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Radiomic nomogram for
discriminating parotid
pleomorphic adenoma from
parotid adenolymphoma based
on grayscale ultrasonography
Yi Mao1†, LiPing Jiang1†, Jing-Ling Wang1, Fang-Qun Chen1,
Wie-Ping Zhang1, Zhi-Xing Liu1,2*‡ and Chen Li1*‡

1Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University,
Nanchang, Jiangxi, China, 2Department of Ultrasound, GanJiang New District Peoples Hospital,
Nanchang, Jiangxi, China
Objectives: To differentiate parotid pleomorphic adenoma (PA) from

adenolymphoma (AL) using radiomics of grayscale ultrasonography in

combination with clinical features.

Methods: This retrospective study aimed to analyze the clinical and radiographic

characteristics of 162 cases from December 2019 to March 2023. The study

population consisted of a training cohort of 113 patients and a validation cohort

of 49 patients. Grayscale ultrasonography was processed using ITP-Snap

software and Python to delineate regions of interest (ROIs) and extract

radiomic features. Univariate analysis, Spearman’s correlation, greedy recursive

elimination strategy, and least absolute shrinkage and selection operator (LASSO)

correlation were employed to select relevant radiographic features.

Subsequently, eight machine learning methods (LR, SVM, KNN, RandomForest,

ExtraTrees, XGBoost, LightGBM, and MLP) were employed to build a quantitative

radiomic model using the selected features. A radiomic nomogram was

developed through the utilization of multivariate logistic regression analysis,

integrating both clinical and radiomic data. The accuracy of the nomogram

was assessed using receiver operating characteristic (ROC) curve analysis,

calibration, decision curve analysis (DCA), and the Hosmer–Lemeshow test.

Results: To differentiate PA from AL, the radiomic model using SVM showed

optimal discriminatory ability (accuracy = 0.929 and 0.857, sensitivity = 0.946 and

0.800, specificity = 0.921 and 0.897, positive predictive value = 0.854 and 0.842,

and negative predictive value = 0.972 and 0.867 in the training and validation

cohorts, respectively). A nomogram incorporating rad-Signature and clinical

features achieved an area under the ROC curve (AUC) of 0.983 (95% confidence

interval [CI]: 0.965–1) and 0.910 (95% CI: 0.830–0.990) in the training and

validation cohorts, respectively. Decision curve analysis showed that the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1268789/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1268789/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1268789/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1268789/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1268789/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1268789&domain=pdf&date_stamp=2024-01-11
mailto:1214582369@qq.com
mailto:1727237899@qq.com
https://doi.org/10.3389/fonc.2023.1268789
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1268789
https://www.frontiersin.org/journals/oncology


Mao et al. 10.3389/fonc.2023.1268789

Frontiers in Oncology
nomogram and radiomic model outperformed the clinical-factor model in terms

of clinical usefulness.

Conclusion: A nomogram based on grayscale ultrasonic radiomics and clinical

features served as a non-invasive tool capable of differentiating PA and AL.
KEYWORDS

ultrasonography, radiomics, parotid tumor, nomogram, wavelet transformation
Introduction

Parotid gland tumors are the most common type of salivary

gland tumors, with approximately 80%–85% of them being benign.

The primary types of these tumors are pleomorphic adenoma (PA)

and adenolymphoma (AL) (1), and both of them share similar

characteristics, such as slow growth, painlessness, and well-defined

borders. However, differentiations between PA and AL are crucial

for clinical diagnosis and treatment. On radiological examinations,

AL shows more heterogeneous density and signal compared to PA,

often accompanied by multiple small cystic changes and increased

blood flow (2). PA is more likely to occur in the deep regions of the

parotid gland, typically presenting as lobulated, with a higher risk of

malignant transformation and recurrence (3). Therefore, PA usually

requires a tumor and superficial parotidectomy, along with facial

nerve dissection. AL, however, typically only requires partial

parotidectomy. However, in PA cases, tumor cells can be detected

at the resection margins in 41.9% of cases (4). This could be one of

the reasons why PA is more prone to relapse. To distinguish

between the two types of parotid gland tumors at an early stage, a

fine-needle aspiration biopsy (FNAB) is commonly used as an

auxiliary diagnostic tool (5). It has high accuracy in the diagnosis

of both benign and malignant tumors. However, FNAB is an

invasive procedure and carries the risk of needle-track seeding

and facial nerve palsy (6).

Ultrasonic examinations can reflect differences in signal

scattering and speckling patterns, which correlate with variations

in parotid gland morphology and increasing tissue stiffness (2).

Compared to FNAB, grayscale ultrasonic examination is a non-

invasive, cost-effective, and user-friendly imaging technique.

However, differentiating between PA and AL using grayscale

ultrasonic examination can be challenging for sonographers.

Some morphological features, long-to-short diameter ratio (L/S)

ratio, and ultrasonographic shear wave elastography have limited

utility in distinguishing between the two types (7, 8). Therefore,

visible differences discernible by the naked eye do not significantly

improve the diagnostic accuracy of medical imaging.

Radiomics is a rapidly growing discipline that utilizes machine

learning to extract quantitative information from medical images
02
like CT, MR, US, and predict outcomes in cancer research (9–11).

For head and neck tumors, radiomic features from T2-weighted MR

imaging (T2WI) and contrast-enhanced T1-weighted MR imaging

(CE-T1WI) can predict cancer staging pre-operatively (12).

Additionally, radiomic features from CT and PET scans can

accurately determine if oropharyngeal squamous cell carcinoma is

infected with the HPV (P16) virus (13). Radiomics has also shown

success in assessing early treatment effects (14) and radiotherapy

complications in nasopharyngeal cancer (15). In summary,

radiomic analysis of various medical imaging modalities holds

potential for improving diagnosis, prognosis, and personalized

treatment of head and neck cancers.

Wavelet transformation is created via dilatation and translation

of the mother wavelet (16). These modifications provide a spatial/

frequency representation of the signal, indicating that the wavelet

coefficients act as a projection of the original signal onto a multi-

resolution subspace. The high-pass filter also draws attention to the

grayscale changes in the image, improving the presentation of

image details and texture information. The low-pass filter,

however, blurs the differences in grayscale, obscuring the finer

details of the image and emphasizing its main characteristics (17).

The radiomic model’s texture features can be separated further.

Studies have shown that, compared to the original radiomics,

wavelet-transformed radiomics perform better in assessing

COVID-19 lung lesions (18).

The purpose of our study is to investigate whether radiology

based on grayscale ultrasonography can distinguish PA and AL and

whether the nomogram combined with clinical and radiological

features can facilitate and accurately help to distinguish these two

benign tumors.
Materials and methods

Ethics statement

This study adhered to the principles outlined in the Declaration

of Helsinki and received approval from the local ethics review board.

Written, informed consent was obtained from all participants.
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Selection of participants

We retrospectively analyzed patients with parotid tumors

undergoing grayscale ultrasonic examination at the local hospital

from December 2019 to March 2023. The inclusion criteria were as

follows: 1) preoperative two-dimensional ultrasonography

confirmed the presence of a parotid tumor. 2) A postoperative

histopathological examination confirmed the diagnosis of PA and

AL. 3) There was no history of fine-needle aspiration (FNA),

radiotherapy, or other treatments. 4) Complete clinical and data

records were available. 5) A preoperative ultrasound examination

was performed within 1 week. The exclusion criteria were as

follows: 1) the maximum diameter of the tumor was less than

1 cm; 2) the images were not clear, with incomplete visualization of

the tumor and significant artifacts; 3) the concurrent presence of

other organ tumors.
Ultrasonography procedures

The bilateral parotid glands were scanned using high-end

ultrasound diagnostic equipment such as Siemens ACUson

Sequoia, GE LOGIQ E11, and Philips EPIQ 7. A high-frequency

linear array probe was used for the examination. The maximum

diameter of the parotid gland masses was saved in the machine’s

memory in a cross-sectional view and exported in DICOM format

for subsequent analysis.
Image segmentation

All ultrasound images were imported into the ITK-SNAP

(http://www.itksnap.org) software. Two ultrasound physicians

with 6 years of experience in the field delineated the tumor

margins by carefully outlining them and selecting the maximum

section of the tumor to delineate a region of interest (ROI). The

delineation was subsequently reviewed and approved by a senior

physician. In case of any disagreements, a group discussion was held

to reach a consensus.
Feature extraction

The images and ROIs extracted from the ITK-SNAP software

were imported into Python (version 3.11) for further analysis.

Handcrafted features were extracted using an in-house feature

analysis program implemented in Pyradiomics (https://

pyradiomics.readthedocs.io). These features can be categorized into

three groups: I) geometry, II) intensity, and III) texture. There were

14 geometry features, 306 intensity features, and 1,241 texture

features comprised of the Gray Level Co-Occurrence Matrix

(GLCM), Gray Level Dependence Matrix (GLDM), Gray Level Run

Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

and Neighborhood Gray Tone Difference Matrix (NGTDM).

The ROIs were delineated by two sonographers, and the

interobserver agreement was evaluated using the interclass
Frontiers in Oncology 03
correlation coefficient (ICC) analysis. ICC values higher than 0.75

were considered to have good consistency and were selected for

further analysis. Patients were randomly divided into two cohorts

with a ratio of 7:3 for training and validation purposes, respectively.
Feature selection

After applying z-score normalization, the t-test and Mann–

Whitney U test were performed on all radiomic features. Only

features with a p-value <0.05 were retained. For features exhibiting

high repeatability, Spearman’s rank correlation coefficient was used

to assess the correlation between features. If the correlation

coefficient between any two features exceeded 0.9, only one of

them was retained.

To identify the optimal feature subset, the least absolute

shrinkage and selection operator (LASSO) (19) algorithm was

employed. LASSO shrinks all regression coefficients toward zero

and sets the coefficients of irrelevant features to exactly zero. A 10-

fold cross-validation with minimum criteria was used to determine

the optimal lambda (l) value, which yielded the lowest cross-

validation error.
Model construction and validation

Radiomic and clinical models
After performing LASSO feature screening, the final selected

features were input into machine learning models such as LR, SVM,

RandomForest, and XGBoost. The coefficients of the features were

used to calculate a radiomic quality signature (rad-Signature).

Clinical features used for building the same machine learning

models were selected based on a baseline statistic with a

p-value <0.05.

Radiomic nomogram
A radiomic nomogram was developed by combining the

radiomic signature and clinical features. The diagnostic efficacy of

the radiomic nomogram was tested in the validation cohort, and

receiver operating characteristic (ROC) curves were plotted to

evaluate its diagnostic performance. Calibration curves were used

to evaluate the calibration efficiency of the nomogram, and the

Hosmer–Lemeshow analytical fit was employed to assess its

calibration ability. Additionally, decision curve analysis (DCA)

was used to evaluate the clinical utility of the predictive models.
Statistical analyses

Statistical analysis of the data was performed using SPSS 26.0

and Python 3.11. Continuous variables are presented as mean ±

standard deviation, while categorical variables are reported as

counts (n). The independent samples t-test was used to analyze

clinical data, and the chi-square test was applied for categorical

variables. A significance level of p < 0.05 was considered

statistically significant.
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Results

Clinical characteristics

The flowchart depicting the process of patient selection is

presented in Figure 1. Table 1 displays the clinical and imaging

data of the 162 patients included in this study. Out of the total, 105

were confirmed to have PA, and 57 were diagnosed with adenoid

cystic carcinoma (AL). The clinical characteristics of all 162 subjects

are summarized in Table 1. In the PA group, the average age was

43.49 ± 15.67 years, with a male-to-female gender ratio of 0.91:1.

Among the AL patients, the average age was 61.50 ± 10.08 years,

and the male-to-female gender ratio was 10.5:1.

The 162 subjects were randomly divided into training and

validation cohorts in a 7:3 ratio. Therefore, the training cohort

comprised 113 cases (76 PA and 37 AL), while the remaining 49

patients (29 PA and 20 AL) were assigned to the validation cohort.

There were no significant differences in clinical features between the

training and validation cohorts (p-value <0.05).
Feature selection, model construction,
and validation

The course of processing radiomics is shown in Figure 2. From

the grayscale ultrasonography for each participant, 1,561 radiomics

were extracted; 294 features were selected after univariate analysis
Frontiers in Oncology 04
and ICC; and70 features were retained after being filtered using

Spearman’s correlation (Figure 3; Spearman’s correlation of each

feature). The radiomic feature selection was performed using

LASSO logistic regression, resulting in 18 selected radiomic

features. The coefficients and mean standard error (MSE) from

the 10-fold validation are presented in Figure 4. These features were

utilized to construct the radiomic signature. The final formula for

calculating rad-Signature and the corresponding coefficients is

depicted in Figure 5.
Nomogram performance and validation

The model constructed using clinical features such as age,

maximum diameter, and smoking status showed good predictive

performance (accuracy = 0.850 and 0.776, sensitivity = 0.811 and

0.950, specificity = 0.868 and 0.679, positive predictive value = 0.750

and 0.655, and negative predictive value = 0.904 and 0.950 in the

training and validation cohorts, respectively). Similarly, the

imaging-based radiomic features (Table 2), especially the SVM

model, demonstrated excellent predictive performance (accuracy

= 0.929 and 0.857, sensitivity = 0.946 and 0.800, specificity = 0.921

and 0.897, positive predictive value = 0.854 and 0.842, and negative

predictive value = 0.972 and 0.867 in the training and validation

cohorts, respectively). Furthermore, incorporating the results of the

radiomic model into the clinical model improved the predictive

performance of the combined model (accuracy = 0.947 and 0.857,
FIGURE 1

The flowchart of the patient selection process.
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sensitivity = 1 and 0.950, specificity = 0.921 and 0.931, positive

predictive value = 0.860 and 0.882, and negative predictive value = 1

and 0.844 in the training and validation cohorts, respectively). The

performance comparison of the three models is presented in Table 3

and Figure 6 (DeLong test, p < 0.005 for the training and validation

cohorts). A nomogram combining clinical features and rad-

Signature was developed (Figure 6), and its calibration curve

demonstrated consistent predictive and observed effects in both

the training and validation cohorts.

To assess the calibration ability of the developed nomogram, the

Hosmer–Lemeshow test (20) was employed. The results indicated a

good model fit (p-value >0.05), suggesting that the nomogram

accurately captured the observed data and that there was no
Frontiers in Oncology 05
significant difference between the predicted and observed

outcomes. The DCA of the nomogram is depicted in Figure 6F.

Furthermore, the DCA of the nomogram demonstrated a larger

area under the curve compared to the clinical model. This indicates

that both the nomogram and radiomic model have a greater net

benefit in distinguishing between PA and AL.
Discussion

In this study, we utilized radiomic features extracted from grayscale

ultrasonography to assist in the early preoperative differentiation of two

benign tumors, PA and AL, with the goal of aiding clinicians in selecting
TABLE 1 Patient’s characteristics at baseline.

Feature name
Train PA AL p-Value Test PA AL p-Value

Age 49.17 ± 16.74 42.82 ± 15.40 62.22 ± 10.87 <0.001 50.86 ± 16.16 44.28 ± 17.12 60.40 ± 8.10 <0.001

Max D 25.04 ± 9.33 23.30 ± 8.94 28.62 ± 9.21 0.004009086 25.88 ± 8.35 22.38 ± 7.51 30.95 ± 6.88 <0.001

Sex <0.001 0.001820478

Male subjects 67 (59.29) 33 (43.42) 34 (91.89) 33 (67.35) 14 (48.28) 19 (95.00)

Female subjects 46 (40.71) 43 (56.58) 3 (8.11) 16 (32.65) 15 (51.72) 1 (5.00)

Smoking <0.001 <0.001

No 77 (68.14) 63 (82.89) 14 (37.84) 29 (59.18) 24 (82.76) 5 (25.00)

Yes 36 (31.86) 13 (17.11) 23 (62.16) 20 (40.82) 5 (17.24) 15 (75.00)

Number <0.001 0.013690557

Single 93 (82.30) 70 (92.11) 23 (62.16) 39 (79.59) 27 (93.10) 12 (60.00)

Multiple 20 (17.70) 6 (7.89) 14 (37.84) 10 (20.41) 2 (6.90) 8 (40.00)

Position 0.629061941 0.842154851

Right 62 (54.87) 40 (52.63) 22 (59.46) 29 (59.18) 18 (62.07) 11 (55.00)

Left 51 (45.13) 36 (47.37) 15 (40.54) 20 (40.82) 11 (37.93) 9 (45.00)
PA, parotid pleomorphic adenoma; AL, adenolymphoma.
FIGURE 2

The flowchart detailing the radiomic processing steps employed in this study. The collected images were exported to ITK software for region of
interest (ROI) delineation and image segmentation. Ultrasound radiomics were then extracted using Python software. Models were developed based
on the clinical features of patients with pleomorphic adenoma (PA) or adenoid cystic carcinoma (AL). The models underwent calibration and
validation processes to evaluate their performance.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1268789
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Mao et al. 10.3389/fonc.2023.1268789
appropriate diagnostic and treatment approaches. Previous studies have

demonstrated that there are important differences between PA and AL

in terms of clinical features and traditional parameters, including

smoking history, age, and the presence of multiple lesions (15).

However, the effectiveness of these factors in a comprehensive

analysis is inconsistent, with varying areas under the ROC curve

(AUC) values ranging from 0.68 to 0.95, leading to significant

uncertainty in clinical diagnosis and treatment. Additionally, common

ultrasound features such as the L/S and ultrasound grayscale ratio
Frontiers in Oncology 06
(UGSR) have also shown poor performance (AUC = 0.74) (7). In

contrast, the radiomic SVM-based model that we constructed has

demonstrated excellent performance in distinguishing between PA

from AL, with AUC values of 0.956 in the training cohort and 0.903

in the validation cohort. Additionally, other models in our study have

also demonstrated good performance in distinguishing between the two

types of tumors, but for the RandomForest, ExtraTrees, and XGBoost

models, there are significant differences in AUC between the training

and validation cohorts, indicating overfitting of the models (11, 21).
FIGURE 4

The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection. In the LASSO model, a 10-fold cross-
validation approach was utilized to determine the optimal tuning parameter (l). The minimum criterion was used to select the best values, and
vertical lines were drawn to indicate the true selection points. Additionally, a 10-fold cross-validation was performed to identify the selected value in
the l sequence, resulting in 18 features with non-zero coefficients.
FIGURE 3

Statistics of radiomic features.
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However, it is important to note that models with a large number of

input parameters or high degrees of freedom may have a tendency to

overfit the data by memorizing it. Consequently, when analyzing the

features, the model may react to random fluctuations in the data, which

is undesirable in accurate feature analysis.

Ultrasound images displaying both PA and AL appear on

ultrasound as localized enlargements of the salivary gland with

regular morphology and well-defined borders, presenting as well-

circumscribed hypoechoic masses. Matsuda (22) indicated that

63.2% of PA cases belonged to the category of no anechoic area

homogeneous tumors, while 53.3% of AL cases were classified as
Frontiers in Oncology 07
multiple and sponge-like anechoic area heterogeneous tumors.

However, Jiang (23) and Rong (2) believed that there were no

statistically significant differences observed in the sonographic

features of boundaries, echo pattern, homogeneity, calcification,

and distal acoustic enhancement between PA and AL. We believe

that this discrepancy is only related to the number of samples.

However, it is undeniable that AL is more susceptible to infection

and cystic degeneration, characterized by a loose tissue texture with

numerous small cysts that create echo-free areas. In this study, most

of the features used for modeling were obtained through wavelet

transformation, revealing more layered variation and information
FIGURE 5

The histogram of the rad-Signature based on the selected features.
TABLE 2 Performance contributions of various radiological classifier models in classification.

Model name Cohort ACC AUC 95% CI SEN SPE PPV NPV Precision Recall F1 Threshold

LR
Train 0.858 0.898 0.838, −0.958 0.730 0.921 0.818 0.875 0.818 0.730 0.771 0.417

Validation 0.878 0.936 0.870, −1 1 0.793 0.769 1 0.769 1 0.870 0.181

SVM
Train 0.929 0.956 0.909, −1 0.946 0.921 0.854 0.972 0.854 0.946 0.897 0.230

Validation 0.857 0.903 0.818, −0.989 0.800 0.897 0.842 0.867 0.842 0.800 0.821 0.420

KNN
Train 0.814 0.895 0.840, −0.951 0.784 0.829 0.690 0.887 0.690 0.784 0.734 0.400

Validation 0.776 0.863 0.764, −0.962 0.800 0.786 0.696 0.846 0.696 0.800 0.744 0.400

RandomForest
Train 1 1 1, −1 1 1 1 1 1 1 1 0.500

Validation 0.714 0.791 0.661, −0.920 0.850 0.621 0.607 0.857 0.607 0.850 0.708 0.300

ExtraTrees
Train 1 1 1, −1 1 1 1 1 1 1 1 1

Validation 0.816 0.849 0.741, −0.957 0.850 0.793 0.739 0.885 0.739 0.850 0.791 0.400

XGBoost
Train 1 1 1, −1 1 1 1 1 1 1 1 0.539

Validation 0.857 0.893 0.795, −0.992 0.750 0.931 0.882 0.844 0.882 0.750 0.811 0.384

LightGBM
Train 0.920 0.977 0.957, −0.998 0.973 0.895 0.818 0.986 0.818 0.973 0.889 0.314

Validation 0.857 0.902 0.819, −0.985 0.700 0.966 0.933 0.824 0.933 0.700 0.800 0.443

MLP
Train 0.862 0.923 0.877, −0.969 0.804 0.893 0.804 0.893 0.804 0.804 0.804 0.392

Validation 0.875 0.861 0.716, −1 0.818 0.950 0.818 0.905 0.818 0.818 0.818 0.491
ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
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FIGURE 6

(A) Receiver operating characteristic (ROC) curves of the eight classifier models on the validation cohort. (B, C) ROC charts of clinical and radiomic
models and nomogram performance on the training and validation cohorts. (D, E) Calibration curves of clinical and radiomic models and nomogram
performance on the training and validation cohorts. (F) Decision curve analysis (DCA) of clinical and radiomic models and nomogram performance
on the training and validation cohorts. (G) Nomogram for clinical features combined with Rad-Signature.
TABLE 3 Performance contributions of three different models in classification.

Cohort Signature ACC AUC 95% CI SEN SPE PPV NPV Precision Recall F1 Threshold

Train

Clinic 0.850 0.853 0.774, −0.931 0.811 0.868 0.750 0.904 0.750 0.811 0.779 0.370

Rad 0.929 0.956 0.909, −1 0.946 0.921 0.854 0.972 0.854 0.946 0.897 0.230

Nomogram 0.947 0.983 0.965, −1 1 0.921 0.860 1 0.860 1 0.925 0.277

Validation

Clinic 0.776 0.812 0.690, −0.934 0.950 0.679 0.655 0.950 0.655 0.950 0.776 0.194

Rad 0.857 0.903 0.818, −0.989 0.800 0.897 0.842 0.867 0.842 0.800 0.821 0.420

Nomogram 0.857 0.910 0.830, −0.990 0.750 0.931 0.882 0.844 0.882 0.750 0.811 0.440
F
rontiers in On
cology
 08
ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating characteristic curve.
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content in these feature maps. Among the 18 features used to

construct the radiomic model, the most influential feature is

wavelet_LHH_glrlm_LongRunHighGrayLevelEmphasis, which

describes the texture feature of long and high gray-level runs in

the image. A higher value indicates the presence of longer and

higher gray-level continuous texture features in the image (24). In

our study, the feature value PA > AL can be seen in both the training

and validation cohorts (Appendix 1, the average feature values of 18

modeling features in the training and validation sets). We believe

that the characteristic of cystic lesions in AL results in a lower value

of this feature compared to PA.

Previous studies have shown that radiomic research using CT

and MR images performs well in differentiating PA and AL. Zheng

(25) gathered 76 instances of PA and 34 cases of AL and built a

model based on CT images with an AUC of 0.89 and an accuracy of

83.3%. Song (26) built a T1-2WI model based on MR images with

an AUC of 0.90 and an accuracy of 86% after collecting 140

instances of PA and 112 cases of AL. The mutual information

(MI) feature model that Fruehwald-Pallamar et al. (27) developed

using CE-T1WI pictures had an accuracy of 81.8%. She gathered 13

cases of PA and 11 cases of AL. Similarly, Piludu et al. (28) enrolled

35 parotid PA and 20 AL to construct an SVM model using T2WI

and ADC pictures, which was successful with an accuracy of 91.7%.

Additionally, according to their studies, AL and PA could possibly

be distinguished from one another on T1WI, T2WI, and ADC

images by the characteristics of AL’s cystic components.

Our study still established and validated a novel prognostic

model using a nomogram-based approach to differentiate between

PA and AL. The nomogram, as a predictive statistical model, not

only provides a visual display of the relevant indicators influencing

the outcomes in multiple regression analysis but also enables a

simple graphical representation to predict survival probability,

making the prediction simpler and more convenient (29, 30). We

combined clinical features and rad-Signature and utilized a

nomogram for prediction. The results showed that in both the

training and validation cohorts, the AUC was higher than that of

the single model. However, in the validation cohort, the specificity

was 0.931 while the sensitivity was only 0.750, indicating high

accuracy in identifying AL patients. Therefore, this prognostic

model has certain clinical applicability. Zheng (25) developed and

validated a novel prognostic model using a nomogram-based

approach to differentiate between PA and AL. This model

incorporated the CT Rad-score and independent clinical factors.

The nomogram exhibited excellent discriminative performance,

with an AUC of 0.98 in the training cohort and 0.95 in the

validation cohort. However, when compared to the CT radiomic

model (with an AUC of 0.89 in both the training and validation

cohorts), the grayscale ultrasonography-based radiomic model in

this study demonstrates higher accuracy and stability.

Nevertheless, our study has several limitations that should be

noted. First, due to difficulties in disease epidemiology and obtaining

qualified patient images, the sample size was limited, and we did not

conduct an independent external validation. Future research should

involve a larger dataset for further investigation. Second, our radiomic

study only utilized conventional grayscale ultrasonography, which is

the most commonly used scanning method. In the future, we plan to
Frontiers in Oncology 09
incorporate more scanning technologies, such as Sound-Touch

Elastography (STE) and contrast-enhanced ultrasound, to construct a

multimodal radiomic model to further assist clinical diagnosis and

treatment. Third, all images in our study were obtained from a single

center. Therefore, we intend to include more types of devices and data

centers in future studies to establish a multicenter radiomic model.
Conclusion

Evaluating the imaging features of grayscale ultrasonography

can significantly improve the diagnostic ability of clinical indicators

for distinguishing between PA and AL. Based on this, the

construction of a nomogram combining radiological features with

clinical characteristics is also a highly accurate and non-invasive

tool for distinguishing these two benign tumors.
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