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Microenvironmental immune cell
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of nodular lymphocyte
predominant Hodgkin lymphoma
and T-cell/histiocyte-rich large
B-cell lymphoma
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London Hospitals NHS Foundation Trust, London, United Kingdom, 4Institute of Hematology and
Center for Haemato-Oncological Research (CREO), University of Perugia and Santa Maria della
Misericordia Hospital, Perugia, Italy, 5Pathology Department, Instituto de Investigación Sanitaria
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Background: The clinicopathological spectrum of nodular lymphocyte

predominant Hodgkin lymphoma (NLPHL), also known as nodular lymphocyte

predominant B-cell lymphoma, partially overlaps with T-cell/histiocyte-rich

large B-cell lymphoma (THRLCBL). NLPHL histology may vary in architecture

and B-cell/T-cell composition of the tumour microenvironment. However, the

immune cell phenotypes accompanying different histological patterns remain

poorly characterised.

Methods: We applied a multiplexed immunofluorescence workflow to identify

differential expansion/depletion of multiple microenvironmental immune cell

phenotypes between cases of NLPHL showing different histological patterns (as

described by Fan et al, 2003) and cases of THRLBCL.

Results: FOXP3-expressing T-regulatory cells were conspicuously depleted

across all NLPHL cases. As histology progressed to variant Fan patterns C and

E of NLPHL and to THRLBCL, there were progressive expansions of cytotoxic

granzyme-B-expressing natural killer and CD8-positive T-cells, PD1-expressing

CD8-positive T-cells, and CD163-positive macrophages including a PDL1-

expressing subset. These occurred in parallel to depletion of NKG2A-

expressing natural killer and CD8-positive T-cells.

Discussion: These findings provide new insights on the immunoregulatory

mechanisms involved in NLPHL and THLRBCL pathogenesis, and are
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supportive of an increasingly proposed biological continuum between these two

lymphomas. Additionally, the findings may help establish new biomarkers of

high-risk disease, which could support a novel therapeutic program of immune

checkpoint interruption targeting the PD1:PDL1 and/or NKG2A:HLA-E axes in the

management of high-risk NLPHL and THRLBCL.
KEYWORDS

nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), T-cell/histiocyte-rich
large B-cell lymphoma, tumor microenvironment, immune checkpoints, lymphoma
biology, multispectral immunofluorescence
Introduction

Nodular lymphocyte predominant Hodgkin lymphoma

(NLPHL) is a rare lymphoma with incidence of up to 0.3 cases

per 100,000 person years (1, 2). The sparse neoplastic “lymphocyte

predominant” (LP) cells of NLPHL retain a germinal centre B-cell

programme including expression of markers such as CD20, CD79a

and BCL6; ongoing somatic hypermutation; and engagement with

PD1-expressing T-follicular helper cells (Tfh) through

immunological synapses (3–6). The latter frequently manifest

histologically as T-cell rosettes around LP cells. Furthermore,

NLPHL and T-cell/histiocyte-rich large B-cell lymphoma

(THRLBCL) share overlapping histological, molecular and clinical

features (7–10). As these characteristics are in contrast with those of

classical Hodgkin lymphoma (cHL), a shift in terminology to

“nodular lymphocyte predominant B-cell lymphoma” is now

acceptable or preferred in both contemporary classification

systems (11, 12).

Clinical outcomes in NLPHL correlate to the architectural

patterns of the tumour microenvironment (TME) in relation to

the LP cells, as described by Fan et al. (13). Typical cases show LP

cells residing in B-cell rich nodular/serpiginous formations

(patterns A/B) and present with localised disease following an

indolent course (1, 2, 14). Less typically, LP cells reside in a T-cell

rich TME which is either extra-nodular (pattern C), intra-nodular

(pattern D), diffuse (THRLBCL-like pattern E), or within “moth

eaten” diffuse B-cell areas (pattern F). These variant patterns are

associated with clinically advanced and high-risk disease across

adolescent and adult populations (15–17). Patterns A, C and E are

most widely reported in diagnostic histopathology practice (each

illustrated in Figure 1A).

In the era of increasingly limited biopsy material, all NLPHL

patterns may either be ambiguously mixed or difficult to assign,

whilst NLPHL pattern E may mimic lymphocyte-rich cHL (LRcHL)

or be indistinguishable from THRLBCL if a coincident nodular

focus is not sampled (18). Furthermore, whilst patterns A/B and E

are clearly at opposite histological extremes of the NLPHL

spectrum, how the intermediate pattern C and less common

patterns D/F should be regarded in attempts to histologically

grade NLPHL is less clear (19).
02
In this study, we applied a single-cell resolution multiplexed

immunofluorescence and innovative digital image analysis workflow

to characterise differential frequency of TME immune cell phenotypes

between the major NLPHL patterns and THRLBCL. As well as

advancing understanding of the tumour immuno-biology linking

these entities, immunological characterisation of TME constituents in

this way may yield additional objective methods of stratifying the

spectrum of NLPHL and potential biomarkers of high-risk disease.
Methods

Multiplexed multispectral immunofluorescence was performed

on archival formalin-fixed paraffin-embedded cases histologically

classified as NLPHL (n=15) or THRLBCL (n=4). For comparison,

cases of LRcHL (n=4) and tonsillar follicular hyperplasia control

tissue were also included. Histological diagnoses were confirmed by a

consultant and trainee histopathologist (TM/CP). NLPHL cases were

subcategorised as purely pattern A/B (NLPHL-pA; n=6), pattern C

dominant (NLPHL-pC; n=3), and pattern E dominant (NLPHL-pE;

n=6) with patterns D/F not being distinctly encountered.

Three panels were applied using the ‘Opal 7-Color’ system

(Akoya Biosciences, Marlborough, MA, USA), adapted from

previously optimised protocols (20). These targeted distinct

immune cells of interest, as follows:
− Lymphocyte panel: CD20, CD4, CD8, PD1, FOXP3 and

DAPI

− Cytotoxic/Natural Killer (NK) cell panel: CD8, CD16, CD56,

NKG2A, Granzyme-B (GZMB), Granulysin (GNLY) and

DAPI

− Macrophage panel: CD68, CD163, CD206, PDL1 and DAPI
Multispectral images were acquired and spectrally unmixed on

the Vectra3 platform and companion InForm software (Akoya

Biosciences). Representative multi-channel image tiles of equal

size (670x501 microns; 1348x1008 pixels) were exported from

each case for further analysis (number of tiles analysed shown in

Table 1). Exemplary fields of composite multi-channel images tiles

from each case type are shown in Figure 1B.
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The subsequent image analysis workflow employed non-

hierarchical binary phenotyping performed in open-source

software, outlined in Figure 2 and further detailed in

Supplementary Methods. Of note, phenotyping was augmented

by two innovative image processing techniques: (i) dynamic

image thresholding, which minimised sensitivity to technical

variations in signal/background characteristics (Supplementary

Figure S1); and (ii) colocalisation-based resolution of cells with

provisional positivity for multiple membranous markers, which
Frontiers in Oncology 03
minimised spurious phenotypes arising due to contaminating

signals between immune cell membranes in the crowded TME of

NLPHL/THRLBCL (Supplementary Figure S2).

Fractions of immune cell phenotypes in image tiles were

compared between case types using Mann-Whitney U tests due to

non-normally distributed data. In lymphocyte panel images, nearest-

neighbour distances between LP cells and non-neoplastic lymphocyte

phenotypes were also compared. P-values were expressed with

Bonferroni adjustment and p<0.001 regarded as significant.
A

B

FIGURE 1

Major NLPHL histological patterns, compared to a reactive follicle. Demonstrated by graphical diagram (A); and example fields from multispectral
immunofluorescence multichannel image tiles (B), including component CD20 signal (upper row) and composite of all components signals of the
lymphocyte panel (lower row).
TABLE 1 Number of analysed cases and images tiles.

Case type Lymphocyte panel Cytotoxic/NK panel Macrophage panel

Cases* Image tiles Cases* Image tiles Cases* Image tiles

Tonsil - 15 - 55 - 62

NLPHL-pA 6 (5 + 1) 160 5 (4 + 1) 285 6 (5 + 1) 174

NLPHL-pC 3 (3 + 0) 58 3 (3 + 0) 89 3 (3 + 0) 98

NLPHL-pE 6 (3 + 3) 219 6 (3 + 3) 181 6 (3 + 3) 278

THRLBCL 4 187 4 95 4 152

LRcHL 4 302 4 313 4 288
NLPHL, nodular lymphocyte predominant Hodgkin lymphoma; -pA, pure pattern A; -pC, pattern C dominant; -pE, pattern E dominant; THRLBCL, T-cell/histiocyte-rich large B-cell
lymphoma; LRcHL, lymphocyte-rich classical Hodgkin lymphoma.
*Parentheses indicate the contribution of NLPHL cases by clinical service setting (adolescent + adult).
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Results

Workflow validation and interpretation of
differential phenotype frequency

The phenotyping workflow provided accuracy of 0.95-0.99 in

determining appropriate provisional binary positive/negative status

for each individual marker. Colocalisation-based resolutions of cells

provisionally positive for two membranous markers provided

accuracy of 0.71-0.87 in distinguishing convincing calls from

likely spurious calls, which was superior to accepting all

provisionally double-positive cells as genuine. Precision across

different multiplexing permutations was demonstrated by a strong

correlation (R=0.98) between CD8-positive cell fractions in

matched tissues stained with the lymphocyte versus cytotoxic/NK

panels. The workflow validation is further detailed in

Supplementary Results and exemplified by Supplementary Figures

S3, S4.

Major resulting derived phenotypes from each panel are

mapped to representative multi-channel image tiles from an

exemplary NLPHL-pE case in Figure 3. To account for the

expected differences in overall B-cell to non-B-cell ratio which

typifies NLPHL histological patterns and THRLBCL, quantities of

differentially increased/decreased phenotypes were compared as

fractions relative to a parent population (summarised in Table 2

and further presented in following sub-sections).

Of note, we report a marker (M) status binarily as positive (+)

or negative (-). Our “M+” phenotypes highly express M and likely

best correspond to Mhigh/Mbright as reported by other methods

continuously quantifying signal intensity, such as flow cytometry.

Meanwhile, our “M-” phenotype may correspond to either M- or
Frontiers in Oncology 04
Mlow/Mdim as reported by such methods. We were cognisant of this

caveat when considering the presence of established biological

phenotypes characterised by bright/dim marker expression.
CD4+FOXP3+ T-regulatory cells
are uniformly depleted in NLPHL
patterns A, C and E

CD4+FOXP3+ cells were uniformly reduced in all NLPHL cases

(median 0.3-0.7% of non-B cells) in comparison to LRcHL cases

and tonsil controls (4-6%; Figure 4A). These CD4+FOXP3+ cells

are likely to represent T-regulatory cells (Tregs), which have also

been found to be depleted in corroborative flow cytometry-based

studies (21, 22). In contrast, THRLBCL cases showed heterogeneity

in CD4+FOXP3+ cell fractions. Three ‘Treg-low’ TRHRLBCL cases

had levels comparable to NLPHL and one ‘Treg-high’ THRLBCL

case had levels greater than LRcHL cases and tonsil controls.

We also observed that, in comparison to the ‘Treg-low’

THRLBCL and NLPHL cases, the single Treg-high THRLBCL

case showed increased CD4+PD1+ Tfh cells, CD4+FOXP3+PD1+

cells, and B-cells (Figure 4B; Supplementary Figure S5).
CD8+ T-cells in NLPHL pattern E and
THRLBCL are depleted of an NKG2A+
population and show expansion of CD16+,
GZMB+, and PD1+ populations

A minor population of CD8+NKG2A+ cells showed a peak in

NLPHL-pC cases (median 1.4% of CD8+ cells) followed by
FIGURE 2

Digital image analysis and cell phenotyping workflow. Flowchart indicating major steps (1–3) with illustrative primary immunofluorescence image
channels (left), secondary thresholded channels (middle) and diagrammatic rationale for phenotyping decisions (right; dashed line = outline of cell
image segment derived computationally by expansion of nuclear detection segmentation). For further details and additional example fields, see
Supplementary Methods and Supplementary Figures S1, S2.
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FIGURE 3

Exemplary multichannel image tiles and major immune cell phenotypes. Representative 670x501 micron multispectral immunofluorescence image
tiles from a pattern E NLPHL case (left) stained with each of the three panels (each row), with corresponding cell detections illustrated as nuclear
overlays colour-coded by derived phenotype group (right).
TABLE 2 Differentially expanded or depleted populations between case types.

Case type

Tonsil NLPHL-pA NLPHL-pC NLPHL-pE THRLBCL LRcHL

Lymphocyte panel T-cell phenotypes: median percentage of total CD20-negative cells

CD4+FOXP3+ 3.8% 0.8% ↓T/L 0.6% ↓ T/L 0.4% ↓ T/L N/A † 6.0%

CD4+PD1+ 3.4% 11% 12% 6.0% ↓A,C 13% 7.4%

CD8+PD1+ 0.4% 2.6% 2.0% 7.5% ↑A,C 12% ↑↑A,C,E 2.5%

CD4+CD8+PD1+ 0.00% 0.02% 0.01% 0.05% ↑A 0.40% ↑↑E 0.07%

Cytotoxic panel NK-cell phenotypes: median percentage of total NK-cell population*

CD56+NKG2A+ 49% 46% 39% 9.3% ↓A,C 0.8% ↓↓A,C,E 0.0%

CD16+GZMB+ 8.6% 16% 36% ↑A 64% ↑↑A,C 61% ↑↑A,C 11%

Cytotoxic panel CD8+ T-cell phenotypes: median percentage relative of total CD8+ cells

CD8+NKG2A+ 0.6% 1.2% 1.4% 1.0% ↓C 0.2% ↓A,C,E 0.1%

CD8+CD16+ 0.0% 0.0% 0.3% ↑A 1.1% ↑↑C 4.0% ↑↑A,C,E 0.0%

CD8+GZMB+ 1.1% 1.6% 2.4% 9.0% ↑C 11% ↑C 2.5%

(Continued)
F
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TABLE 2 Continued

Case type

Tonsil NLPHL-pA NLPHL-pC NLPHL-pE THRLBCL LRcHL

Macrophages panel phenotypes: median percentage of total CD68+ and/or CD163+ cells

CD163+ 49% 42% 62% 73% ↑A 82% ↑A 26%

CD163+PDL1+ 0.3% 1% 6% ↑A 11% ↑A 24% ↑↑A,C,E 1%

CD68+ 63% 68% 49% 40% ↓A 42% ↓A 84%
F
rontiers in Oncology
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 fron
NLPHL, nodular lymphocyte predominant Hodgkin lymphoma; -pA, pure pattern A; -pC: pattern C dominant; -pE, pattern E dominant; THRLBCL, T-cell/histiocyte-rich large B-cell
lymphoma; LRcHL, lymphocyte-rich classical Hodgkin lymphoma.
↑/↓: significant increase/decrease (Mann Whitney U test p<0.001) between case types indicated by superscript as follows. T/L: compared to tonsil and LRcHL; A: compared to NLPHL-pA;
C: compared to NLPHL-pC; E: compared to NLPHL-pE.
† Median not reported due to bimodal heterogeneity between cases (see results text and Figure 4A).
* NK-cell defining criteria: CD8- AND [CD16+ AND/OR CD56+] AND [NKG2A+ AND/OR GZMB+ AND/OR GNLY+].
A B

DC

FIGURE 4

Differential T-cell phenotypes derived via the lymphocyte panel. For each phenotype shown (A–D): representative detection (upper; multispectral
fluorescence composite image [left] and component channels [right]); phenotype fractions in image tiles by case type, quantified relative to the
parent non-B cell population (middle); and LP-to-phenotype nearest neighbour (LPNN) distribution by case type (lower; hd, histogram density).
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significant depletion in NLPHL-pE cases (1%) which progressed

further in THRLBCL cases (0.2%; Figure 5C).

In contrast, compared to NLPHL-pA/pC cases, NLPHL-pE and

THRLBCL cases showed increased CD8+GZMB+ cells (median 9%

and 11% of CD8+ cells, respectively; Figure 5E); CD8+CD16+ cells

(1% and 4%; Figure 5D); and CD8+PD1+ cells (8% and 12% of non-

B-cells; Figure 4C). The CD8+GZMB+ cells likely represent

activated cytotoxic T-cells, whilst the CD8+CD16+ cells may

represent a small population of activated innate cytotoxic T-cells

with NK-like function (23). The CD8+PD1+ cells may either

represent recently activated cytotoxic T-cells with transiently

increased PD1 or functionally exhausted CD8+ T-cells (24, 25).

The combined findings are overall suggestive of ongoing or

antecedent adaptive T-cell tumour-reactive immune responses in

NLPHL-pE and THRLBCL cases.

CD8+PD1+ T-cells were also spatially closer to tumour cells in

NLPHL-pE and THRLBCL cases, compared to NLPHL-pA/C cases

(Figure 4C; nearest neighbour distance plots). In these cases, we

visually confirmed that CD8+/CD8+PD1+ T-cells directly

contacted tumour cells but did not form phenotypically

homogenous circumferential rosettes. Circumferential CD4+PD1+
Frontiers in Oncology 07
Tfh-cell rosettes were only present in NLPHL-pA cases and in the

nodular B-cell rich component of NLPHL-pC/E cases. In contrast,

when T-cells surrounded tumour cells in T-cell rich areas of

NLPHL-pC/E and THRLBCL cases, they were occasionally all

PD1 positive (and may have been labelled as “PD1-positive

rosettes” by singleplex methods) but they were of heterogenous

CD4+ or CD8+ phenotypes reflec t ive o f the wider

microenvironment rather than a localised bona fide rosette.

CD4+CD8+PD1+ cells represented a very minor sub-

population (0-0.5% in NLPHL cases) with similar differential

representation between case types as its parent CD8+PD1+

population (Figure 4D).
NK phenotypes progressively shift from
CD56+NKG2A+ to CD16+GZMB+ as
histology progresses from NLPHL pattern A
to C to E and to THRLBLCL

CD16+GZMB+ cells were progressively expanded between

NLPHL cases: proceeding from a low in NLPHL-pA cases
A B

D EC

FIGURE 5

Differential NK and CD8+T cell phenotypes derived via the cytotoxic/NK panel. For each phenotype shown (A–E): representative detection (upper;
multispectral fluorescence composite image [left] and component channels [right]); and phenotype fraction in image tiles by case type, quantified
relative to the parent total NK-cell or total CD8+ T-cell populations, as indicated (lower). NK-cell defining criteria were: CD8- AND [CD16+ AND/OR
CD56+] AND [NKG2A+ AND/OR GZMB+ AND/OR GNLY+].
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(median 16% of all NK-cells), rising in NLPHL-pC cases (36%) and

reaching a plateau between NLPHL-pE and THRLBCL cases (61%

and 64%). In parallel, CD56+NKG2A+ cells (including a minor

GNLY+ subset) were depleted in NLPHL-pE cases (9.3%) and

THRLBCL (0.8%), compared to NLPHL-pA/C cases (46%/39%;

Figures 5A, B).

With reference to established NK-cell immunobiology, this

phenotypic switch appears consistent with expansion of tumour-

reactive activated effector CD16brightCD56dim NK-cells by

maturation from the pool of nodal CD56brightCD16dim NK-cells

undergoing education and licensing of “self”-receptors such as

NKG2A (26, 27).
Predominant macrophage populations shift
from CD68+ to CD163+ with an increasing
PDL1+ sub-population as histology
progresses from NLPHL pattern A to C to E

CD163+ macrophage detections, including an increasingly

prominent PDL1+ subpopulation, were progressively expanded

from a low in NLPHL-pA cases (median 42% of total CD68 and/

or CD163 positive detections) to a high in NLPHL-pE cases (73%);

whilst CD68+ detections apparently became comparatively

depleted (Figure 6). CD206+ macrophage detections were much

rarer (<1%) and not meaningfully differentially represented

between case types. Only a minority of macrophage detections

appeared CD68+CD163+ double-positive, some of which were also

PDL1+ (Supplementary Figure S6).

The apparently limited co-expression of CD68 and CD163 was

not expected. In some morphological macrophage detections, CD68

signal appeared genuinely low/near-negative, possibly reflecting

macrophages with diminished phagocytic function. However,

CD163+ macrophages were often noted to have moderate/

abundant cytoplasm with dendritic-like processes, leading to
Frontiers in Oncology 08
CD163’s membranous signal being distant from DAPI’s nuclear

signal and CD68’s perinuclear cytoplasmic signal. The limited co-

expression may therefore be partly methodological due to the

nuances of digitally segmenting such cells. Regardless, we regard

CD163+ detection proportions as a meaningful surrogate for

macrophage phenotypes in our case repertoire, given the

significant differential findings and frequent colocalisation

with PDL1.
Discussion

Role of Tfh cells and exclusion of Tregs in
NLPHL lymphomagenesis

The depletion of CD4+FOXP3+ cells across all NLPHL cases

(including Fan histological patterns A, C and E in this study) points

to a TME signature necessary for lymphomagenesis. NLPHL

development has been shown to be related to chronic stimulation

by driver antigens in a Tfh-dependent manner (28). This may

include exogenous microbial antigens as exemplified by Thurner

et al. (29).

We suggest that exclusion of CD4+FOXP3+ cells is a tumour-

permissive requirement mandatory for the maintenance of tumour-

driving chronic antigenic stimulation and LP : Tfh cell interactions.

In keeping with this concept, the depleted CD4+FOXP3+

population has been shown by flow cytometry to include both

Tregs and T-follicular regulatory (Tfr) cells (22). Both are known to

regulate and suppress B:Tfh interactions in states of infection-

related antigenic stimulation (30).

Whilst the initial restriction of LP cells in typical indolent cases

of NLPHL to nodular microenvironments rich in B-cells and Tfh

could be in part explained by a direct reliance of LP cells on Tfh

interactions, we suggest that the nodular microenvironment may

also provide a relative immune-privileged “shielding” effect.
A B C

FIGURE 6

Differential macrophage detection phenotypes derived via the macrophage panel. For each phenotype shown (A–C): representative detection
(upper; multispectral fluorescence composite image [left] and component channels [right]); and phenotype fractions in image tiles by case type,
quantified relative to the parent total macrophage population (lower).
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Evidence of progressive anti-tumour
immune responses followed by a
tolerogenic microenvironment
across the histological spectrum
of NLPHL and THRLBCL

The concept of an immune-privilege effect mediated by B-cell/

Tfh-rich nodular environments is supported by our finding of an

innate effector NK-cell response coinciding with LP cells beginning to

reach beyond nodules (Fan histological pattern C). The importance of

functional NK cells in NLPHL surveillance is corroborated by the

observation of NLPHL development in siblings with genetic defects

in NK cell development (31). Additionally, an adaptive CD8+ T-cell

response became apparent when LP cells were found in more

diffusely extra-nodular environments (Fan histological patterns E

and THRLBCL), and this was associated with dismantling of

circumferential Tfh-cell rosettes.

We found that these NK/T-cell immune responses coincided

with relative depletion of NKG2A-positive NK-cells and CD8+ T-

cells, suggesting an early role of NKG2A loss/downregulation in

permitting anti-tumour responses. The role of NKG2A:HLA-E axis

signalling is well established in NK-cell responses and more recently

established in a subset CD8+ T-cells mediating non-classical HLA-

E restricted responses (32).

The expansions of activated NK-cell and CD8+ T-cell populations

in THLRBCL and pattern E dominant NLPHL cases coincided with

progressive expansions of CD163+ and CD163+PDL1+ macrophage

and likely exhausted CD8+PD1+ T-cell populations. These

populations may reflect the compensatory mechanisms that

maintain an overall net tumour-permissive TME.

The macrophage detections in pattern E dominant NLPHL cases

were increasingly CD163-positive and often CD68-low or apparently

negative. Our experience with macrophage markers in NLPHL and

THRLBCL cases in this study supports superiority of CD163 over

CD68 as a macrophage marker of relevance and increased expression

in NLPHL with variant patterns, and is corroborated in a larger

cohort by conventional immunohistochemistry (6). CD163+PDL1+

macrophages were markedly increased in THRLBCL cases, which

may represent alternative activation of macrophages with tumour-

promoting immuno-suppressive function via the PD1:PDL1 immune

checkpoint axis. This is corroborated by other published studies

including transcriptomic evidence of a more tolerogenic TME in

THRLBCL compared to NLPHL and immunophenotypic evidence of

a TME rich in PD1:PDL1 interations in THRLBCL (33–35).
THRLBCL cases may develop heterogenous
or divergent tolerogenic mechanisms

THRLBCL cases showed dichotomous heterogeneity in fractions

of some TME immune cell phenotypes, particular CD4+FOXP3+

Tregs and CD4+FOXP3+PD1+ Tfr-like cells. The Treg-low

THRLBCL cases show further expansion of the same immune cells

types as seen in pattern E dominant NLPHL. This supports the

concept that these cases reflect progression from NLPHL.
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In contrast, the single Treg-high THRLBCL case showed a

divergent TME with increased Tregs, Tfr-like cells, and Tfh;

accompanied by a marked reduction in activated CD8+GZMB+

T-cells. We suggest this indicates that the aforementioned

requirement of Treg exclusion may not be powerful sculptor of

the TME in this particular THRLBCL case, and that the acquisition

of Tregs/Tfr-like cells may confer more potent immune tolerance.

Whilst the heterogeneity of the TME in THRLBCL may

correlate to different states of lymphoma progression, another

possibility is that a divergent Treg-high TME in THRLBCL cases

may represent de novo cases not progressed from NLPHL. In any

case, we suggest a larger clinically-correlated cohort study is

warranted to explore the utility of Treg/Tfr-like cell quantification

as a clinically relevant marker in THRLBCL.
Speculations on the nature of
CD4+CD8+PD1+ double-positive
T-cells in NLPHL

Multiple flow cytometry studies report CD4+CD8dimPD1bright

double-positive T-cell (DPT) populations as a feature with relative

specificity for the NLPHL TME (22, 36–38). However, we note that

our CD4+CD8+PD1+ population was present in NLPHL cases at

fractions similar to or lower than those of LRcHL (i.e., lacking

specificity for NLPHL) and orders of magnitude lower than the

flow-defined CD8dim DPT cells. The trace CD4+CD8+PD1+

population we detected is therefore likely to, at most, only

partially overlap with flow-defined DPT populations.

We note that a detailed characterisation of DPTs in NLPHL

reveals a phenotype similar to Tfh cells (CD4+, CCR7-, PD1bright,

CXCR5+, TIGIT+, CTLA4+) with the addition of dim CD8 (22).

We speculate that the DPTs in NLPHL could represent Tfh cells

which have non-transcriptionally acquired trace CD8 molecules

through trogocytosis. If so, the DPT population can be expected to

be more readily detectable by flow cytometry than by cross-

sectional histology relying on uniform membranous expression.

We can further speculate that LP cells forming immunological

synapses with both Tfh cells and functionally inhibited tumour-

reactive CD8+ T-cells sets the stage for the prolonged contact

between these three cells, and that this may facilitate such a

transfer of CD8 molecules to Tfh/Tfh-like cells.
Concluding remarks

In this study, we developed an innovative multiplexed

immunofluorescence and digital analysis workflow to generate

millions of phenotyped cell detections from hundreds of

histological images derived from routine biopsy material. Our

results corroborate and further characterise key alterations in the

TME of NLPHL and THRLBCL.

We demonstrate progressive shifts in TME immune cell

phenotypes between histological patterns of NLPHL and

THRLBCL (illustrated in Figure 7), which provide further support
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for a bona fide biological continuum between these lymphomas. As

we have reported these phenotypes in simple binary terms, their

detection may be amenable to dual-chromogenic staining protocols

and simplified analysis, facilitating more translatable quantification

in larger clinically correlated cohorts as potential biomarkers of

high-risk disease.

Further biological studies assessing any molecular features of

the neoplastic LP cells which accompany the changes in NLPHL

patterns and microenvironmental populations may provide further

support of a continuum between NLPHL and THRLBCL, as well as

possible mechanistic explanations for progression along the

continuum. Such studies might include assessment of PDL1/

PDL2 gene gains and protein expression in tumour cells, which

are noted to be absent in LP cells of typical NLPHL cases but

present in THRLBCL tumour cells (35, 39, 40).

Meanwhile, our findings permit speculation that the immuno-

biology of the NLPHL-THRLBCL continuum involves three major

immunoregulatory mechanisms: (i) exclusion of Treg/Tfr-

mediated regulation of Tfh function in NLPHL; (ii) possible

early NKG2A:HLA-E axis mediated regulation of cytotoxic NK

and CD8+T cell responses in pattern A and C NLPHL; and (iii) a

PD1:PDL1 axis mediated immune checkpoint between exhausted

CD8+PD1+ T-cells and PDL1+ macrophages accompanied by

dismantling of homogenous Tfh-cell rosettes, which increasingly

defines the TME with progression to NLPHL pattern E and

to THRLBCL.

The relevance of these immune checkpoint axes builds on the

rationale for their therapeutic interruption in NLPHL and
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THRLBCL. Lessons from anti-PD1 therapy in classical Hodgkin

lymphoma show that high expression of the checkpoint co-

inhibitory receptor (i.e., PD1) on T-cells does not predict

treatment response, and that responses are mediated by

permitting recruitment of new tumour-reactive T-cells to a TME

enriched in the co-inhibitory ligand (41). By a similar logic, our

finding of depleted NKG2A-expressing NK and T-cells in NLPHL

pattern E and THRLBCL need not discourage the relevance of the

NKG2A:HLA-E axis. Anti-NKG2A therapy shows promise in solid

tumours as monotherapy or in combination with anti-PD1 therapy

(42). We suggest that, if anti-NKG2A therapy continues to become

established, quantification of co-inhibitory ligand expression for

both axes (HLA-E and PDL1) may become useful predictive

biomarkers when considering single or combined immunotherapy

in high-risk NLPHL and THRLBCL.
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