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Lipid metabolism reprogramming is one of the most prominent metabolic

anomalies in cancer, wherein cancer cells undergo dysregulation of lipid

metabolism to acquire adequate energy, cell membrane building blocks, as

well as signaling molecules essential for cell proliferation, survival, invasion,

and metastasis. These adaptations enable cancer cells to effectively respond to

challenges posed by the tumor microenvironment, leading to cancer therapy

resistance and poor cancer prognosis. Head and neck cancer, ranking as the

seventh most prevalent cancer, exhibits numerous abnormalities in lipid

metabolism. Nevertheless, the precise role of lipid metabolic rewiring in head

and neck cancer remains unclear. In line with the LIPID MAPS Lipid Classification

System and cancer risk factors, the present review delves into the dysregulated

molecules and pathways participating in the process of lipid uptake, biosynthesis,

transportation, and catabolism. We also present an overview of the latest

advancements in understanding alterations in lipid metabolism and how they

intersect with the carcinogenesis, development, treatment, and prognosis of

head and neck cancer. By shedding light on the significance of metabolic

therapy, we aspire to improve the overall prognosis and treatment outcomes

of head and neck cancer patients.
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1 Introduction

Reprogramming of lipid metabolism is a critical hallmark of cancer. In recent years,

dysregulated lipid metabolism has emerged as a focal point in cancer research (1).

Physiologically, lipids play essential roles as energy sources, vital building blocks for cell

membranes, as well as first and second messengers in molecular recognition and signaling

processes (2, 3). Pathologically, any disturbance in lipid metabolism would significantly

impact serious cellular behaviors, such as cell proliferation, differentiation, apoptosis, and
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motility, ultimately contributing to carcinogenesis and cancer

development (3). In addition, rewiring of lipid metabolism

impacts the treatment effects and the outcomes of cancer patients

(4). Thus, lipid metabolism-related molecules and pathways have

been proposed to be novel targets of anti-cancer treatment.

Head and neck cancer (HNC) comprises a group of tumors that

predominantly arise from subsites within the oral cavity,

oropharynx, hypopharynx, and larynx (5). It ranks as the seventh

most common cancer worldwide, with more than 890,000 new cases

and 450,000 deaths each year (6). Head and neck squamous cell

carcinoma (HNSCC) accounts for approximately 90% of all HNC

cases (7). Infection of human papillomavirus (HPV), tobacco use or

smoking, and alcohol consumption are the three well-known risk

factors for head and neck cancer (6, 8). Despite notable

advancements in diagnosis and treatment, the 5-year overall

survival rate for head and neck cancer patients with an advanced

stage is 50% to 60%, indicating an urgent demand for further

investigation into the underlying mechanisms of head and neck

cancer carcinogenesis (9).

Lipid metabolism reprogramming is also linked to the

carcinogenesis and development of head and neck cancer. Cancer

cells actively promote the lipolysis process. And in turn, the various

endpoints of lipid metabolism, including the oxidation of fatty

acids, the generation of signaling lipids, epigenetic modifications

of proteins, synthesis of cell membrane lipid, and other crucial

processes, profoundly affect the malignant characteristics of cancer

cells. Accumulated studies have described the dysregulated levels or

activities of enzymes and molecules associated with lipid

metabolism in head and neck cancer. Alterations of lipid profile

in head and neck cancer are evident; for instance, there’s an

elevation of fatty acid C16:0 and a reduction in total ceramide

(10). In addition, overexpression of crucial components in lipid

metabolism, such as cluster of differentiation 36 (CD36), fatty acid-

binding protein (FABP), acetyl-CoA carboxylase (ACC), and fatty

acid synthase (FASN), have been well-documented in head and

neck cancer (11–14). Hence, the molecules involved in the lipid

metabolism alteration hold potential as novel biomarkers for the

treatment and prognosis of head and neck cancer. Nonetheless, the

precise role and underlying mechanisms of lipid metabolism in the

context of head and neck cancer remain inadequately understood.

According to the LIPID MAPS Lipid Classification System,

lipids are divided into eight categories, known as fatty acids,

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids,

prenol lipids, saccharolipids, and polyketides (15). In the present

review, based on the lipid classification system and cancer risk

factors, we focused on the dysregulation of lipid metabolism and its

implications on the carcinogenesis, treatment, and prognosis of

head and neck cancer. Novel dysregulated molecules and signaling

pathways participating in the process of lipid uptake, de novo

synthesis, transportation, catabolism, as well as their roles in the

composition of lipid profiles, would be involved and discussed,

aiming to provide an updated and comprehensive understanding of

this field and potential strategies for personalized treatment of head

and neck cancer (Figure 1, Table 1).
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2 Lipid metabolism reprogram in head
and neck cancer

2.1 Alteration of fatty acid metabolism in
head and neck cancer

Fatty acids are composed of saturated or unsaturated

hydrocarbon chains terminating with distinct carboxylic acid

groups. Mammals acquire fatty acids from the surrounding

environment or by synthesizing de novo (31). The metabolism of

fatty acids encompasses two key biological processes: fatty acid

synthesis and fatty acid oxidation (FAO) (32).

2.1.1 De novo biosynthesis and catabolism of
fatty acids

Fatty acid biosynthesis occurs in the cytosol. The first step

involves the conversion of acetyl-CoA into malonyl-CoA through

the activation of ACC. This, along with the participation of enzymes

such as FASN, leads to the generation of palmitate (FA16:0).

Subsequently, elongation processes produce fatty acids of different

lengths. These fatty acids can then be esterified with glycerol or

sterol skeletons, forming triacylglycerol (TG) or sterol esters,

respectively. Finally, they are stored as lipid droplets (LDs) (33).

On the other hand, fatty acid catabolism involves the activation of

FAs in the cytoplasm to form acyl-CoA. The formed acyl-CoA is

then transported to the mitochondrial matrix by carnitine

palmitoyltransferase 1 (CPT1) for oxidation (34).
2.1.2 Altered fatty acid profile in head and
neck cancer

Dysregulated lipid metabolism in head and neck cancer patients

results in a distinctive fatty acid profile. In the context of oral squamous

cell carcinoma (OSCC) tissues, it was noted that when compared with

healthy controls, the level of fatty acids was frequently elevated, with the

most significant increase observed in palmitic acid (C16:0), followed by

oleic acid (C18:1) (16). In another study including 30 OSCC patients,

Domagala et al. noted a remarkable increase of C16:0 in tumor,

adjacent tissue, and blood serum samples. Independent of tumor

grade, the levels of oleic acid (C18:1n9), erucic acid (C22:1n13),

docosatetraenoic acid (C22:4n6), docosapentaenoic acid (C22:5n3),

and nervonic acid (C24:1) were found to be more abundant in

tumor-adjacent tissues than in serum, suggesting the potential roles

of these fatty acids in promoting tumor progression in OSCC (10). In

an explorative study, Laurell et al. compared the circulating lipidomic

profile of HNC patients one year before and after treatment. A specific

pattern emerged for FA 14:0, 18:3n3, and 20:3n6, showing an early

reduction in FA 14:0 and late reductions in FA 18:3n-3 and 20:3n-6.

Additionally, FA 14:0 was associated with changes in body weight (17).

Taken together, the level of C16:0 is supposed to be increased in head

and neck cancer. Nevertheless, a definitive fatty acid profile specific to

head and neck cancer remains elusive. To address this, further

investigation with a larger sample size and a more rigorous study

design is imperative.
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2.1.3 Increased fatty acids uptake in head and
neck cancer
2.1.3.1 Cluster of differentiation 36

CD36, known as a fatty acid translocase, is responsible for

binding and trafficking FAs from the exogenous environment into

host cells. Its upregulation has been consistently observed in various

human cancers, such as colorectal cancer (35), gastric cancer (36,

37), hepatocellular carcinogenesis (38), and melanoma (39). CD36

plays a vital role in modulating cancer development, metastasis,

therapy resistance, and prognosis (40–44). Notably, CD36 is highly

expressed in HNC (11, 45–47). Increased expression of CD36 was

significantly associated with higher tumor status, tumor grading,

and lymph node metastasis rate, exhibiting an over 40-fold increase

in oral cancers (45, 46). An intriguing study by Pascual et al.

reported that dietary palmitic acid could activate CD36 and

accelerate cancer growth in OSCC, suggesting that dietary intake

of fatty acids might play a role in CD36 modulation (48). In mice

model, inhibition of CD36 has been shown to attenuate the

metastasis of several cancers (41, 49, 50), including HNSCC (45).

In particular, depletion of CD36 led to a significant inhibition of the

lung metastasis ability of OSCC cells (45). Taken together, these

findings suggest that CD36 could be a promising therapeutic target

for clinical intervention of head and neck cancer.

2.1.3.2 Fatty acid-binding proteins

FABPs are important lipid chaperones, facilitating the

transportation of long-chain fatty acids (LCFAs) to specific cell
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compartments. There are a series of members in the FABP family.

The abnormal expression of FABPs in malignant tumors is

associated with carcinogenesis, progression, and prognosis (51–

55). In the case of HNC, there is notable upregulation of epidermal

FABP (E-FABP, also known as FABP5), which might contribute to

cancer proliferation and invasiveness (56–58). E-FABP, regulated

by the epithelial cell adhesion molecule (EpCAM), is suggested to be

a potential target of the oncogene c-Myc, leading to enhanced cell

proliferation (57). Interestingly, according to Uma et al., FABP5

exhibited a lower expression in metastatic lymph nodes when

compared with the corresponding primary squamous cell

carcinoma of the oral tongue tumors (12). Yet, more samples are

needed to confirm the conclusion. Furthermore, a study by Ohyama

et al. reported abnormal expression of FABP4 and FABP5 in tongue

carcinoma. Besides, the cytoplasmic staining for FABP5 was

increased in tongue carcinoma patients with advanced T-stage

and clinical stage, implicating that FABP5 might be a pathological

marker (59). However, the precise mechanisms of FABPs in head

and neck cancer need further research and investigation.

2.1.4 Dysregulated fatty acids synthesis in head
and neck cancer
2.1.4.1 Acetyl-CoA carboxylases

ACCs serve as rate-limiting enzymes in fatty acid synthesis,

playing a crucial role in catalyzing the carboxylation of acetyl-CoA

to malonyl-CoA (60). The two isoforms of ACC, namely ACC1

(ACCa) and ACC2 (ACCb), are enriched in lipogenic and oxidative
FIGURE 1

Illustration of the genes or enzymes that have been reported to be involved in the reprograming of lipid metabolism in head and neck cancer, based
on the LIPID MAPS Lipid Classification System. FA, fatty Acid; ST, sterol lipids; GPL, glycerophospholipids; SP, sphingolipids; GL, glycerolipids; PR,
prenol lipids; SL, saccharolipids; PK, polyketides; CD36, cluster of differentiation 36; FABPs; fatty acid-binding proteins; ACC, acetyl-CoA carboxylase;
FASN, fatty acid synthase; SCD, stearoyl-CoA desaturase; ACLY, ATP citrate lyase; SREBP1, sterol regulatory element binding proteins 1; CPT1,
Carnitine Palmitoyl Transferase 1; SREBP2, sterol regulatory element-binding protein 2; HMGCR, 3-hydroxy-3-methylglutaryl (HMG)–CoA reductase;
SM, Squalene monooxygenase; EZH2, Enhancer of zeste homolog 2; LDLR, low-density lipoprotein receptor; PLA2, phospholipase A2; cPLA2,
cytosolic PLA2; sPLA2-IIA, secretory phospholipase A2 IIA; SphK1, Sphingosine kinase 1; AC, Acid ceramidase.
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status, respectively (61). ACCs are highly expressed in several

cancer types, including prostate cancer, breast cancer, and HNC

(62–64). Notably, elevated expression of ACC2 in laryngeal

carcinoma correlates with advanced clinical cancer stage, lower
Frontiers in Oncology 04
cancer differentiation degree, as well as poor survival rates (64). It is

known that ACC is regulated by AMP-activated protein kinase

(AMPK) via phosphorylation (65). The same modulation also

applies within the context of head and neck cancer (66). HNSCC
TABLE 1 Dysregulated lipid metabolism profile in head and neck cancer.

Category Class or Subclass Increased in HNC Decreased in HNC Cancer
type

Fatty acids Palmitic acid (C16:0) Dickinson (2020) (16), Halczy-Kowalik (2019)
(10)

OSCC

Oleic acid (C18:1) Dickinson (2020) (16) OSCC

Oleic acid (C18:1n9) Halczy-Kowalik (2019) (10) OSCC

Erucic acid (C22:1n13) Halczy-Kowalik (2019) (10) OSCC

Docosatetraenoic acid
(C22:4n6)

Halczy-Kowalik (2019) (10) OSCC

Docosapentaenoic acid
(C22:5n3)

Halczy-Kowalik (2019) (10) OSCC

nervonic acid (C24:1) Halczy-Kowalik (2019) (10) OSCC

FA 14:0 Christou (2021) (17) HNC

FA 18:3n-3 Christou (2021) (17) HNC

FA 20:3n-6 Christou (2021) (17) HNC

Glycerolipids Triglyceride Poorey (2016) (18), Patel (2004)
(19)
Somashekar (2011) (20)
Garg (2014) (21)

HNC

Glycerophospholipids Phosphatidylcholine (PC) Wang (2017) (22) OSCC

Phosphatidylcholine (PC) Dickinson (2020) (16) OSCC

Phosphatidylethanolamine (PE) Wang (2017) (22) OSCC

Phosphatidylethanolamine (PE) Dickinson (2020) (16) OSCC

Phosphatidylinositols (PI) Dickinson (2020) (16) OSCC

LysoPC (14:0) Wang (2017) (22) OSCC

Sphingolipids Sphingolipid 42:2 Wang (2022) (23) LC

Sphingolipid 42:3 Wang (2022) (23) LC

C18-ceramide Koybasi (2004) (24)
Senkal (2010) (25)

HNSCC

C16-ceramide Senkal (2010) (25) HNC

Sterol lipids Total cholesterol Garg (2014) (21),
Sherubin (2013) (26),
Acharya (2016) (27)

OSCC

Total cholesterol Pereira (2014) (28) HNC

LDL-cholesterol Pereira (2014) (28) HNC

Total cholesterol Jiang (2021) (29) HNC

apoA-I Huang (2023) (30) HNC

Prenol lipids N/A

Saccharolipids N/A

Polyketides N/A
FA, fatty acid; OSCC, oral squamous cell carcinoma; HNC, Head and neck cancer; HNSCC, head and neck squamous cell carcinoma; LysoPC, lysophosphatidylcholine; LDL-cholesterol, low-
density lipoprotein cholesterol; LC, laryngeal carcinoma; N/A, no report yet.
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cells with ACC mutations and lacking the AMPK phosphorylation

sites, showed resistance to cetuximab treatment (67). With the

combination treatment of ACC inhibitor 5-(tetradecyloxy)-2-furoic

acid (TOFA) and cetuximab, the growth of cetuximab-resistant

HNSCC xenografts was effectively suppressed, suggesting that ACC

can rewrite cancer metabolism from glycolysis-dependent to

lipogenesis-dependent way (67). However, Chen et al. reported

that an enhanced level of pACC was independently associated with

poor overall survival of HNSCC patients, particularly in patients

with lymph node-metastasis and advanced stage (13). The potential

causes of contradiction may stem from various factors, including

different ACC subtypes, diverse confounding factors (e.g., TNM

stage, primary tumor site), and variation in experimental systems

(e.g., in vivo, in vitro, or patient-based studies), among others.

Additionally, phosphorylation of ACC is not only governed by

AMPK; other kinases such as protein kinase C (PKC) and casein

kinase 2 (CK2) also serve as regulators (60) Therefore, further

evaluation is warranted to explore the modulation of ACC and its

role in head and neck cancer.
2.1.4.2 Fatty acid synthase

FASN is a critical enzyme responsible for generating long-chain

fatty acids from acetyl-CoA and malonyl-CoA (68). The level of

FASN is naturally low or even undetectable in most human tissues

except lactating breasts and cyclical endometrium, as the daily

requirements of fatty acids are adequately met by food

consumption (68, 69). In contrast, high levels of FASN are

observed in various malignancies, which have been linked to

increased risks of cancer metastasis, recurrence, and poor survival

(70–74). In accordance with this, the expression of FASN is

obviously elevated in HNSCC (14, 75–77). Salivary gland

carcinoma, including well-differentiated carcinoma (secretory

carcinoma, acinic cell carcinoma, etc.), high-grade adenoid cystic

carcinoma, and mucoepidermoid carcinoma, also show an

increased level of FASN, suggesting its potential role as an

indicator of cancer aggressiveness and differentiation (78).

Upregulation of FASN is required for the proliferation of oral

squamous carcinoma (79). Pathological analysis has indicated

that FASN expression was correlated with lymphatic infiltration,

perineural infiltration, and regional lymph node metastasis status in

OSCC (76). Moreover, high expression of FASN was related to poor

prognosis and might be an indicator of pulmonary metastasis in

patients with HNSCC (76, 77, 80).

FASN is positively regulated by the cell surface receptor ErbB2

in HNSCC (75, 80, 81), though the precise correlation and

underlying mechanisms need further investigation. As a FASN

inhibitor, orlistat has demonstrated promising effects in inhibiting

the proliferation and metastasis of orthotopic tongue oral squamous

cell carcinoma (82). Further, in vivo studies have shown that orlistat

reduces the cervical lymph node metastasis rate by 43% (82).

Additionally, orlistat or FASN siRNA treatment increased cell

cytotoxicity and cell sensitivity to radiotherapy in the

radioresistant HNSCC cell line rSCC-61 (83). Orlistat also

increased the chemosensitivity of OSCC cells to cisplatin and

paclitaxel by downregulating cyclin B1 (84). Moreover, other
Frontiers in Oncology 05
FASN inhibitors, such as C75 and Tvb-3166, have been shown

potential as antineoplastic agents (84, 85). Further research is

needed to explore the therapeutic implications of targeting FASN

in HNC treatment.

2.1.4.3 Stearoyl-CoA desaturase

SCD is a lipid-modifying enzyme catalyzing the mono-

saturation of oleate (18:1) and palmitoleate (16:1) (86). There are

two isoforms of SCD (SCD1 and SCD5) required for human lipid

metabolism (87). In a series of human malignancies such as lung,

breast, colorectal, and bladder cancers, SCD is found to be

overexpressed, and its upregulation is associated with tumor

aggressiveness, making it a novel prognostic marker (88–90). In

OSCC, elevated expression of SCD was negatively correlated with

survival (91). Interestingly, overexpression of SCD was detected not

only in HNSCC cell lines but also in tobacco-treated normal oral

keratinocytes. Inhibition of SCD hampers cell proliferation,

invasion, and colony formation, suggesting the potential roles of

SCD and tobacco in the carcinogenesis of HNSCC. Thus, SCD has

been proposed as a therapeutic target for HNSCC patients,

particularly those with a history of tobacco use (92).

2.1.4.4 ATP citrate lyase

ACLY is a cytosolic enzyme which is responsible for acetyl-CoA

synthesis during de novo lipogenesis (93). It is frequently

upregulated in various malignancies, such as colorectal cancer

(94), glioblastoma (95), endometrial cancer (96), and non-small

cell lung cancer (97). In HNSCC, ACLY is also upregulated (91, 98)

and its heightened expression is associated with an unfavorable

prognosis (98). In addition, elevated ACLY expression is associated

with the failure of radiotherapy. Notably, treatment of HNSCC cells

with the ACLY inhibitor BMS303141 has been demonstrated to

facilitate radiosensitivity via disturbing the DNA damage repair

process (98), implying the potential role of ACLY inhibitor as a

sensitizer for head and neck cancer treatment. Additionally, acetyl-

CoA, generated by ACLY, is essential for acetylation reactions,

particularly histone acetylation. Thus, ACLY is a critical node which

links cellular metabolism to epigenetic modification. In

nasopharyngeal carcinoma, ACLY is found to be protected from

ubiquitin degradation through its interaction with the long

noncoding RNA TINCR, thereby promoting cancer cell

proliferation, metastasis, and chemotherapy resistance (99).

Nonetheless, there’re limited reports on the role of ACLY in head

and neck cancer, warranting further in-depth investigation.

2.1.4.5 Sterol regulatory element binding proteins

SREBPs is a family of transcription factors located in the

endoplasmic reticulum. In mammalian cells, three SREBPs

(SREBP-1a, -1c, and -2) are expressed, which are encoded by

SREBP1 and SREBP2, respectively. Among them, SREBP1 is a

major transcriptional regulator of fatty acid synthesis, while

SREBP2 is mainly responsible for cholesterol metabolism, which

will be discussed later. SREBP1 is highly activated in cancers, and its

overexpression is correlated with increased cancer aggressiveness

(100–105). It has been reported that overexpression of SREBP1 is
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necessary for HNSCC cell proliferation and migration (106).

Furthermore, SREBP1 is noted to be an important linker between

tumor protein p63 (TP63) and fatty acid metabolism, suggesting its

potential role as an independent prognostic and therapeutic marker

in HNSCC (106). Consistently, Su et al. reported that SREBP1

functions as an oncogene via upregulating steroidogenic acute

regulatory protein-related lipid transfer 4 (STARD4) and

promoting immune cell infi l tration in HNSCC (107).

Furthermore, SREBP1-mediated cell survival is disturbed by

antioxidant resveratrol by inducing autophagy and subsequently

inhibiting lipid metabolism in oral cancer (108). Hence, SREBP1 is

postulated to function as an oncogene, suggesting its potential as a

viable treatment target of head and neck cancer.

2.1.5 Increased fatty acids oxidation
Physiologically, fatty acids are catabolized via the mitochondrial

fatty acid b-oxidation (FAO) pathway to meet the human daily energy

requirements (109). In carcinogenesis and tumor progression, FAO

plays a vital role in modulating various malignant behaviors, for

example, tumor growth, survival, stemness, drug resistance, and

metastasis (110).

2.1.5.1 Carnitine palmitoyl transferase 1

The first and rate-limiting step of FAO is catalyzed by CPT1,

comprising three isoforms, CPT1A, CPT1B, and CPT1C (111). CPT1

has been extensively studied in a variety of cancers, and

overexpression of CPT1A accelerates tumor development by

stimulating FAO in prostatic cancer (112), breast cancer (113),

gastric cancer (114), and hepatocellular cancer (115). In addition to

its role in FAO, CPT1 plays a pivotal role in a series of signaling

pathways to modulate the gene expression, apoptosis, and

neovascularization (116). Intriguingly, CPT1 is another molecular

linking lipid metabolism and epigenetic modification. CPT1

coimmunoprecipitates with histone deacetylase 1 (HDAC1) in the

nuclear extracts fromMCF-7 cells, promoting tumor cell proliferation

(117). Treatment with HDAC inhibitors decreased the nuclear

expression of CPT1 (117), indicating the potential role of CPT1 as

a therapeutic target for epigenetic and metabolic interventions in

cancer. However, research on CPT1 in head and neck cancer remain

limited. According to Cao et al., CPT1A was consistently activated in

radioresistant nasopharyngeal carcinoma (NPC) cells, and was

positively correlated with the poor overall survival of NPC patients

undergoing radiotherapy. In oropharyngeal squamous cell carcinoma,

Barros-Filho et al. confirmed that elevated CPT1A expression was

associated with poor survival (118). However, in HNSCC, Lin et al.

observed no statistically significant correlations between CPT1

expression and patient age, as well as no statistically significant

differences in CPT expression between early and late tumor stages

(T1/T2 stage vs. T3/T4 stage) (119). Thus, it is imperative to conduct

further investigation into the role and associated mechanisms of

CPT1 in head and neck cancer, and election bias or other

confounding factors should be taken in to consideration.
Frontiers in Oncology 06
2.2 Alteration of glycerolipid metabolism in
head and neck cancer

2.2.1 De novo biosynthesis and catabolism
of glycerolipid

The synthesis of glycerolipid utilizes fatty acyl-coenzyme A

(FA-CoA) and glycerol-3-phosphate (Gly3P) as substrates. FA-CoA

condenses with Gly3P via glycerophosphate acyltransferase, leading

to the formation of lysophosphatidic acid (LPA). LPA is

subsequently converted to phosphatidic acid by 1-acyl-sn-Gly3P

acyltransferase (AGPAT), followed by the production of

diacylglycerol (DAG) through the functions of phosphatidic acid

phosphatase (PAP) or phospholipids (PLs). DAG, in turn, generates

TG by activating DAG acyltransferase (DGAT) (120). During the

catabolism of neutral TG, adipose triglyceride lipase (ATGL) first

converts TG into diacylglycerols (DGs), and then hormone-

sensitive lipase (HSL) hydrolyzes DGs to form monoacylglycerols

(MGs). Finally, MG lipase (MGL) hydrolyzes MGs and generates

fatty acids and glycerol (121).

2.2.2 Altered glycerolipid profile in head and
neck cancer

It has been reported that the plasma level of triglyceride is

significantly lower in HNC patients (18, 19). Constantly, a notable

decrease of triglyceride was revealed in HNSCC and lymph node

metastasis tissues by high-resolution magic-angle spinning (HR-

MAS) proton NMR spectroscopy (20). Furthermore, the serum

level of triglyceride in precancerous oral lesions as well as oral

cancer was found to be reduced when compared with healthy

controls. Similarly, the plasma level of triglycerides was also

decreased in oral cancer patients when compared to pre-

cancerous subjects (21).

2.2.3 Dysregulated glycerolipid biosynthesis and
catabolism in head and neck cancer
2.2.3.1 Adipose triglyceride lipase

ATGL, also known as phospholipase A2 (PLA2), or patatin-like

phospholipase domain containing 2 (PNPLA2), functions as a key

enzyme hydrolyzing TGs to DAGs. Dysregulated expression of

ATGL has been noted in a series of human cancers. The

expression of ATGL in lung cancer is enhanced, indicating an

unfavorable survival (122). Increased ATGL has been shown to

promote the tumorigenesis of colon cancer in an obesity-

augmented manner (123). In HNSCC, including oral cancer and

tongue cancer, Ramamoorthy et al. reported a significantly

increased activity of ATGL (124). Conversely, our research

showed that ATGL was downregulated, leading to lipid droplets

accumulation in NPC. Furthermore, decreased ATGL was

associated with poor prognosis of NPC (125, 126). The variation

of ATGL expression might be due to different anatomical regions of

the HNSCC. Moreover, the mechanisms underlying the role of

ATGL in head and neck cancer need further evaluation.
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2.3 Alteration of glycerophospholipids
metabolism in head and neck cancer

2.3.1 De novo biosynthesis and catabolism
of glycerophospholipids

The substrate of glycerophospholipid biosynthesis is fatty acyl-

CoA, which is obtained via the activation and conversion of fatty

acids by acyl-CoA synthase (ACS). The first step in this process is

the formation of lysophosphatidic acid (LPA) through the

conversion of glycerol-3-phosphate and fatty acyl CoA, catalyzed

by glycerol-3-phosphate acyltransferase (GPAT). The second step

follows with the formation of phosphatidic acid, catalyzed by

lysophosphatidic acid acyltransferase (LPAAT). Additionally, in

certain enzyme reactions, different head groups are attached,

generating different glycerophospholipids (127). During

catabolism, GPLs are transformed into lysophospholipids (LPLs)

and free fatty acids by the action of PLA2 (128).

2.3.2 Altered glycerophospholipids profile in head
and neck cancer

In a study conducted by Silen et al., which involved ten cases of

OSCC patients, GPL metabolism was found to be mostly dysregulated,

with phosphatidylcholine (PC), phosphatidylethanolamine (PE), and

phosphatidylinositols (PI) being the most prominent lipid classes (16).

However, in another study by Zhang et al., which included fifty cases of

OSCC patients and fifty cases of corresponding healthy controls, all

glycerophospholipids were found to be decreased, particularly PC and

phosphoethanolamine plasmalogens (22). In addition, LysoPC (14:0)

exhibited a stepwise decrease with the development and progression of

OSCC (22). Considering the discrepancies between the two studies,

further studies should be performed to involve larger sample sizes and

proper controls. In the study of Jelonek et al., there was first a

significant decrease followed by an increase in the levels of several

PCs (PC34, PC36, and PC38 variants) and lysophosphatidylcholine

(LPC16 and LPC18 variants) in HNC samples after radiotherapy (RT),

in a radiation dose positively pattern (129). The precise changes within

the glycerophospholipid profile require additional elucidation, and

understanding the specific alteration pattern of these molecules could

potentially serve as an indicator for radiotherapy effectiveness.

2.3.3 Dysregulated glycerophospholipids
biosynthesis and catabolism in head and
neck cancer

The PLA2 superfamily, a key group of enzymes involved in

glycerophospholipid catabolism, consists of over 30 different types

of enzymes. These enzymes are categorized into six subfamilies,

including cytosolic PLA2s (cPLA2s), calcium-independent PLA2s

(iPLA2s), secreted PLA2s (sPLA2s), lysosomal PLA2s, platelet-

activating factor (PAF) acetylhydrolases, and adipose specific

PLA2s (130, 131). In general, PLA2s are activated and upregulated

in several human cancers (132–135). In a study involving five

HNSCC patients, the metabolic profile was investigated using 1H

nuclear magnetic resonance (NMR) spectroscopy. The result

revealed a significant elevation in the activity of PLA2, especially

cPLA2, suggesting that PLA2 may be a potential anti-cancer target
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of HNSCC (124). Additionally, in plasma level, Menschikowski

et al. reported an increase in secretory phospholipase A2 IIA

(sPLA2-IIA), which was significantly associated with shorter

survival among HNC patients (136). Furthermore, Askari et al.

observed constant activation of sPLA2-IIA in OSCC tissues, and its

negative correlation with the level of linoleic acid suggested that

sPLA2-IIA could serve as a possible indicator of lipid metabolism

alteration in OSCC (137). Despite these findings, limited research

exists on the regulation of glycerophospholipid synthesis-related

enzymes in HNSCC.
2.4 Alteration of sphingolipids metabolism
in head and neck cancer

Bioactive sphingolipids encompass important lipid molecules,

including sphingosine, ceramide, sphingosine-1-phosphate (S1P),

and ceramide-1-phosphate. These sphingolipids play a pivotal role

in a multiple of biological processes such as cell mobility,

proliferation, and survival (138, 139).

2.4.1 De novo biosynthesis and catabolism
of sphingolipids

Ceramide is a central molecule in sphingolipid metabolism and

could be formed by the condensation of serine and palmitoyl

coenzyme A. The rate-limiting step in this process is catalyzed by

the enzyme serine palmitoyltransferase (SPT) (140). Alternatively,

ceramide can be generated by hydrolysis of complex sphingolipids

via sphingomyelinase (SMases). Moreover, ceramide can be converted

into sphingosine-1-phosphate (S1P) through the action of ceramidases

(CDases) and sphingosine kinase 1 and 2 (SphK1and SphK2) (139,

140). Sphingomyelin synthase (SMS) takes phosphatidylcholine (PC)

as a donor, inserting the choline group into ceramide as a head group,

and converting ceramide to SM. Additionally, ceramide can be

transformed into ceramide-1-phosphate (C1P) by the enzyme

ceramide kinase (CERK). Furthermore, the metabolism of ceramides

also gives rise to complex sphingolipids. As for the catabolism,

ceramide is hydrolyzed by CDases, releasing free fatty acids and

sphingosine (139, 140).

2.4.2 Altered sphingolipid profile in head and
neck cancer

There is limited data available on changes in sphingolipid

profiles in HNC. As reported by Ji et al., the concentration levels

of sphingolipid 42:2 and 42:3 (SM 42:2 and SM 42:3) were

significantly downregulated in laryngeal carcinoma patients when

compared to those with laryngeal benign tumors and healthy

controls (23).

Ceramide is one of the hub nodes in sphingolipid signaling. As

reported by Ogretmen et al., the level of total ceramide was

decreased in non-squamous head and neck cancers but increased

in HNSCC tumor tissues. Interestingly, the level of C18-ceramide

was unexpectedly lower in HNSCC (approximately 50% lower)

(24). Increased of C18-ceramide by mammalian upstream regulator

of growth and differentiation factor 1 (mUOG1) and mouse
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homologue of longevity assurance gene 1 (mLAG1), could inhibit

the proliferation of HNSCC cells, possibly due to its modulation of

telomerase activity and mitochondrial function (24). In accordance

with the former study, Senkal et al. observed a low level of C18-

ceramide and an upregulated level of C16-ceramide in HNC.

Interestingly, C18-ceramide was proposed to have a pro-apoptotic

function, whereas C16-ceramide exhibited a protective effect against

ER stress and apoptosis (25). Similar decrease in ceramide was

observed in laryngeal carcinoma and OSCC when compared with

premalignant and normal controls (141–143). Clinically, HNSCC

patients with reduced C18-ceramide in tumor tissues tended to have

a higher incidence of lymphovascular invasion and lymph node

metastasis, which consequently correlated with a higher overall

stage of the primary tumor (144). Oppositely, Wang et al. reported

that ceramides (d18:1/16:0 and d18:1/18:0) were significantly

increased in OSCC patients and positively correlated with

pathological stage (22).

Considering the critical functions of ceramide in cancer, more

and more research is focusing on its role in cancer therapy. An in

vitro study showed that ceramide enhanced paclitaxel-mediated

apoptosis. A combination of paclitaxel and ceramide could rewire

the cell cycle of HNSCC cells, eliminating cells from S and/or G2-M

phases, indicating that this combination may offer an attractive

alternative to conventional chemotherapy of HNSCC (145). L-reo-

C6-Pyridineium-ceramide-bromide (L-t-C6-Pyr-Cer), a cationic

water-soluble ceramide analogue, inhibited the growth of HNSCC

cell lines with a low IC50. When combined with gemcitabine

(GEM), it significantly prevented tumor growth of HNSCC in

vivo. Moreover, the treatment effect of L-t-C6-Pyr-Cer/GMZ was

2.5 times more effective than that of 5-fluorouracil/cisplatin

combination (146). Doxorubicin (DOX), an inducer of ceramide

production, increased the level of C18-ceramide, inhibited cell

growth, and induced cell death in HNSCC patients when

combined with GEM (147). In addition, a phase II clinical study

demonstrated that GEM/DOX treatment facilitated the

chemotherapeutic efficacy in HNSCC patients who failed the first-

line platinum therapy (148).

2.4.3 Dysregulated sphingolipids biosynthesis and
catabolism in head and neck cancer
2.4.3.1 Sphingosine kinase 1

SphK1, a key enzyme participating in sphingosine-1-phosphate

(S1P) synthesis, has been found to be consistently overexpressed in

both HNSCC cell lines and primary tumors (149–151). Its

expression was higher in HNSCC cells displaying a more invasive

phenotype (152). The upregulation of SphK1 has been correlated

with advanced tumor stages, lymph node involvement, recurrence

of tumor, and poor survival in HNSCC (149, 150). Mechanistically,

SphK1 promotes the invasive ability of human tongue squamous

cell carcinoma by upregulating EGFR and STAT3 (152). What’s

more, inhibition of SphK1 suppressed cell proliferation and

enhanced the radiosensitivity of HNSCC cells (151, 153). In

summary, SphK1 might function as an oncogene in HNSCC.
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2.4.3.2 Acid ceramidase

Acid ceramidase is responsible for the degradation of ceramide

within lysosomes (154). Overexpression of AC has been reported in

a variety of human cancers, including HNSCC (155, 156).

Interestingly, it is higher in HNSCC cell lines generated from

metastasis tumor compared to those from primary tumor (157).

As reported by Norris et al., overexpression of AC increased the

resistance of HNSCC cells to Fas-induced apoptosis (155). Jang

et al. found a negative correlation between AC expression and

cisplatin sensitivity in head and neck cancer cells. Treatment with

AC inhibitor N-oleoyl-ethanolamine (NOE) or genetic silencing of

AC might be novel approaches to enhance cisplatin cytotoxicity

(156). Moreover, Movila et al. reported that phosphoethanolamine

dihydroceramide (PEDHC) derived from P. gingivalis

downregulated the expression of AC, promoted the accumulation

of ceramidase and inhibited the proliferation and migration of

OSCC cell lines (158). Collectively, overexpression of AC facilitates

the malignant behaviors of head and neck cancer cells, and it might

be a potential target of head and neck cancer treatment.
2.5 Alteration of sterol lipids metabolism in
head and neck cancer

Sterol lipids consist of various compounds, including sterols,

steroids, secosteroids, bile acids, and others. Among sterols, there

are cholesterol, ergosterol, stigmasterol, C24 propylsterol, etc. As

the most prominent sterol lipid, cholesterol is widely distributed in

mammalian cells. Functionally, sterol lipids are essential for cell

membrane formation and participate in a diverse range of

physiological and biological processes (159).

2.5.1 De novo biosynthesis and catabolism of
sterol lipids

Taking cholesterol as an example, it is mainly synthesized via

the mevalonate pathway, starting with acetyl-CoA and processing

with the involvement of more than 20 enzymes. The major rate-

limiting enzyme, 3-hydroxy-3-methylgrutaryl (HMG)–CoA

reductase (HMGCR), transforms 3-hydroxy-3-methylgrutaryl

(HMG-CoA) into mevalonate. Mevalonate is converted into

farnesyl pyrophosphate (FPP), and two molecules of FPP are

condensed to yield squalene. Squalene is then oxidized by

squalene epoxidase (SQLE) to generate 2,3-epoxysqualene, lanolin

alcohol, and cholesterol subsequently (91). Maintaining cellular

cholesterol homeostasis is crucial for normal physiological

processes. Excessive intracellular cholesterol is exported from cell

by ATP-binding cassette (ABC) transporter to reduce intracellular

cholesterol levels (160). As for its circulation, the cholesterol

synthesized and obtained exogenously which is stored in the liver,

is released into the bloodstream in the form of very-low-density

lipoproteins (VLDLs). These VLDLs are converted into low-density

lipoproteins (LDLs) and taken up by peripheral cells (161).

Excessive circulating cholesterol would be transported to lipid-
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free or lipid-poor apolipoprotein A-I (apoA-I), leading to the

production of high-density lipoproteins (HDLs) (162). Moreover,

surplus cholesterol could be esterified by acyl coenzyme A-

cholesterol acyltransferase (ACAT) to generate cholesteryl esters,

which are stored in lipid droplets or circulated as plasma

lipoproteins (163).

2.5.2 Dysregulated sterol lipids profile in head
and neck cancer

Studies have shown that the serum level of total cholesterol

(TC) in OSCC patients is significantly lower than those in healthy

controls (21, 26, 27). In eleven HNC patients, Pereira et al. found a

significant positive correlation between baseline LDL-cholesterol

levels and changes in radiotherapy-induced carotid intima-media

thickness, suggesting that LDL-cholesterol might serve as a

predictor for RT-induced carotid atherosclerosis in HNC (28). A

retrospective cohort study based on 4,575,818 individuals in Korea

revealed that high TC and high LDL-cholesterol levels are protective

factors and could reduce the risk of HNC (164). Additionally, a

prospective analysis based on 474,929 participants from the UK

biobank demonstrated a significant U-shaped association between

HDL-C and HNC risk in males (29). Based on the 561,388

individuals of the Swedish AMORIS cohort, we found a positive

association between blood levels of TC, apoA-I and the risk of

HNC. Furthermore, HNSCC patients showed constantly higher

levels of TC and apoA-I during the 30 years before diagnosis (30).

2.5.3 Dysregulated sterol lipids biosynthesis
related enzymes in head and neck cancer
2.5.3.1 Sterol regulatory element-binding protein 2

As mentioned previously, SREBP2 plays a critical role in

selectively modulating the transcription of genes encoding

cholesterologenic enzymes (165). However, there’s limited

research on SREBP2 in HNC. According to a study by Yang

et al., SREBP2 was significantly downregulated in OSCC tissues

and cell lines when compared with normal controls. Restoration of

SREBP2 could inhibit cell proliferation, migration, invasion, and

induce cell apoptosis in OSCC, suggesting its novel role as a tumor

suppressor (166). Nevertheless, further research is needed to fully

clarify the role of SREBP2 in HNC.

2.5.3.2 3-hydroxy-3-methylglutaryl–CoA reductase

HMGCR is the rate-limiting enzyme in the mevalonate pathway

for cholesterol production. Several studies have found that the

downregulation of HMGCR is associated with the progression of

various tumors (167–169). Interestingly, the expression of HMGCR

was found to be elevated in OSCC (170). Furthermore, additional

analysis revealed an increased expression of HMGCR in radiation-

resistant HNSCC cells (171).

Statin, an HMGCR inhibitor, is noted not only to decrease the

level of cholesterol but also reduce the risk of HNSCC. Moreover,

statin use has been linked to improved survival in HNSCC patients,
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particularly in those with HPV-positive tumors (172). In another

study, it was proposed that statin use would facilitate the prognosis

of HNC, leading to increased overall survival and cancer-specific

survival at 2 years (173). What’s more, the application of

atorvastatin reduced the rate of cisplatin-induced hearing loss by

19.7% without compromising the effectiveness of cisplatin

treatment in HNC patients (174). However, a Mendelian

randomization study proposed that the strategy of cholesterol-

lowering in oral cancer and oropharyngeal cancer was

confounded, warranting further investigation (175).

2.5.3.3 Squalene monooxygenase

SM, which is encoded by the SQLE gene, is the second rate-

limiting enzyme in the process of cholesterol synthesis (3). In

HNSCC, an elevated level of SQLE expression and gene

amplification has been observed, promoting cell proliferation and

correlating with the TNM stage of patients (176, 177). Moreover, a

high level of SQLE mRNA expression was negatively associated

with the survival of HNSCC patients (178). In addition, SQLE plays

a role in the tumor microenvironment in HNSCC. It showed a

negative correlation with the infiltration of CD8+ T cells, follicular

helper T cells, regulatory T cells, and mast cells, while exhibiting a

positive correlation with M0 macrophages and resting mast cells

(177). Terbinafine, an inhibitor of SQLE clinically used as an

antifungal reagent, has recently gained attention for its anti-

cancer effects and is being extensively studied (178). In OSCC,

terbinafine has been reported to inhibit the proliferation of cancer

cells, possibly by suppressing Raf-MEK-ERK and stimulating the

p21(cip1) - and p27(kip1) -associated signaling pathways (179,

180). However, further research is needed to fully understand its

potential in treating HNSCC. Taken together, SQLE may serve as a

novel biomarker for prognosis and a promising drug target

for HNSCC.

2.5.3.4 Enhancer of zeste homolog 2

EZH2, a histone methyltransferase, plays a role in modulating

endogenous cholesterol synthesis. It is highly expressed in HNSCC,

and its upregulation has been found to be correlated with tumor

aggressiveness and poor outcomes in HNSCC patients (181, 182). One

of the possible mechanisms behind this correlation might lie in the

hypermethylation of tumor suppressor genes induced by EZH2 (182).

In addition, EZH2-mediated trimethylationmodification of histone H3

lysine 27 directly regulates sterol regulatory element binding

transcription factor 2 (SREBF2) and its target gene SQLE, which in

turn influences the synthesis of endogenous cholesterol in HNSCC.

Inhibition of EZH2 strongly activates genes related to cholesterol

synthesis and rewrites cholesterol metabolism. As a result, DZNep,

an EZH2 inhibitor, showed an impeded function in the proliferation

and survival of the human hypopharynx carcinoma cell line FaDu

(182). Furthermore, the effects of EZH2 inhibitors have been found to

be enhanced following the inhibition of SQLE (178). Nonetheless,

further study is needed to fully elucidate the mechanisms.
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2.5.4 Dysregulated sterol lipids trafficking in head
and neck cancer
2.5.4.1 Low-density lipoproteins receptor

The LDLR is responsible for trafficking of lipoprotein into cells.

Increased level of LDLR has been detected in a variety of tumors,

including pancreatic cancer (183), glioblastoma cancer (100), and

breast cancer (184). However, the level of LDLR in HNSCC remains

unreported. Meanwhile, a Mendelian randomization study

suggested that LDLR variants decreased the risk of combined oral

and oropharyngeal cancer via heritable reduction of LDL-C (175).
2.6 Alteration of prenol lipids, polyketides,
saccharolipids metabolism in head and
neck cancer

There have been no reports on the dysregulation of prenol

lipids, polyketides, or saccharolipids in HNSCC to date, making

them promising areas for further exploration.
3 Relationship between lipid
metabolism and risk factors of head
and neck cancer

3.1 Tobacco and alcohol consumption

Tobacco consumption is a well-established etiological factor in

HNC (185, 186). Studies have consistently shown that HNSCC

patients with a history of tobacco consumption have a significantly

lower level of TC when compared with healthy individuals,

especially those without a tobacco consumption history (18, 27,

187, 188). However, there’s no difference in serum levels of TC,

LDL, VLDL, HDL, and triglyceride between oral cancer patients

with and without tobacco consumption habit (189, 190).

Interestingly, the level of serum HDL in oral cancer and oral

precancer patients with habit of tobacco was decreased when

compared to healthy controls with habit of tobacco use (189).

Thus, tobacco carcinogens may increase the generation of free

radicals and reactive oxygen species, leading to elevated

oxidation/peroxidation rates of polyunsaturated fatty acids, which

in turn affect the basic components of cell membranes and

potentially be involved in the process of carcinogenesis (191).

Alcohol consumption is another established risk factor of HNC

(192, 193). Prediagnosis alcohol intake has been associated with

significantly poor overall survival in HNSCC patients in a dose-

dependent pattern (194), which might be modified by the genetic

polymorphisms of ADH1B and ALDH2 (195). Chronic excessive

alcohol consumption is proposed to impair the effect of PPARa,
which is involved in b-oxidation, disrupts the biosynthesis of

cholesterol, and induces the accumulation of triglycerides (196).
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3.2 Infection of human papillomaviruses

HPV infection has emerged as a hot spot in HNC research.

HNSCC patients with different HPV infection status have different

clinical outcomes (197, 198). Two virus oncoproteins, E6 and E7,

contribute to the tumorigenic potential of HPV by inhibiting and

degrading the tumor suppressor p53 and retinoblastoma-associated

protein (pRB), respectively (199). What’s more, E6 stimulates

hypoxia-inducible factor 1-a (HIF1a), leading to the activation of

SREBP1, which, in turn, increases lipid synthesis by stimulating the

expression of FASN and ACC. Additionally, HIF1 could promote

the lipid uptake via upregulating receptor proteins from the CD36

family and FABPs (200). Moreover, E6 activates PI3K/Akt/mTOR

pathways, resulting in the upregulation of downstream SREBP1 to

mediate adipogenesis (201). The inactivation of Rb by E7 also

activates the PI3K/Akt/mTOR pathway to promote adipogenesis

(202). In HPV-positive HNSCC, a series of genes, such as PIK3CA,

DDR2 or NF-kB, are found significantly mutated, contributing to

the stimulation of glutamine and lipid metabolism (203–205).

Meanwhile, HPV-negative HNSCC often exhibits inactivation of

tumor suppressors, for example, p53, leading to the promotion of

glycolysis (203–205).
3.3 High-fat diet and obesity

Unhealthy diet pattern disturbs the lipid metabolism and plays

an important role in HNSCC. The consumption of fried meals,

high-fat and processed meats, and sweets has been linked to an

increased risk of laryngeal cancer (206–208). Specifically, the

consumption of “unsaturated fats” and “animal unsaturated fatty

acids” has been identified as risk factors for laryngeal carcinoma but

protective factors for oral and pharyngeal cancer, as supported by

references (209, 210). Intriguingly, different fat subtypes have been

associated with the prognosis of HNSCC patients, impacting

outcome factors such as recurrence and mortality. It was shown

that high long-chain fatty acid (LCFA), unsaturated fatty acid, w-3
PUFAs, and w-6 PUFAs diet was significantly associated with a

reduced risk of all-cause mortality, respectively (211). Additionally,

a high intake of unsaturated fatty acid has been shown to reduce the

specific mortality risk associated with HNSCC (211). Interestingly,

it has been observed that a diet pattern with a low w-6/w-3 fatty acid
ratio (w-6/w-3 = 2) suppressed carcinogenesis in the DMBA/BQE-

induced hamster oral cancer model via inhibiting the expression of

NF-kB p65, PCNA, and cyclin D1 (212).

Obesity, as one of the consequences of high-fat diet, is

associated with an elevated incidence and impacts the overall

survival of many human cancer types (213–216). In the

complicated crosstalk between adipose tissue and cancer cells,

mature adipocytes provide adipokines and lipids to cancer cells,

while stromal and immune cells within adipose tissue release
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paracrine factors into the tumor microenvironment. Concurrently,

the proliferation of cancer cells drives lipolysis in adipocytes (217).

The possible mechanisms underpinning in the obesity-cancer link

are proposed as: chronic inflammation in adipose tissue, oxidative

stress, interplay between cancer cells and neighboring adipocytes,

obesity-induced hypoxia, genetic susceptibility, immune response,

and more (215).

However, the impact of obesity on head and neck cancer

remains a subject of debate. There are some studies reported no

significant association between body mass index (BMI) and the

incidence of head and neck cancer (218, 219). In contrast,

Dannenberg et al. reported that obesity was an independent risk

factor for T1/2N0M0 OSCC patients, leading to poorer

progression survival and disease-specific survival (220). In an in

silico study, a combination of lipid metabolism-related genes,

including TGFB1, SPP1, and SERPINE1, was proposed to be

potential prognosis markers of OSCC patients (220, 221).

Conversely, there are other studies showing that obesity was

more likely to be a protective factor against the development of
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head and neck cancer (222–224). In a retrospective study, Gupta

et al. brought out that being obese at the time of diagnosis of

HNSCC (including oropharynx cancer, laryngeal carcinoma, and

oral cancer patients; 72% of the patients were identified as stage

IVA/B, and 28% identified as stage I-III), was an independent

prognostic factor conferring better survival, suggesting extended

time to recurrence, and better improvement of distant control

(223). In a multinational case-control study conducted across nine

countries, a low BMI was found to be associated with an increased

risk of oral cancer. This conclusion remained consistent even after

stratified analyses were performed (224). The underlying factors

contributing to this contradiction might lie in the confounding

variables such as age, alcohol and cigarette consumption, cancer

stage, and treatment characteristics. A systemic review has

summarized that obesity mechanically influences the levels and

activities of lipid metabolism-related molecules (e.g., FFA, FAS,

sPLA2, FABP4, and FABP5), thereby contributing to the

carcinogenesis and progression of head and neck cancer (225).

Nonetheless, the precise mechanism through which obesity may
FIGURE 2

Schematic representation of lipid metabolism reprogramming implicated in head and neck cancer. Generally, in the biosynthesis of fatty acids (FAs), acetyl-CoA
generated from citrate is converted to malonyl-CoA by the upregulated acetyl-CoA carboxylase (ACC). Malonyl-CoA combines with acetyl-CoA to generate
palmitate acid via activated FASN. The palmitate acid is elongated to form monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs) by the
activated stearoyl-CoA desaturase (SCD). In the catabolism, FAs are transported into the mitochondrial matrix for oxidation by the activated carnitine
palmitoyltransferase 1 (CPT1). Additionally, cluster of differentiation 36 (CD36) and fatty acid-binding proteins (FABPs) which are responsible for the trafficking of
FAs are notably upregulated in head and neck cancer (HNC). As an important substrate, acetyl-CoA is also converted to acetoacetyl-CoA and HMG-CoA after a
serious of reactions. 3-hydroxy-3-methylgrutaryl (HMG-CoA) is transformed to mevalonate by activated 3-hydroxy-3-methylgrutaryl (HMG)–CoA reductase
(HMGCR). Squalene is converted by the upregulated squalene epoxidase (SQLE) to form cholesterol, which is another important lipid category. As for the
biosynthesis of glycerolipid, fatty acyl-coenzyme A (FA-CoA) condenses with glycerol-3-phosphate (Gly3P) to generate lysophosphatidic acid (LPA) via glycerol-
3-phosphate acyltransferase (GPAT). With the function of 1-acyl-sn-Gly3P acyltransferase (AGPAT) and lysophosphatidic acid acyltransferase (LPAAT), LPA is then
transformed into phosphatidic acid (PA). Using phosphatidic as the source, glycerophospholipids (GPLs) is generated from after attached with different head
groups and it is degraded by phospholipase A2 (PLA2) to generate FAs and lysophospholipids (LPLs). On the other hand, diacylglycerol (DAG) is generated by the
function of phosphatidic acid phosphatase (PAP). DAG, in turn, generates triacylglycerol (TG) by activating diglyceride acyltransferase (DGAT). During the
catabolism of neutral TG, adipose triglyceride lipase (ATGL) first converts TGs into diacylglycerol (DGs), and then hormone-sensitive lipase (HSL) hydrolyzes DGs
to form monoacylglycerols (MGs). Finally, MAG lipase (MGL) hydrolyzes MGs and generates FAs and glycerol. Ceramide is the main type of sphingolipid. It is
generated by the condensation of serine and palmitoyl-CoA via the function of serine palmitoyltransferase (SPT). Ceramide is degraded into sphingosine-1-
phosphate (S1P), with the function of Ceramidases (CDases), sphingosine kinase 1 (SphK1) and Sphingosine kinase 2 (SphK2).
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reduce the risk of head and neck cancer remains elusive. In

conclusion, further research is required to elucidate the

relationship between obesity and head and neck cancer. And of

importance, promoting a healthy diet and lifestyle should be

emphasized in public health education for cancer prevention.
4 Conclusions

Lipid metabolism reprogram plays a critical role in the

carcinogenesis and progression of head and neck cancer. In the

present review, we have summarized the current understanding and

advantages regarding the abnormal lipid metabolism profile, novel

biomarkers, and possible mechanisms in head and neck cancer,

according to the LIPID MAPS Lipid Classification System and

cancer risk factors (Figure 2). We also discuss and emphasize their

potential applications as biomarkers in the diagnosis, treatment and

prognosis of head and neck cancer (Table 2).

Although significant advances have been made, as underscored

in our review, there are still many unresolved scientific gaps
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demanding to be addressed. For instance, the roles of HSL, MCL,

prenol lipids, polyketides, and saccharolipids in head and neck

cancer need to be clarified. A more in-depth exploration of the

related mechanisms is essential to shed light on the signaling

crosstalk responsible for the alteration of lipid metabolism. The

controversial roles of phosphatidylcholine, acetyl-CoA carboxylase,

and especially obesity, remain to be elucidated. What’s more, there’s

still an urgent need for the identification of novel therapeutic targets

related to lipid metabolism.

In conclusion, a more profound understanding of lipid

metabolism alterations and the intricacies of associated

mechanisms will improve the accuracy of diagnosis, enable the

customization of personalized treatments, and fine-tune prognosis

strategies for individuals facing head and neck cancer.
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