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Objectives: This study aimed to construct a radiomics nomogram and validate its

performance in the preoperative differentiation between early-stage (I and II) serous

borderline ovarian tumors (SBOTs) and serous malignant ovarian tumors (SMOTs).

Methods: Data were collected from 80 patients with early-stage SBOTs and 102

with early-stage SMOTs (training set: n = 127; validation set: n = 55). Univariate

and multivariate analyses were performed to identify the independent

clinicoradiological factors. A radiomics signature model was constructed using

radiomics features extracted from multidetector computed tomography images

of the venous phase, in which the least absolute shrinkage and selection operator

regression was employed to lessen the dimensionality of the data and choose the

radiomics features. A nomogram model was established by combining

independent clinicoradiological factors with the radiomics signature. The

performance of nomogram calibration, discrimination, and clinical usefulness

was evaluated using training and validation sets.

Results: In terms of clinicoradiological characteristics, age (p = 0.001), the

diameter of the solid component (p = 0.009), and human epididymis protein 4

level (p < 0.001) were identified as the independent risk factors of SMOT, for

which the area under the curves (AUCs) were calculated to be 0.850 and 0.836 in

the training and validation sets, respectively. Nine features were finally selected to

construct the radiomics signature model, which exhibited AUCs of 0.879 and

0.826 for the training and validation sets, respectively. The nomogram model

demonstrated considerable calibration and discrimination with AUCs of 0.940

and 0.909 for the training and validation sets, respectively. The nomogrammodel

displayed more prominent clinical usefulness than the clinicoradiological and

radiomics signature models according to the decision curve analysis.

Conclusions: The nomogram model can be employed as an individualized

preoperative non-invasive tool for differentiating early-stage SBOTs from SMOTs.
KEYWORDS

ovarian tumors, multidetector computed tomography, radiomics, nomogram,
preoperative differentiation
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Introduction

Epithelial ovarian tumors account for 60% of all ovarian tumors

and are common in women all over the world (1). Ovarian epithelial

tumors can be morphologically categorized into three types as

follows: benign, borderline, and malignant (2), with borderline

tumors accounting for 10%–15% of all primary ovarian tumors

(3, 4). Typically, compared with serous malignant ovarian tumors

(SMOTs), serous borderline ovarian tumors (SBOTs) have a better

prognosis, implying the vitality of early diagnosis and treatment.

Over the past decade, increasing efforts have been made to

differentiate between borderline ovarian tumors (BOTs) and

malignant ovarian tumors (MOTs) to modify the differential

diagnosis and allow for more timely and effective treatments.

Nougaret et al. (5) demonstrated the efficient differentiation of

SBOTs from low-grade SMOTs using multidetector computed

tomography (MDCT) features, such as peritoneal disease patterns

and solid tumor volumes. Furthermore, Grabowska-Derlatka et al.

(6) indicated that the morphological assessment of tumor

vascularity in MDCT is an efficient approach to distinguish BOTs

from MOTs. Previous studies demonstrated that BOTs can be

distinguished from MOTs by analyzing the apparent diffusion

coefficient of a solid tumor component using magnetic resonance

imaging (MRI) (7, 8). Differentiating BOTs from MOTs based on

imaging alone is generally difficult; thus, some studies have

attempted to predict BOTs using preoperative imaging and tumor

biomarkers. A previous study validated the superior performance of

combining MRI with serum cancer antigen 125 (CA125) for

differentiating between BOTs and MOTs (9). In our previous

study, age, vascular abnormalities, and largest solid portion were

independent factors distinguishing SBOTs from SMOTs (10).

Radiomics is an emerging translational research field that aims

to extract high-dimensional quantitative features from clinical

images and provide useful information (11). This approach has

been adopted in a variety of applications, including the prediction of

treatment response and outcome, tumor staging, tissue

identification, and cancer genetics assessment (12, 13). SBOTs

and SMOTs share similar clinical symptoms and imaging features

in their early stages, making differentiation between these two

entities difficult. We developed a nomogram combining clinical

characteristics, conventional imaging characteristics, and MDCT

radiomics features for preoperative differentiation between early-

stage SBOTs and SMOTs. As far as we know, it is the first

nomogram model established for preoperative differentiation

between early-stage SBOTs and SMOTs.
Abbreviations: SBOT, serous borderline ovarian tumor; SMOT, serous

malignant ovarian tumor; AUC, area under the receiver operator characteristic

curve; BOT, borderline ovarian tumor; MOT, malignant ovarian tumor; MDCT,

multidetector computed tomography; MRI, magnetic resonance imaging; CA125,

serum cancer antigen 125; HIS, hospital information system; FIGO, International

Federation of Gynecology and Obstetrics; AP, arterial phase; VP, venous phase;

EP, equilibrium phase; HE4, epididymis protein 4; ROI, region of interest;

LASSO, least absolute shrinkage and selection operator; ROC, receiver

operating characteristic; CI, confidence interval; DCA, decision curve analysis.
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Materials and methods

Patients

This retrospective study was conducted and approved by the

institutional review committee, with the requirement of informed

consent waived. Eighty SBOT patients (54 stage I and 26 stage II) and

102 SMOT patients (63 stage I and 39 stage II) from December 2017

to June 2020 were enrolled from our hospital information system

(HIS) database into this analysis. The inclusion criteria were as

follows: 1) histopathologically confirmed SBOTs and SMOTs after

surgery and 2) SBOTs and SMOTs diagnosed as stage I or II based on

the International Federation of Gynecology and Obstetrics (FIGO)

guideline. The exclusion criteria were 1) SBOTs and SMOTs of stage

III or IV according to the FIGO guideline, 2) patients that have

accepted preoperative therapy (radiotherapy, chemotherapy, or

chemoradiotherapy) before MDCT examination, and 3) incomplete

clinical data or poor imaging data. The cohort was divided into a

training set (127 patients) and a validation set (55 patients) according

to the examination date of MDCT, with the total process depicted

in Figure 1.
MDCT image acquisition

Pelvic MDCT images from five different CT scanners

[AquilionONE (Canon Medical Systems, Otawara, Japan),

Discovery CT750 HD (GE Medical Systems, Waukesha, WI,

USA), Optima CT670 (GE Medical Systems, Milwaukee WI,

USA), iCT 256 (Philips Medical System, Best, Netherlands),

SOMATOM Definition Flash (Siemens Medical Systems,

Forchheim, Germany)] were obtained with the following

parameters: 100–300 mA, 120 kV, pitch of 0.599–0.984, thickness

of 1–1.2 mm, and rotation time of 0.42–0.6 s. Iohexol (300 mg

iodine/mL) with 85–100 mL volume was administered into the vein

using a power injector at the speed of 2.0–3.0 mL/s. Then, the post-

contrast CT scans from the arterial phase (AP, 30 s), venous phase

(VP, 60 s), and equilibrium phase (EP, 90–120 s) were attained.
Clinicoradiological risk factors

The clinical characteristics of age, CA125 level (≤50 U/mL; >50

U/mL) (9), and human epididymis protein 4 (HE4) level (≤150

pmol/L; >150 pmol/L) (14) derived from medical records were

recorded in the HIS. The imaging was viewed separately and

independently by two radiologists in abdominal diagnosis, with 8

and 9 years of experience who were blinded to the clinical variables

and pathological diagnosis. The following data of conventional

imaging characteristics were recorded: the diameter of the tumor

on the axial MDCT image, the diameter of the solid component on

the axial MDCT image, location (unilateral or bilateral), texture

(predominantly cystic or solid), margins (smooth or irregular),

ascites (present or absent), and vascular abnormality (present or

absent; vascular abnormality was defined as the presence of no less

than one of the following situations: a) chaotic or serpentine course

of the vessel, b) microaneurysm, and c) arteriovenous fistula).
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MDCT radiomics analysis

The radiomics analysis methodology was carried out as

described in a previous paper (15). In brief, regions of interest

(ROIs) were manually segmented with 3D slicer, a free open-source

software (https://www.slicer.org/). Afterward, 7 categories and

1,167 radiomics features were extracted with the “radiomics”

package of the 3D slicer.

All radiomics features extracted from MDCT of VP were

normalized. Significant radiomics features in the training set were

selected applying interclass correlation coefficient and least absolute

shrinkage and selection operator (LASSO) regression. A radiomics

score (Rad-score) of each patient was calculated by means of a

linear combination of the chosen features weighted by

their coefficients.
Construction of the differentiation models

Three models were constructed by multivariate logistic

regression analysis: the clinicoradiological model by prominent

clinical characteristics and conventional imaging characteristics,

the radiomics signature model by the selected radiomics features,

and the nomogram model by the independent clinicoradiological

risk factors combined with the radiomics signature.
Evaluation and validation of the
different models

The evaluation of calibration of the nomogram model was

conducted in the training and validation sets using the Hosmer–

Lemeshow goodness-of-fit test. The performance of the three

models in diagnosis was evaluated in the training set and

validated in the validation set by plotting the receiver operating
Frontiers in Oncology 03
characteristic (ROC) curve and calculating the area under the ROC

curve (AUC) and the multiple comparison of AUC curves using the

DeLong test on Bonferroni-adjusted p-values. The AUC with 95%

confidence interval (CI), sensitivity, and specificity was calculated.

Decision curve analysis (DCA) was performed according to net

benefits and the corresponding threshold probabilities in the

training and validation sets, to assess the clinical application of

the nomogram model. Our study workflow diagram is shown

in Figure 2.
Statistical analysis

All statistical analyses were carried out on SPSS (version 20,

Chicago, IL, USA) and R (https://www.r-project.org/). Statistical

significance was defined as p <0.05.
Results

Patient characteristics

The clinicoradiological characteristics of all patients in the

training and validation sets are provided in Table 1. SBOTs and

SMOTs exhibited significant differences in age, HE4 level, location,

texture, margins, vascular abnormalities, and the diameter of the

solid component (p < 0.05), while there were no significant

differences in CA125 level, ascites, and size (p > 0.05) in the

training set. Age (p = 0.001), the diameter of the solid component

(p = 0.009), and HE4 level (p < 0.001) were identified as the

independent factors in the clinicoradiological model according to

multiple logistic regression analysis. Tumors with older age [odds

ratio (OR), 1.11; 95% CI, 1.05–1.18], larger diameter of the solid

component (OR, 1.07; 95% CI, 1.02–1.13), and higher HE4 level

(OR, 56.94; 95% CI, 7.1–456.49) trended to develop to SMOTs.
FIGURE 1

The flowchart of the selection of patients.
frontiersin.org

https://www.slicer.org/
https://www.r-project.org/
https://doi.org/10.3389/fonc.2023.1269589
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2023.1269589
Radiomics feature selection and
model construction

A total of 1,167 radiomics features were extracted from the

ROIs, from which 812 with high reliability in the VP were selected

for the LASSO to screen out the most contributing features. The

radiomics signature model was constructed by the nine eventually

chosen radiomics features. The Rad-score was calculated by the

formula below:

Rad-score = −34.8136792 + 22.8447829 × Idn + 0.1912723 ×

ClusterShade − 63.2419151 × RunLengthNonUniformityNormalized

− 2.3563718 ×Median + 0.9576375 × LowGrayLevelZoneEmphasis +
Frontiers in Oncology 04
13.5659235 × GrayLevelNonUniformityNormalized + 28.8492739 ×

InverseVariance + 11.5428048 × Imc2 − 173.8911646 × Contrast.
Clinical use of the nomogram model

Age, the diameter of the solid component, HE4 level, and Rad-

score were integrated for the nomogram model construction

(Figure 3). The calibration curve of the nomogram in Figure 4

demonstrated considerable calibration in both the training set (p =

0.994) and the validation set (p = 0.859). The performance of the

clinicoradiological model, the radiomics signature model, and the
TABLE 1 Comparison of the clinicoradiological characteristics of SBOT and SMOT patients.

Clinicoradiological characteristics Training set Validation set

SBOT (N=56) SMOT (N=71) p SBOT (N=24) SMOT (N=31) p

Age (median [range]), years 35 (19–69) 51 (39–79) <0.01 38.5 (20–67) 53 (41–72) <0.01

CA125 (≤50 U/mL; >50 U/mL) 20/36 28/43 0.668 11/13 7/24 0.073

HE4 (≤150 pmol/L; >150 pmol/L) 54/2 29/42 <0.01 21/3 14/17 0.003

Location (unilateral/bilateral) 17/39 41/30 0.002 10/14 15/16 0.851

Texture (predominantly cystic/predominantly solid) 47/9 26/45 <0.01 19/5 16/15 0.04

Margins (smooth/irregular) 44/12 36/35 0.002 20/4 18/13 0.051

Ascites (present/absent) 16/40 24/47 0.783 4/20 9/22 0.29

Vascular abnormalities (present/absent) 10/46 26/45 0.022 5/19 16/15 0.024

Size [median (range)], millimeters 72 (32–218) 82 (30–226) 0.272 75.5 (33–133) 81 (43–128) 0.411

Diameter of solid component [median (range)], millimeters 16 (5–80) 42 (5–94) <0.01 17 (4–96) 38 (9–80) 0.017
frontier
SBOT, serous borderline ovarian tumor; SMOT, serous malignant ovarian tumor.
ROI segmentation Features extraction and
selection

7 categories

1167 radiomics features

ICC

LASSO regressio

9 radiomics features

Model building and
evaluation

clinicoradiological model

radiomics signature model

nomogram model

FIGURE 2

Workflow of features selection and model construction.
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nomogram model in diagnosis is evaluated and summarized in

Table 2, and the ROC curves are depicted in Figure 5. The

nomogram model exhibited significantly higher AUC compared

with the clinicoradiological model and the radiomics signature

model (p < 0.001) in the training set, while there was no

significant difference in AUC between the nomogram model and

the radiomics signature (p = 0.123) in the validation set. In the

training (p = 0.494) and validation sets (p = 0.8972), no significant

differences in AUC were revealed between the clinicoradiological

model and the radiomics signature model. The DCA of the three

models (Figure 6) demonstrated a more prominent overall net

benefit of the nomogram model in differentiating between SBOTs

and SMOTs in comparison to the clinicoradiological model and the

radiomics signature model.
Discussion

The biological characteristics, prognoses, and treatments

completely vary between SBOTs and SMOTs, implying the crucial

role of accurate preoperative differentiation in determining
Frontiers in Oncology 05
individualized treatment options and improving postoperative

quality of life (2). FIGO stage III or IV ovarian tumors more

prominently display aggressive characteristics, such as lymphatic

and distant metastases, resulting in a tendency to be identified as

SMOT (16, 17). Therefore, patients in the early stages were employed

as subjects in our study, which holds greater significance in

clinical practice.

Age is generally acknowledged as one of the factors that

discriminate between SBOTs and SMOTs (18). As indicated by

our previous study, the median age of the patients with SMOTs was

10 years older than patients with SBOTs, showing a statistically

significant difference (10). In the present study, using multiple

logistic regression analysis, age was validated as an independent

predictor in accordance with previous studies (18).

In the past two decades, studies on several serum biomarkers for

the diagnosis of epithelial ovarian cancer including CA125,

carbohydrate antigen 19-9, carcinoembryonic antigen, and HE4

have already been conducted (19, 20). HE4 is a relatively reliable

biomarker for ovarian cancer detection, whereas CA125 is

commonly used for early ovarian cancer diagnosis in clinical

practice (14). In terms of ovarian cancer detection, HE4 exhibits
FIGURE 3

The radiomics nomogram, combining age, the diameter of the solid component, HE4 level, and Rad-score, developed in the training set.
BA

FIGURE 4

Calibration curves of the radiomics nomogram in the training (A) and validation (B) sets.
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superior diagnostic performance to CA125, while their combination

provides higher sensitivity at the expense of lower specificity

compared with HE4 alone (21, 22). In the present study, the HE4

level was proven to be an independent predictor in the

clinicoradiological model, showing a superior diagnostic

performance to the CA125 level in terms of differentiation

between early-stage SBOTs and SMOTs.

In routine clinical practice, MDCT is the most commonly used

imaging method for preoperative assessment and postoperative

surveillance of patients with ovarian tumors. Previous studies

have indicated that MDCT and MRI are promising imaging tools

for differentiating BOTs from MOTs (23, 24). Due to the focus on

variables such as tumor shape, tumor volume, and tumor vascular

changes in early studies (6, 17), it is difficult to distinguish BOTs

from MOTs depending on imaging information alone, despite the

medical imaging methods used to distinguish them, which could

result from some morphological imaging findings overlapping

between BOTs and MOTs, such as irregularly thickened walls or

septa, predominantly solid masses, and vascular abnormalities.

Therefore, medical imaging methods must be combined with

clinical data to achieve a differential diagnosis. Our previous

study demonstrated the validity of the combined analysis of age,
Frontiers in Oncology 06
vascular abnormalities, and the diameter of the solid components

for differentiating between SBOTs and SMOTs (10). Shin et al. (25)

found that a more reproducible and accurate differentiation of

BOTs from MOTs could be achieved by combining MDCT data

and CA125 levels.

With advancements in computer technology, radiomics has

emerged as a new research method in recent years. Medical images

can be converted into high-dimensional mineable data after the

extraction of quantitative image features. Radiomics could

contribute to exploring the potential connections related to tumor

occurrence and development offering reference for clinicians to

make a proper diagnosis before surgery. This is a promising field

used in oncology and has been adopted in the differential diagnosis

of pulmonary solid nodule (26), renal masses (27), liver tumor (28),

and thyroid follicular neoplasms (29) on MDCT images.

In our previous study (15), the MDCT-based radiomics model

was efficient in discriminating SBOTs from SMOTs, with AUCs for

the radiomics models AP, VP, and EP of 0.8, 0.86, and 0.73,

respectively; the AUC was higher for VP. In the present study, we

investigated the performance of a nomogram model based on

radiomics of the VP for preoperative differentiation between

SBOTs and SMOTs.
TABLE 2 Predictive performance of the three models.

Training set Validation set

AUC (95% CI) SEN SPE p AUC (95% CI) SEN SPE p

1) Clinicoradiological model 0.850 (0.781–0.918) 0.673 0.887 0.836 (0.730–0.943) 0.840 0.735

2) Radiomics signature model 0.879 (0.822–0.937) 0.942 0.662 0.826 (0.714–0.938) 0.760 0.853

3) Nomogram model 0.940 (0.899–0.980) 0.923 0.859 0.909 (0.832–0.987) 0.880 0.882

1 vs. 2 0.494 0.8972

1 vs. 3 0.00178 0.04379

2 vs. 3 0.005518 0.123
fro
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity.
BA

FIGURE 5

ROC curve of the clinicoradiological model, the radiomics signature model, and the nomogram model in the training (A) and validation (B) sets.
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The nomogram model incorporated a radiomics signature and

three clinicoradiological risk factors as follows: age, solid

component diameter, and HE4 level. The combined model

exerted a more remarkable function compared with the other two

models in the training and validation sets. The AUCs of the

nomogram model were 0.940 and 0.909 for the training and

validation sets, respectively. These findings demonstrated the

efficiency of the nomogram model for preoperative differentiation

between SBOTs and SMOTs, which is easy to use. The nomogram

displayed high consistency and potential clinical usefulness

according to the calibration and DCA curves. To the best of our

knowledge, for the first time, we constructed a nomogram model

with high accuracy and robust discrimination, providing a

convenient and non-invasive tool for clinicians.

This study had some limitations. First, it was a single-center

scanner study; a multicenter study is warranted to analyze and

verify our results in the future. Second, the late stages of SBOMs and

STOMs were not included, which may limit the model

generalization. Third, there may be an inevitable selection bias in

retrospective studies, and prospective and external validation

studies are needed. Fourth, the lack of multiple segmentations

affected the quality of the study, limiting the reproducibility of

the results.
Conclusions

In summary, a nomogram model combining clinicoradiological

risk factors and radiomics features was established in the present

study and can be adopted as an individualized preoperative non-

invasive tool for distinguishing between early-stage SBOTs

and SMOTs.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Frontiers in Oncology 07
Ethics statement

The studies involving humans were approved by the Ethics

Committee of Affiliated Hospital of Qingdao University. The

studies were conducted in accordance with the local legislation

and institutional requirements. The ethics committee/institutional

review board waived the requirement of written informed consent

for participation from the participants or the participants’ legal

guardians/next of kin because this study was retrospective design,

and all data were kept confidential. Written informed consent was

not obtained from the individual(s) for the publication of any

potentially identifiable images or data included in this article

because written informed consent was not required to participate

in this study in accordance with the institutional requirements.
Author contributions

XY: Investigation, Software, Writing – original draft, Writing –

review & editing, Methodology. YZ: Methodology, Resources, Writing

– review & editing. LW: Methodology, Resources, Writing – review &

editing. HJY: Methodology, Resources, Writing – review & editing.

JJ: Methodology, Resources, Writing – original draft. HYY:

Data curation, Software, Writing – review & editing. SZ:

Conceptualization, Methodology, Software, Supervision, Writing –

review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
BA

FIGURE 6

DCA for the clinicoradiological model, the radiomics signature model, and the nomogram model in the training (A) and validation (B) sets.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1269589
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2023.1269589
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Oncology 08
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Lheureux S, Gourley C, Vergote I, Oza AM. Epithelial ovarian cancer. Lancet
(2019) 393(10177):1240–53. doi: 10.1016/S0140-6736(18)32552-2

2. Prat J. Pathology of borderline and invasive cancers. Best Pract Res Clin Obstet
Gynaecol (2017) 41:15–30. doi: 10.1016/j.bpobgyn.2016.08.007

3. Mimura R, Kato F, Tha KK, Kudo K, Konno Y, Oyama-Manabe N, et al.
Comparison between borderline ovarian tumors and carcinomas using semi-
automated histogram analysis of diffusion-weighted imaging: focusing on solid
components. Jpn J Radiol (2016) 34(3):229–37. doi: 10.1007/s11604-016-0518-6

4. Liu X, Wang T, Zhang G, Hua K, Jiang H, Duan S, et al. Two-dimensional and
three-dimensional T2 weighted imaging-based radiomic signatures for the preoperative
discrimination of ovarian borderline tumors and Malignant tumors. J Ovarian Res
(2022) 15(1):22. doi: 10.1186/s13048-022-00943-z

5. Nougaret S, Lakhman Y, Molinari N, Feier D, Scelzo C, Vargas HA, et al. CT
features of ovarian tumors: defining key differences between serous borderline tumors
and low-grade serous carcinomas. AJR Am J Roentgenol (2018) 210(4):918–26.
doi: 10.2214/AJR.17.18254

6. Grabowska-Derlatka L, Derlatka P, Palczewski P, Danska-Bidzinska A, Pacho R.
Differentiation of ovarian cancers from borderline ovarian tumors on the basis of
evaluation of tumor vascularity in multi-row detector computed tomography—
comparison with histopathology. Int J Gynecol Cancer (2013) 23(9):1597–602.
doi: 10.1097/IGC.0b013e3182a80a41

7. Xiao F, Zhang L, Yang S, Peng K, Hua T, Tang G. Quantitative analysis of the MRI
features in the differentiation of benign, borderline, and Malignant epithelial ovarian
tumors. J Ovarian Res (2022) 15(1):13. doi: 10.1186/s13048-021-00920-y

8. Zhao SH, Qiang JW, Zhang GF, Ma FH, Cai SQ, Li HM, et al. Diffusion-weighted
MR imaging for differentiating borderline from Malignant epithelial tumours of the
ovary: pathological correlation. Eur Radiol (2014) 24(9):2292–9. doi: 10.1007/s00330-
014-3236-4

9. Denewar FA, Takeuchi M, Urano M, Kamishima Y, Kawai T, Takahashi N, et al.
Multiparametric MRI for differentiation of borderline ovarian tumors from stage I
Malignant epithelial ovarian tumors using multivariate logistic regression analysis.
Eur J Radiol (2017) 91:116–23. doi: 10.1016/j.ejrad.2017.04.001

10. Yu XP, Liu Y, Jiao JW, Yang HJ, Wang RJ, Zhang S. Evaluation of ovarian
tumors with multidetector computed tomography and tumor markers: differentiation
of stage I serous borderline tumors and stage I serous Malignant tumors presenting as
solid-cystic mass. Med Sci Monit (2020) 26:e924497. doi: 10.12659/MSM.924497

11. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J,
et al. Radiomics: the bridge between medical imaging and personalized medicine.
Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/nrclinonc.2017.141

12. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol
(2016) 61(13):R150–66. doi: 10.1088/0031-9155/61/13/R150

13. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P,
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