is complex. Single-cell

RNA expression data shows that opioid receptors vary in expression

by cell-type in the TME, with some opioid-related genes more

highly expressed in TME T-cells than in tumor (8). OGFR, the non-

canonical opioid receptor, has strong basal levels of expression in

both TNBC TME T-cells (8) and peripheral T-cells (42). Notably,
Frontiers in Oncology 07
the mu-opioid receptor has minimal RNA expression in the TME

but has been shown to be inducible in peripheral lymphocytes by

various stimuli, including chronic opioids (45). Opioid receptors in

the TME may enable direct opioid action but do not constitute a

detailed mechanism to explain opioid effects on cancer or opioid-

ICI interaction. Consequently, this study leverages large genome-

wide RNA expression datasets to elucidate a more detailed

molecular hypothesis: opioids and ICI target a common gene

coexpression network localized to intratumoral CD8+ effector T-

cells but regulate its RNA expression in opposite directions.

Localization of opioid-ICI interaction to CD8+ T-cells is consistent

with recent research highlighting the role of CD8+ TILs specifically in

mediating the response to immunotherapy (44) and is consistent with

analyses of gene expression in TNBC (8) and colon adenocarcinoma

(6). Interestingly, opioids were associated with anti-tumor effects in

these cancer types, suggesting the possibility that opioids can have anti-

tumor effects on the tumor itself while at the same time countering the
A B

DC

FIGURE 4

Localization of the ORN to CD8+ T-cells, overlap of ORN with TNBC anti-PD-L1 therapy response gene signature, and predicted opioid
downregulation of anti-PD-L1 response. (A) Spearman correlation plot between turquoise network expression (“ORN”) and CIBERSORT estimate of
CD8+ T-cell proportion for each FUSCC patient sample. (B). Fisher’s exact test odds ratio and -log10 Bonferroni p-value estimating ORN significant
overlap with the anti-PD-L1 gene signature in peripheral and TNBC intratumoral T-cells. (C) A subset of the ORN is pictured here, with large labeled
nodes denoting genes whose RNA expression is modulated in immunotherapy responders in TNBC. (D) For the 72 genes that overlap between the
morphine and anti-PD-L1 response signatures, the change in RNA expression for each gene in response to morphine (y-axis) and immunotherapy
(x-axis) is respectively illustrated. Each point is one of the overlapping genes.
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efficacy of ICI. Ketamine, an emerging analgesic in general and in

cancer specifically (25), may be worth considering for patients in whom

opioids would negatively affect immunotherapy since it does not alter

RNA expression of genes necessary for clinical response to ICI.

Ketamine is a very promiscuous drug, targeting NMDA receptors

among many others, and competing effects across various receptors

may account for its overall net neutral effect on ICI targets of RNA

expression. These insights may have significant clinical implications,

suggesting that a precision medicine approach may be needed to

identify appropriate analgesic options for patients based on their

tumor subtype or immunotherapy regimens. This may become

increasingly important since both perioperative and intraoperative

immunotherapy show promise (46, 47), extending the relevance of

opioid-ICI interactions beyond the chronic cancer pain patient to all

early-stage cancer patients undergoing tumor resection.

These analyses should be interpreted cautiously since we do not

directly examine the effect of both opioids (or ketamine) and ICI

simultaneously on human tumor in vivo, and instead rely on

inferences made from integrating multiple experimental datasets.

Another limitation of our study was the paucity of public data

testing the in vivo molecular effects of various synthetic (fentanyl,

oxycodone, or hydromorphone) and endogenous opioids on

human RNA expression in immune cells or tumor. This limited

our ability to differentiate between opioid types and understand

how endogenous opioid-ICI interactions may influence outcomes,

while at the same time highlighting the need for a systematic

understanding of how different opioids affect RNA expression in

immunologic and tumor tissue. Lastly, our proof-of-principle

analysis focuses solely on TNBC and should not be interpreted in

the context of other cancers, however, we note that the role of

effector CD8+ T cells in mediating outcomes has been well

documented across numerous cancer types, suggesting that

opioid-ICI interactions in other cancer types is worth further study.

Rather than justifying any immediate change in clinical

practice, our study was designed to generate the first plausible,

specific data-driven hypotheses to explain opioid-ICI interaction.

These findings provide strong justification for future experiments

focused on studying the direct effects of opioids and ICI in human

TNBC in vivo in a randomized control trial or an organoid-based

system. Our analyses also suggest that further investigation of

ketamine as an alternative to opioids in ICI patients is warranted.
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