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Objective: This study aimed to explore the radiomics model based on magnetic

resonance imaging (MRI) T2WI and compare the value of different machine

algorithms in preoperatively predicting tumor budding (TB) grading in rectal cancer.

Methods: A retrospective study was conducted on 266 patients with

preoperative rectal MRI examinations, who underwent complete surgical

resection and confirmed pathological diagnosis of rectal cancer. Among them,

patients from Qingdao West Coast Hospital were assigned as the training group

(n=172), while patients from other hospitals were assigned as the external

validation group (n=94). Regions of interest (ROIs) were delineated, and image

features were extracted and dimensionally reduced using the Least Absolute

Shrinkage and Selection Operator (LASSO). Eight machine algorithms were used

to construct the models, and the diagnostic performance of the models was

evaluated and compared using receiver operating characteristic (ROC) curves

and the area under the curve (AUC), as well as clinical utility assessment using

decision curve analysis (DCA).

Results: A total of 1197 features were extracted, and after feature selection and

dimension reduction, 11 image features related to TB grading were obtained.

Among the eight algorithm models, the support vector machine (SVM) algorithm

achieved the best diagnostic performance, with accuracy, sensitivity, and

specificity of 0.826, 0.949, and 0.723 in the training group, and 0.713, 0.579,

and 0.804 in the validation group, respectively. DCA demonstrated the clinical

utility of this radiomics model.

Conclusion: The radiomics model based on MR T2WI can provide an effective

and noninvasive method for preoperative TB grading assessment in patients with

rectal cancer.
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1 Introduction

Colorectal cancer (CRC) ranks second in terms of cancer-

related deaths in the United States and is a leading cause of death

for men under the age of 50 (1). The incidence of rectal cancer

accounts for approximately a third of all cases (2). The treatment

and prognosis assessment of rectal cancer primarily rely on TNM

staging. However, patients with the same pathological stage may

exhibit significantly different clinical treatment outcomes (3).

Exploring additional factors that influence tumor prognosis can

provide better guidance and treatment plans for patients, optimize

patient management, and improve survival quality (4–6). It has

been shown that perineural invasion, tumor deposits, and tumor

budding are all adverse prognostic factors (5, 7, 8).

TB,as a process of epithelial-mesenchymal transition in tumors

(9, 10), was recommended by the International Tumor Budding

Consensus Conference (ITBCC) in 2016 to be included in the

guidelines/protocols and staging systems for rectal cancer pathology

reporting. It also provided a definition for tumor budding (11). TB

refers to the presence of scattered tumor cells or small clusters of

tumor cells with poor differentiation at the invasive front of the

tumor, observed under high-power microscopy. These cell groups

are often single tumor cells or comprise less than 5 cells. TB is

categorized into three grades based on the number of buds: low-

grade budding (Budding1, Bd1) with 0-4 buds, intermediate-grade

budding (Bd2) with 5-9 buds, and high-grade budding (Bd3) with

≥10 buds (within a 20x visual field, corresponding to an area of

0.785 mm²). High-grade budding has been significantly associated

with reduced overall survival rate, adverse clinical-pathological

features, invasive growth patterns, lymph node metastasis and

tumor recurrence rate (4, 8) (11–14). The AJCC/UICC cancer

staging guidelines have included tumor budding as an additional

prognostic factor for rectal cancer (9). However, as a postoperative

pathological characteristic, it cannot provide optimal assistance for

preoperative surgical planning. Therefore, exploring preoperative

tumor budding assessment methods is beneficial for implementing

more accurate personalized treatment and improving tumor

prognosis in a clinical setting.

The diagnosis of rectal cancer plays a crucial role in medical

imaging, among which MRI has been recommended as the preferred

method for diagnosing rectal cancer due to its excellent soft tissue

resolution (3, 6, 15). However, traditional imaging diagnostics still

have their limitations.With the advancement of scientific technology,

artificial intelligence (AI) has also entered the field of medicine.

Multiple studies have shown that AI-based imaging learning models

can better predict tumor treatment response and prognosis without

relying on pathological reports, thereby supporting accurate

determination of clinical treatment plans (16–18). Radiomics is one

of the AI imaging learning models (19) that has been used for

preoperative TN staging prediction, gene typing, assessment of high-

risk tissue histopathological variables, treatment efficacy, and

prognosis evaluation in tumors (20–22). Current research on

radiomics in rectal cancer mainly focuses on predicting aspects

such as complete remission after neoadjuvant therapy for advanced

rectal cancer, lymph node metastasis, KRAS/NRAS gene mutations,
Frontiers in Oncology 02
and microsatellite instability (MSI). Few studies have reported on

predicting tumor budding. In recent years, some scholars have begun

to explore this area (23, 24). Currently, only Li et al. have conducted a

study using T2WI, DWI, and contrast-enhanced imaging to predict

tumor budding degree, with respective values for AUC, sensitivity,

specificity, and accuracy of 0.796, 92.7%, 65.8%, and 81.2% (25).

However, some patients are unable to undergo contrast-enhanced

examinations due to issues such as contrast agent allergies, renal

function abnormalities, or economic constraints. Therefore, this

study aims to utilize various machine learning models based on

T2WI radiomics to predict the degree of tumor budding in rectal

cancer preoperatively. It also seeks to explore clinical risk factors in

order to provide assistance in selecting preoperative surgical

approaches for rectal cancer and improving patient prognosis.
2 Materials and methods

2.1 Participants

Patients who underwent rectal cancer surgery and parallel MRI

scans from April 2021 to April 2023 were included in this study.

The study flow and overview are shown in Figure 1. Patients from

Qingdao West Coast Hospital were assigned as the training group,

while patients from Qingdao Municipal Hospital and Qingdao

University Affiliated Hospital were assigned as the validation

group. The inclusion criteria were as follows (1): Pathological

diagnosis of rectal adenocarcinoma with tumor budding grading

(2); All patients underwent surgical treatment (3); Preoperative

MRI scans performed within 2 weeks (4); Distance of the tumor’s

lower margin from the anal verge less than 15cm (26) (5); Complete

clinical data. The exclusion criteria were as follows (1): Patients who

received preoperative adjuvant therapies such as radiotherapy or

immunotherapy (2); Exclusion of patients with mucinous

adenocarcinoma6 (3); Patients with concurrent other malignant

tumors (4); Patients with poor image quality (5); Patients with

incomplete clinical data.
2.2 Clinical data

Clinical data collection primarily includes age, gender,

carcinoembryonic antigen (CEA), carbohydrate antigen-199 (CA

199), distance from the tumor to the anal verge, length, depth of

infiltration, circumferential growth, MR TN staging, distant

metastasis, circumferential resection margin (CRM), and

extramural vascular invasion (EMVI).
2.3 Image acquisition

All patients underwent imaging using 3.0T MR scanners after

fasting for at least 4 hours. Conventional axial T2WI images were

used to establish the radiomics model in this study. Detailed

scanning parameters are provided in Supplementary Table 1.
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2.4 Pathological evaluation

Avoid bias in tumor budding assessment, samples obtained by

complete resection of the tumor lesion during surgery were used.

The excised samples were stained with Hematoxylin and Eosin

(H&E). According to the ITBCC (2016) recommendations and the

AJCC/UICC Cancer Staging Guidelines (8th edition, 2017), the

pathology report needs to include TN staging, tumor budding

grading, pathological type, degree of differentiation, perineural

invasion, vascular emboli, circumferential resection margin

(CRM). This is necessary for data comparison and analysis in the

study. In this research, tumor budding degree was categorized into

the intermediate-low-grade group (Bd 1&2) and the high-grade

group (Bd 3).
2.5 Image segmentation

The DICOM raw images were imported into the open-source

software 3D Slicer (https://www.slicer.org/, version5.0.3). One

attending physician with 8 years of experience in abdominal MRI

diagnosis, serving as the annotating physician, performed lesion

segmentation on the axial T2WI images in conjunction with the
Frontiers in Oncology 03
T2WI sagittal and DWI sequences. The regions of interest were

manually outlined along the tumor edges layer by layer, and the

software platform automatically reconstructed the volumes of

interest (VOI). During the outlining process, one attending

physician performs image segmentation along the outermost edge

of the tumor visible in the T2WI images, while another senior

physician reviews the ROI. When the tumor involves adjacent solid

organs, draw along the maximum edge of the tumor to exclude the

normal structures of other organs as much as possible. It is difficult

to determine whether the nodule around the tumor is a tumor

nodule or lymph node metastasis through imaging. When the

nodule is closely connected to the tumor and the angle formed by

the edges of the nodule and the tumor is obtuse, we believe that the

nodule is a part of the tumor. On the contrary, if it is an acute angle,

the nodule should be excluded. Any disagreements were resolved

through consultation and discussion by two senior physicians. The

following considerations were taken into account: (a) Exclusion of

the intestinal lumen and its contents; (b) Exclusion of adjacent

mesenteric fat tissue; (c) Exclusion of the uninvolved rectal wall.

Furthermore, to evaluate the stability of all image features, 30

randomly selected cases were independently segmented by the

two physicians again after a one-month interval. Inter- and

intraobserver consistency evaluations were conducted (25). The
FIGURE 1

The study flow and overview.
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image segmentation process was performed in a single-blind

manner, with the two physicians unaware of the tumor budding

grading information of the patients.
2.6 Radiomics feature extraction and
model construction

2.6.1 Image preprocessing
The segmented images obtained from the image segmentation

process were imported into the Pyradiomics package (https://

github.com/Radiomics/pyradiomics). Due to the presence of

various scanning devices and imaging parameters, image

preprocessing was required. The following steps were followed for

image preprocessing (21, 27):Step 1: N4 bias field correction, which

aims to eliminate magnetic field bias or intensity inhomogeneity in

the images. Step 2: Resampling of the images using B-spline

interpolation to standardize the voxel size to 1mm3. Step 3: As

per the Image Biomarker Standardization Initiative (IBSI)

guidelines (28), grayscale normalization was performed by scaling

the gray values of MRI images based on μ ± 3s (μ: mean gray level

within the VOI; s: gray standard deviation) to minimize MRI signal

intensity variations. This normalization step helps eliminate the

influence of different field strengths and device parameters on the

images.Image preprocessing reduces the effects caused by variations

in image acquisition and parameters, ensuring the generalizability

and robustness of the constructed models.
2.6.2 Feature extraction
After image preprocessing, image feature extraction for the

training group is performed on the aforementioned platform.

Features can be divided into three groups: (I) first-order statistics,

(II) shape attributes, and (III) texture features. First-order statistics

are features extracted directly from the raw data or image, typically

including basic statistical measures to provide a basic description of

the data. Shape attributes describe the external shape and structure

of an object or region, relating to its contour, boundaries, and

geometric properties. They are useful in distinguishing different

objects, detecting edges and contours, and performing object

recognition tasks. Texture features describe the second-order and

higher-order spatial distribution of patterns or intensities. They

provide information about the texture in the image, such as features

related to repetition, variation, and local structure. In this case,

several different methods are used for texture feature extraction,

including Gray-Level Co-occurrence Matrix (GLCM), Gray-Level

Run Length Matrix (GLRLM), Gray-Level Size Zone Matrix

(GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM),

and Gray-Level Dependence Matrix (GLDM).

Normalization using the z-score method was performed to

ensure that all features have a mean of 0 and a standard deviation

(SD) of 1, as described in previous studies (24). Feature selection,

dimensionality reduction, and prediction model construction were

conducted using the feature data from the training group. The
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feature data from the external validation group were used to validate

the effectiveness and performance of the constructed models.

2.6.3 Feature selection and
dimensionality reduction

To ensure the robustness of the selected radiomics features,

feature dimensionality reduction is performed. Firstly, the

interclass/intraclass correlation coefficients (ICCs) are calculated.

Features with ICC values greater than 0.75 are selected to exclude

those with significant inter-observer/intra-observer variability.

Statistical tests such as t-tests or Mann-Whitney U tests are then

applied to retain features with p-values less than 0.05. To determine

the correlation between features that exhibit high repetitiveness, the

Spearman’s rank correlation coefficient can be used. In this method,

we calculate the correlation coefficient between features and retain

one feature from any pair with a correlation coefficient greater than

0.9 (29, 30). To filter features and retain their descriptive capability to

the maximum extent, we can use a greedy recursive elimination

strategy. We can employ a nonlinear regression algorithm called

LASSO regression, which utilizes the minimum absolute shrinkage

and selection operator. By adjusting the weight parameter l, we can
shrink all regression coefficients towards zero. Through 10-fold cross-

validation, we can find the optimal value for l, and retain the features
with non-zero coefficients, combining them into a radiomics

signature. Finally, we can utilize the scikit-learn package in Python

to build the LASSO regression model and calculate the radiomics

score (Rad-score) for each patient by linearly combining the retained

features. Prediction model building.

The selected radiomic features are individually used with eight

classification algorithms: Logistic Regression (LR), K-Nearest

Neighbor (KNN), Extra Trees (ET), Random Forest (RF),

eXtreme Gradient Boosting (XGBoost), Support Vector Machines

(SVM), Light Gradient Boosting Machine (LightGBM), and

Multilayer Perceptron (MLP). These eight algorithms are used to

build models. The best machine learning algorithm model is

selected by calculating the area under the ROC curve. 5-fold

cross-validation is employed to obtain the final Rad signature.

Please refer to Figure 2 for the radiomics workflow.

2.7 Clinical risk factors

Statistical analysis was performed on clinical variables(age,

gender, CEA, CA199 levels), tumor distance from the anal verge,

length, depth of invasion, circumferential growth, MRI TN stage,

distant metastasis, circumferential margin, and extramural vascular

invasion. Independent sample t-tests, Mann-Whitney U-tests, or c2
tests were used to analyze these variables. Clinically significant risk

factors that exhibited a statistically significant difference (P < 0.05)

in predicting tumor budding grade were identified.

2.8 Statistical analysis

Statistical analysis was performed using Python 3.8 (https://

www.python.org) and SPSS 19.0 software. Continuous data in
frontiersin.org
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patient clinical information were tested for normality and

homogeneity of variance. For comparisons, either t-tests or rank-

sum tests were used. Categorical data were compared using the chi-

square test.In the training group, radiomic features were first

transformed to a normal distribution using regularization. Then,

t-tests (when homogeneity of variance) and Mann-Whitney U-tests

(when heterogeneity of variance) were conducted to compare the

features and identify statistically significant differences.Single-factor

and multi-factor logistic regression analyses were performed to

evaluate clinical risk factors associated with high-grade tumor

budding. Factors with a significance level of P < 0.05 were

considered statistically significant. ROC and AUC were used to

evaluate the predictive performance of each model in the training

group and the external validation group.DCA was used to evaluate

the clinical application value of the model.
3 Results

3.1 Characteristics of the patients

3.1.1 Clinical features
A total of 266 cases were included in the study, with 172 cases in

the training group and 94 cases in the external validation group.

The clinical characteristics of all patients in the training and

external validation groups are shown in Supplementary Table 2.

Among the training group, 78 cases (45.35%) were classified as

high-grade TB, while 38 cases (40.43%) in the external validation

group were classified as high-grade TB. No clinical risk factors

related to high-grade TB were found (P>0.05).
3.1.2 Radiomics features
A total of 1197 features were extracted, detailed information can

be found in Table 1; Figure 3. They are mainly divided into three

categories (1): First-order statistics (n=234 cases) (2); Shape

attributes (n=14 cases) (3); Texture features (n=949 cases),

including GLCM, GLRLM, GLSZM, GLDM, and NGTDM.
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Features were selected based on group-level and intra-group

ICC>0.75. The t-test or Mann-Whitney U test was applied for

screening, selecting features with P<0.05, resulting in 29 features

being retained. The Spearman rank correlation coefficient was then

used to keep only one feature from each pair of features with a

correlation coefficient greater than 0.9. Next, a greedy recursive

elimination strategy was employed to remove the feature with the

highest redundancy at each step, resulting in only 23 features being

retained. Pearson correlation coefficient was used to further screen

and keep 16 features. LASSO was applied to select features with

coefficients greater than 0, resulting in a final retention of 11

features, as shown in Figure 4. The detailed feature names and

their corresponding Rad-score values can be found in Figure 5. The

calculation formula of Rad-score is as follows:

Rad − score = 0:45348837209300424 − 0:069649* log _ sigma _ 4 _ 0 _mm_ 3D_ glcm _ Imc2

+0:021591* log _ sigma _ 4 _ 0 _mm_ 3D_ glszm _ SmallAreaLowGrayLevelEmphasis

+0:018396* log _ sigma _ 5 _ 0 _mm_ 3D_ gldm _ SmallDependenceLowGrayLevelEmphasis

+0:035346* log _ sigma _ 5 _ 0 _mm_ 3D_ glszm _ SmallAreaLowGrayLevelEmphasis

−0:038032*wavelet _HHH_ firstorder _Mean

−0:106451*wavelet _HHH_ firstorder _ RootMeanSquared

−0:055620*wavelet _ HHH_ firstorder _ Skewness
FIGURE 2

Workflow for building the radiomics model.
TABLE 1 Feature extraction and classification.

Feature Type Subtype Number of Features

Firstorder – 234

Texture GLCM 286

GLDM 182

GLRLM 208

GLSZM 208

NGTDM 65

Shape – 14

Total – 1197
–, no value.
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3.2 Construction and diagnostic
performance comparison of radiomics
models

Radiomics models were constructed using eight different

classification algorithms. The AUC values for the training group

ranged from 0.807 to 1.000, while for the external validation group,

they ranged from 0.569 to 0.718. Among all the algorithms, the SVM

algorithm demonstrated the best diagnostic performance, with AUC

values of 0.892 and 0.718 for the training and external validation

groups, respectively (95% CI: 0.8413-0.9420, 0.6111-0.8246).

Furthermore, the SVM model showed excellent performance in both

the training and external validation groups, achieving better diagnostic

accuracy with sensitivity, specificity, and accuracy of 57.9%, 80.4%, and

71.3%, respectively. Detailed data can be found in Table 2; Figure 6

illustrates the accuracy of all models and the AUC values of each rad

signature model on the test set. The DCA demonstrated that the SVM

model yielded the high net benefit for predicting rectal cancer TB.
4 Discussion

Due to the heterogeneity of tumors, the clinical treatment

outcomes and prognosis of rectal cancer can vary significantly.
Frontiers in Oncology 06
Multiple studies have explored various prognostic factors for

tumors, such as histological type, infiltration pattern, differentiation

degree, MSI, Aquaporins (AQP-1) (4, 5) thrombus formation,

peripheral nerve invasion, tumor deposits, tumor budding, etc.

However, most of these factors are based on invasive pathological

reports and cannot be identified macroscopically. It poses a great

challenge to non-invasive examination methods to determine the

pathological prognostic factors of tumors before surgery. The

emergence of new technologies like radiomics have provided

possibilities in this regard. Many scholars have conducted value

assessments of preoperative diagnosis of pathological prognostic

factors using radiomics. For example, Li et al. found that a multi-

modal MRI radiomics model can predict MSI in rectal cancer

preoperatively (AUC values of 0.78 in both the training and

validation sets) (31). Chen et al. found that a radiomics model and

its nomogram can improve the predictive efficiency of AQP-1

overexpression (AUC values above 0.80 in both the training and

validation sets) (32).

As a novel tumor prognostic factor, TB is gradually being

recognized for its importance in personalized cancer treatment

management. High levels of TB are considered significantly

associated with adverse outcomes in patients (10, 33). The AJCC/

UICC Cancer Staging Guidelines have included TB as an additional

prognostic factor for rectal cancer (8, 9).
FIGURE 3

Number and ratio of handcrafted features.
A B

FIGURE 4

(A) The coefficient analysis of LASSO feature selection under 10-fold cross-validation, (B) MSE of 10 fold cross validation.
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Currently, there are few reported studies on the preoperative

non-invasive assessment of TB grading. Chen et al. utilized b-value

threshold maps and ADC maps to evaluate the preoperative

predictive value of TB grading and found that b-value threshold

maps performed better than ADC values in assessing TB grading

(34). However, b-value threshold maps are not part of the routine

MRI imaging sequence, and their image resolution is inferior to

T2WI sequences. Due to their status as special sequences, their

application is limited. Li et al. developed a radiomics model based

on MR plain and enhanced scans to predict TB grading, with an

AUC value of 0.79625, demonstrating the feasibility of radiomics in

preoperative TB grading prediction. However, in clinical practice,
Frontiers in Oncology 07
the model’s applicability is somewhat limited by the inability of

some patients to undergo the complete sequence acquisition due to

issues such as examination costs, contrast agent allergies, and

impaired renal function.

The T2WI sequence, as a routine sequence in MRI

examinations, not only provides clearer visualization of lesion

details compared to b-value threshold maps but also has lower

scanning costs compared to dynamic contrast-enhanced sequences.

It does not require consideration of factors such as impaired renal

function or contrast agent allergies, making it more clinically

applicable. Moreover, radiomics models can identify pathological

features that are indistinguishable to the naked eye through
FIGURE 5

The histogram of the Rad-score based on the selected features.
TABLE 2 Performance of machine learning classifiers for predicting TB status.

Model
name Task Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

LR train 0.756 0.807 0.7423 - 0.8720 0.756 0.755 0.720 0.789

LR test 0.638 0.694 0.5840 - 0.8041 0.789 0.545 0.536 0.789

SVM train 0.826 0.892 0.8413 - 0.9420 0.949 0.723 0.740 0.944

SVM test 0.713 0.718 0.6111 - 0.8246 0.579 0.804 0.667 0.738

KNN train 0.750 0.841 0.7863 - 0.8962 0.731 0.766 0.722 0.774

KNN test 0.649 0.596 0.4796 - 0.7126 0.316 0.925 0.632 0.653

RF train 0.994 0.999 0.9969 - 1.0000 1.000 0.989 0.987 1.000

RF test 0.596 0.625 0.5102 - 0.7408 0.605 0.600 0.500 0.687

ET train 1.000 1.000 1.0000 - 1.0000 1.000 1.000 1.000 1.000

ET test 0.585 0.652 0.5413 - 0.7618 0.789 0.455 0.492 0.758

XGBoost train 1.000 1.000 1.0000 - 1.0000 1.000 1.000 1.000 1.000

XGBoost test 0.553 0.596 0.4810 - 0.7116 0.842 0.364 0.471 0.769

LightGBM train 0.849 0.908 0.8653 - 0.9511 0.859 0.840 0.817 0.878

LightGBM test 0.660 0.569 0.4496 - 0.6886 0.289 0.911 0.687 0.654

MLP train 0.762 0.828 0.7674 - 0.8889 0.872 0.670 0.687 0.863

MLP test 0.670 0.710 0.6029 - 0.8173 0.789 0.600 0.566 0.805
frontie
AUC, area under curve, CI, confidence interval, PPV, positive predictive value, NPV, negative predictive value, RF, RandomForest, ET, ExtraTrees.
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complex machine algorithms. Therefore, this study is based on the

T2WI sequence and utilizes various machine learning methods to

explore the optimal radiomics model for predicting tumor budding.

This research aims to provide effective assistance in developing

appropriate treatment plans and improving patient prognosis.

In this study, we established multiple radiomics predictive models

based on T2WI and found that the SVM model exhibited a higher

AUC value in predicting TB in rectal cancer. This indicates that the

predictive model has good accuracy and stability. As a non-invasive

examination method, it can provide assistance in preoperative

treatment planning and prognosis assessment, contributing to

personalized medical management for rectal cancer patients. The

accuracy, sensitivity, and specificity of this model in the training

group were 0.826, 0.949, and 0.723, respectively. In the validation

group, these values were 0.713, 0.579, and 0.804, respectively. The

model showed relatively lower sensitivity but higher specificity and

accuracy, which may be attributed to the limited number of high-grade

TB samples in the external validation group. In our research, we aimed

to enhance the model’s credibility by selecting an external validation

group while choosing radiomics verification methods. We then

screened out 11 key features and constructed a radiomics model for

predicting TB grading. Among these features, texture features were the

most abundant (8/11), which is related to the arrangement and

distribution patterns of medical image pixels. In MR images, the

differences in tissue composition and internal tumor structures

provide more detailed variations in local texture features.This is also
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one of the reasons for using a large number of texture features.

Moreover, texture features encompass various types, including

GLCM, NGTDM,GLDM, etc. Multiple methods can be employed

during feature extraction to obtain different types of texture features,

which enhances prediction accuracy. By calculating all key features

using eight algorithms, we found that the SVM algorithm yielded the

highest diagnostic performance in the constructed predictive model

(AUC=0.718). This may be due to the ability of the SVM algorithm to

avoid overfitting issues to some extent, as it demonstrates robustness,

stability, and good generalization ability, which are advantageous for

high-dimensional data. The results of this study indicate that the

radiomics model based on T2WI can accurately predict TB grading

in rectal cancer, which is consistent with the findings of Li et al. (25).

This could be attributed to the ability of radiomics to quantitatively

analyze and link TB grading with the extracted image features, thus

capturing the tumor heterogeneity factor that is indistinguishable to the

naked eye through complex computational methods (35, 36).

No clinically significant risk factors related to TB grading (p>0.05)

were found in this study, which is consistent with the conclusions of

most studies (7, 34, 37). However, there is controversy surrounding

these results, and one study has indicated that age is a clinical risk

factor11. This discrepancy may be attributed to differences in the

sampled population and sample size that could be collected.

The DCA indicates that the SVM model has the highest net

clinical benefit, suggesting that the radiomics model developed may

help in the formulation of personalized treatment management plans
A B

C

FIGURE 6

(A) Comparison of accuracy among all models. (B) ROC analysis of different models on the validation set. (C) The decision curve of the SVM model. The
y-axis represents standardized net benefit. The blue curve represents the radiomics model. The black curve represents the hypothetical scenario where
all patients are successfully predicted. The black dashed line represents the hypothetical scenario where no patients are successfully predicted.
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for patients. This finding is similar to the results of Li et al., who used

a radiomics model based on multimodal MRI to predict tumor

budding in locally advanced rectal cancer (25). Both studies utilized

MRI-based radiomics models to predict tumor heterogeneity factors

that cannot be identified by the naked eye. Furthermore, both studies

demonstrated that the models can predict the TB grade. This may be

attributed to the fact that radiomics models are based on medical

imaging examinations, which provide digitized features of the

tumor’s location. These models can identify tumor characteristics

beyond the range of visual observation and imperceptible to the

naked eye, and utilize machine learning algorithms to analyze, model,

and predict these digitized features, thereby revealing the

comprehensive situation of tumor growth and spread.

This study still has limitations. Firstly, as a retrospective study, it

only included patients with rectal cancer who underwent curative

surgery and had postoperative pathology indicating adenocarcinoma,

resulting in selection bias. Secondly, there was sample bias, with a

limited number of high-grade TB samples in the external validation

group, leading to lower sensitivity. In future studies, it is necessary to

increase the sample size. Thirdly, the area of interest was manually

delineated, and subjective factors in the delineation process may have

had some impact on the analysis, leading to subjective errors in the

results. Fourthly, In terms of image segmentation, we devised our

own exclusion criteria based on our experience regarding whether

nodules closely connected to the tumor should be excluded as lymph

node metastases. Although this exclusion criterion may not be

completely rational, it improves the reproducibility in image

segmentation. Fifthly,bowel preparation was not performed, which

may have affected the quality and accuracy of the images.

In conclusion, our preliminary study suggests that the radiomics

model based on T2WI can improve the preoperative prediction of

tumor budding grading in rectal cancer and provide valuable

reference for individualized treatment planning in clinical practice.
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