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Purpose/objective(s): Previous deep learning (DL) algorithms for brain metastasis

(BM) detection and segmentation have not been commonly used in clinics because

they produce false-positive findings, require multiple sequences, and do not reflect

physiological properties such as necrosis. The aim of this study was to develop a

more clinically favorable DL algorithm (RLK-Unet) using a single sequence reflecting

necrosis and apply it to automated treatment response assessment.

Methods and materials: A total of 128 patients with 1339 BMs, who underwent

BM magnetic resonance imaging using the contrast-enhanced 3D T1 weighted

(T1WI) turbo spin-echo black blood sequence, were included in the development

of the DL algorithm. Fifty-eight patients with 629 BMs were assessed for

treatment response. The detection sensitivity, precision, Dice similarity

coefficient (DSC), and agreement of treatment response assessments between

neuroradiologists and RLK-Unet were assessed.

Results: RLK-Unet demonstrated a sensitivity of 86.9% and a precision of 79.6%

for BMs and had a DSC of 0.663. Segmentation performance was better in the

subgroup with larger BMs (DSC, 0.843). The agreement in the response

assessment for BMs between the radiologists and RLK-Unet was excellent

(intraclass correlation, 0.84).

Conclusion: RLK-Unet yielded accurate detection and segmentation of BM and

could assist clinicians in treatment response assessment.
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1 Introduction

Lung cancer is the most frequent source of brain metastases

(BMs), and 30%–50% of patients with lung cancer develop BMs

during the course of the disease (1). As a result, brain magnetic

resonance imaging (MRI) has become an important part of staging

and treatment planning for lung cancer. Many guidelines

recommend brain MRI for the screening and follow-up of BMs in

advanced non-small lung cancer or small cell lung cancer (2, 3).

However, the detection of small BMs and an accurate assessment of

treatment response require tedious effort by radiologists. In

addition, stereotactic radiosurgery has become popular in the

treatment of BMs; therefore, manual segmentation of BMs has

significantly increased the workload of radiosurgeons (4, 5).

In this context, recent studies (6–8) have implemented deep

learning models, particularly deep convolutional neural networks

(CNNs), for the automatic detection and segmentation of BMs, and

have reported promising results with sensitivities of up to 90% and

Dice coefficients of up to 0.8. However, the studies often report a

substantial number of false-positive (FP) results and low sensitivity

in detecting small BMs. Moreover, their segmentation methods

were based on multiparametric scans such as the T1-weighted

image T2-weighted image (T2WI), contrast-enhanced T1WI, and

fluid-attenuated inversion recovery (FLAIR). However, these

methods are not always favorable because additional sequences

may increase the scan time and are often acquired with a larger

thickness and lower resolution, which may add uncertainty to the

segmentation. A few studies (9, 10) have used a single modality—in

particular, the contrast-enhanced 3D gradient echo (GRE) T1WI

sequence. However, recent studies (11, 12) have demonstrated that

the three-dimensional (3D) black blood (BB) T1WI sequence is

superior to the 3D GRE T1WI sequence in detecting small BMs by

suppressing intraluminal blood signals. In a subsequent study, deep

learning (DL)-based methods for BM detection and segmentation,

utilizing the 3D BB T1WI sequence, demonstrated a better

performance advantage over methods employing the 3D GRE

T1WI sequence (8). In that study, the sensitivity for detecting

brain metastases (BM) on 3D BB T1WI was higher at 92.6%

compared to the sensitivity on 3D GRE T1WI, which stood

at 76.8%.

Another limitation of previous studies is that internal necrosis

was included in the BM segmentation. BM necrosis may represent a

by-product of chemotherapy or radiation therapy (13, 14). The

Response Assessment in Neuro-Oncology Brain Metastases

(RANO-BM) criteria also recommend that these necrotic or cystic

cavities should not be measured for determining a response (15).

Thus, previous BM segmentation algorithms that included solid

components and necrosis may lead to inappropriate

treatment assessment.

The aims of our study were two-fold (1): to assess whether a DL

algorithm using a single modality, 3D BB T1WI, has promising

performance for the detection and segmentation of BMs and (2) to

investigate whether the volumetric assessment using our developed

DL algorithm, excluding necrosis, is comparable to the

conventional assessment based on the RANO-BM criteria.
Frontiers in Oncology 02
2 Materials and methods

2.1 Participants

This retrospective study was approved by our institutional

review board, which waived the requirement for informed

consent. We retrospectively searched the electronic medical

records to identify patients with lung cancer who underwent

brain MRI to evaluate BMs diagnosed between April 2017 and

December 2021. For the segmentation of BMs between April 2017

and October 2020, 128 consecutive patients with newly developed

1339 BMs were included (Dataset 1). For the assessment of the

treatment response between November 2020 and December 2021,

59 consecutive patients with 629 BMs were included (Dataset 2).

The detailed inclusion and exclusion criteria are described in

Supplementary Material S1. Histopathological diagnoses of lung

cancer were determined by using bronchoscopic, percutaneous

needle-guided, or surgical biopsies in all patients.
2.2 MRI protocol

Routine MRIs for the evaluation of the BMs were acquired using

the Siemens 3T Vida scanner (Siemens Healthineers, Erlangen,

Germany) or the GE 3T Discovery MR750 scanner (GE Healthcare,

Milwaukee, WI, USA). Our BM MRI protocol consisted of T1-

weighted image (T1WI), T2-weighted image (T2WI), FLAIR,

contrast-enhanced T1WI, and BB T1WI. Contrast-enhanced

images were acquired after administering gadobutrol (0.2 mmol/

kg; Gadovist, Bayer Schering Pharma; Berlin, Germany). Detailed

MR parameters are provided in Supplementary Material S2.
2.3 BM segmentation

The ground truths (GTs) in all BMs were carefully drawn by a

radiologist with 8 years of clinical experience, while avoiding cystic

or necrotic areas on contrast-enhanced BB T1WIs and referring to

T1WIs, T2WIs, and contrast-enhanced T1WIs, by using the open-

source software ITK-Snap, version 3.8.0 (available at

www.itksnap.org) (Figure 1) (16). Another neuroradiologist with

14 years of clinical experience confirmed the segmented BMs or

modified ambiguous cases.
2.4 Treatment response

The treatment response, based on the RANO-BM criteria, was

independently assessed and classified into three categories by two

radiologists (HSO and SJA, who had 4 years and 14 years of clinical

experience, respectively) (15): complete response (CR), partial

response/stable disease (PR/SD), and progressive disease (PD).

Inconsistent cases were determined by a consensus between the

two radiologists. The treatment response of the DL algorithm was

based on the volumetric response by using the modified RANO-BM
frontiersin.org
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criteria (17). While the RANO-BM guidelines emphasize the

significance of volumetric analysis, they do not provide specific

criteria. Therefore, we took inspiration from the fundamental

principles of the RANO-BM guidelines and defined volumetric

criteria based on the established unidimensional recommendations,

using spherical geometry. In this context, PD was defined as a

volume increase of ≥ 72.8% in the present study compared to the

baseline. This corresponds to a ≥ 20% increase in the diameter of a

perfect sphere, aligning with the unidimensional RANO-BM

criteria for progression.
2.5 Deep learning algorithm

The U-Net architecture is a powerful and flexible tool for image

segmentation tasks, and its success has led to the development of many

variations and extensions of the original architecture (18–20). In the

current study, we propose a modified DL-based 3D U-Net

architecture, named RLK-Unet, which incorporates re-

parameterizing and multiscale highlighting foregrounds (MHFs),

along with postprocessing (Figure 2). The training data for RKL-

Unet consisted of contrast-enhanced 3D BB T1WIs as the input and

the GT as the reference mask. The experiments were conducted by

splitting Dataset 1 into five folds. In each round of the five-fold cross-

validation procedure, four data folds were employed as the training

cases, and the remaining fold was used for testing. Ten percent of the

training samples were randomly selected for validation. Particularly,

the stratified K-fold method was used to ensure an even distribution of

small and large BMs in both the training and test sets (21). Details of

the network configuration are provided in Supplementary Material S3.

RKL-Unet comprises an encoder that extracts the low-level

features of the input data and a decoder that reconstructs the

corresponding label map. Feature maps of the encoder are passed to

the decoder by using skip connection, which concatenates the

feature maps from the corresponding encoder layer to preserve

the spatial information lost in the encoding stage (22). To improve

the segmentation performance, we applied the guidelines proposed

by Ding et al. (23) to the encoder of our architecture, which allowed
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us to build a large receptive field by using a large kernel. Thus, we

used a large kernel structure (13 × 13 × 13) instead of a small kernel

(3 × 3 × 3) that is typically used in U-Net models to extract feature

maps through large receptive fields. Furthermore, we introduced

MHFs into the U-Net architecture, highlighting foreground regions

at multiple scales, which allowed the network to better differentiate

between BMs and healthy brain tissue, even in situations in which

lesions are small or have a low contrast (24). Additional

postprocessing was conducted to eliminate blood vessels that were

incompletely suppressed in the BB images and choroid-plexuses,

which may mimic BMs and increase the number of FPs. We

implemented the surface and choroid plexus mask to effectively

reduce the number of FPs in the output. This process is conducted

solely on the foreground channels of the output features of the

trained model. Detailed postprocessing is described in

Supplementary Material S4.
2.6 Statistical methods

Lesion-based sensitivity and precision were calculated to assess

the detection performance of the DL algorithm. Sensitivity and

precision were defined by using true-positive (TP), false-negative

(FN), and FP metrics, as follows:

Sensitivity =
TP

TP + FN

Precision =
TP

TP + FP

Sensitivities were also evaluated with respect to the size of BMs

(i.e., ≤10 mm or >10 mm). The automatic segmentation results were

compared with the GT, using the Dice similarity coefficient (DSC)

to investigate the segmentation performance of the DL algorithm.

The DSC computes the overlap of the GT segmentation (Vg) and

automatic segmentation (Vs), as follows:

DSC =
2* Vs ∩ Vgj j
Vsj j   +   Vgj j
FIGURE 1

(A) A large necrotic brain metastasis (BM) is noted in left parietal lobe on contrast-enhanced 3D turbo spin-echo (TSE) black blood (BB) sequence.
(B) Radiologist manually segmented BM avoiding a necrosis (red). (C) RLK-Unet algorithm predicted segmentation of BMs. Dice similarity coefficient
(DSC) was 0.894.
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Pearson’s correlation and Bland–Altman analysis were

conducted to compare volumetric measurements of the GT and

automatic segmentations (25, 26). Agreement between the

neuroradiologist and the DL algorithm for treatment response

was assessed by using the intra-class correlation coefficient (ICC)

with a two-way random model of absolute agreement (27).
3 Results

3.1 Patient characteristics

In our study, a total of 186 patients diagnosed with lung cancer

and brain metastases (BMs) were enrolled and categorized into two

distinct groups. Dataset 1, designated for BM segmentation,

comprised 128 patients with a mean age of 67.1 ± 9.9 years,

consisting of 87 men and 41 women. Dataset 2, intended for

response assessment, involved 58 pairs of sequential brain MRIs

corresponding to 58 patients, with a mean age of 63.2 ± 9.5 years,

including 35 men and 23 women. The average time interval between

the baseline and follow-up MRI scans was 3.53 ± 1.32 months.

Among the 58 lung cancer patients, the breakdown of treatments
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was as follows: 57% underwent whole-brain radiotherapy (WBRT),

19% received stereotactic radiosurgery (SRS) alone, 15% were on

tyrosine kinase inhibitors alone, and 9% underwent a combination

of SRS and WBRT. Comprehensive patient characteristics are

detailed in Table 1. Distribution of small and large BMs in

training and test sets during 5-fold cross-validation is

summarized in the Table 2. Bar graph describes distribution of

size of BMs across all folds (Supplementary Materials S4, S5).
3.2 Detection and segmentation
performance of DL algorithms

The detection sensitivities and precisions of RLK-Unet are

summarized in Table 3. RLK-Unet demonstrated a sensitivity of

86.9% and a precision of 79.6% for all BMs. False positive (FP) per

scan was 1.76. In particular, we evaluated the predicted result from

RLK-Unet, focusing on the assessment of segmentation

performance that excludes necrosis and the detection of small

BMs. The predicted results of RLK-Unet were analyzed by

categorizing the BMs into two groups using a diameter threshold

of 10 mm. The sensitivity and precision for the detection of small
FIGURE 2

The workflow of the RLK-Unet algorithm, which includes a reparameterized large kernel and multiscale highlighting foregrounds. RLK-Unet has four
layers in the encoder and the decoder, respectively. To capture information from a large region, a large kernel (13×13×13) was applied in the
encoder and multiscale highlighting foregrounds were introduced in the decoder to improve the detection of brain metastases. Conv, convolution;
DW-Conv, depth-wise convolution; GELU, Gaussian error linear unit.
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BMs (≤10 mm) were 80.84% and 87.39% respectively, whereas the

sensitivity and precision for large BMs (>10 mm) was 98.66% and

91.10% respectively. In addition, FP per scan for small BMs was

relatively higher (1.6) than that for large BM (0.15).

The DSC for all BMs was 0.663, whereas the DSCs for the large

and small BMs were 0.851 and 0.535, respectively (Figure 3).

Figure 4 displays the volumetric correlation between the GT and

the automated segmentation. The Pearson’s correlation coefficient

(r) was 0.96, which indicated a strong positive correlation between

the two sets. Bland–Altman analysis findings also demonstrated

excellent agreement with a difference of 0.01 cm3 between the two

sets of results. These results confirmed the accuracy and reliability

of the proposed algorithm.

The detection and segmentation performance of each step of

RLK-Unet are presented in Supplementary Material S7. The use of

encoder blocks with a large kernel (13 × 13 × 13) in our 3D U-Net
Frontiers in Oncology 05
architecture improved the sensitivity for detecting BMs to 88.3%,

compared to the sensitivity of 84.5% that was achieved using smaller

kernel sizes. The application of MHFs increased the precision from

68.4% to 73.9%. After postprocessing, the precision further

improved from 73.9% to 79.6%.
3.3 Agreements in the response
assessment for BMs

The agreement in the response assessment of BMs between the

radiologists and the DL algorithm was excellent [ICC = 0.84; 95%

confidence interval (CI), 0.75-0.91]. Response assessment for BM in

87.9% (51/58) of patients was agreed on by the radiologist and the

DL algorithm (Table 4). The DL algorithm overestimated the

response assessment in 6.8% (4/58) of patients (Figure 5) in

which all PR/SD cases were misclassified as PD, and

underestimated the response assessment in 5.1% (3/58) of

patients (Figure 6), in which one PD case was misinterpreted as

PR/SD and two PR/SD cases were misinterpreted as CR.
4 Discussion

RLK-Unet for the detection and segmentation of BMs has two

clinically favored features that previous models have rarely tried.

First, RLK-Unet was based only on a single modality, 3D BB T1WI.

Second, RLK-Unet segments the solid part of the tumor to avoid

necrosis. Nevertheless, RLK-Unet exhibited promising performance

for detection and segmentation. Moreover, the volumetric

assessment by RLK-Unet strongly agreed with that of the

response assessment by the radiologist, based on the RANO-BM

criteria. Thus, our model is expected to facilitate clinical workflow

and to potentially improve patient outcomes via a volumetric

assessment of the treatment response.

While earlier studies demonstrated high sensitivity in the

detection of BMs, surpassing 80%, they were accompanied by a

significant number of FPs and, consequently, exhibited low

precision, as indicated in Table 5 (7, 10, 28, 29). Subsequent

research, incorporating multiple modalities, showed improved
TABLE 2 Distribution of small and large BMs in training and test sets during 5-fold cross validation.

Training Test

Small BM Large BM Small BM Large BM

Number of BMs at fold 1 994 (84.1%) 187 (15.9%) 120 (75.9%) 38 (24.1%)

Number of BMs at fold 2 881 (81.7%) 197 (18.3%) 233 (89.2%) 28 (10.8%)

Number of BMs at fold 3 665 (82.5%) 141 (17.5%) 449 (84.2%) 84 (15.8%)

Number of BMs at fold 4 999 (84.3%) 186 (15.7%) 115 (74.6%) 39 (25.4%)

Number of BMs at fold 5 917 (82.9%) 189 (17.1%) 197 (84.5%) 36 (15.5%)

Mean 891 (83.1%) 180 (16.9%) 222 (83.1%) 45 (16.9%)
Small BM: Brain metastasis (≤10 mm in diameter).
Large BM: Brain metastasis (>10 mm in diameter).
Data are presented as numbers of patients (%).
TABLE 1 Patients’ characteristics.

Variable Dataset for
BM
segmentation
(n=128)

Dataset for
response
assessment
(n=58)

Total
(n=186)

Age (y,
mean ± SD)

67.15 ± 9.86 63.21 ± 9.46 65.92
± 9.88

Sex

Female 41 (32.0%) 23 (39.7%) 64 (34.4%)

Male 87 (68.0%) 35 (60.3%) 122
(65.6%)

Number of BMs

1 29 (22.7%) 10 (17.2%) 39 (21.0%)

2–5 47 (36.7%) 24 (41.4%) 71 (38.2%)

6–10 21 (16.4%) 11 (19.0%) 32 (17.2%)

>10 31 (24.2%) 13 (22.4%) 44 (23.7%)

Volume of
BM, mm3

(mean ± SD)

694.13 ± 2057.07 419.01 ± 1192.27 608.34
± 1832.81
BM, brain metastasis; SD, standard deviation.
Data are presented as the mean ± standard deviation or as numbers of patients (%).
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performance with sensitivities ranging from 82% to 100% and

reducing the FP rate to between 0.6 and 1.5 per scan (6, 8, 30).

Notably, a recent study, utilizing a single modality, introduced a

novel loss function and integrated temporal prior information,

achieving exceptional results (sensitivity: 84%; precision: 99%; FP

rate: 1) (31). Another extensive study also reported remarkable

outcomes (sensitivity: 88.4%; precision: 90.1%; FP rate: 0.4) (32).
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However, it is essential to acknowledge that most of these studies

did not address the critical issue of excluding internal necrosis,

which is pivotal for accurate volumetric assessment of tumor

burden. In contrast, our RLK-Unet successfully addressed the

exclusion of necrotic regions within BMs, achieving outstanding

performance (sensitivity: 86.9%; precision: 79.6%; FP rate: 1.8). To

achieve this, we implemented several strategies within our DL

algorithm, enabling us to maintain high sensitivity while

concurrently reducing the FP rate.

First, the DL model was based on a BB image. A previous meta-

analysis (33) reported the superiority of BB images for the detection

of small BMs (<5 mm) because these images suppress the blood

signal and have a higher contrast-to-noise ratio, compared to GRE

images. In accordance with this finding, RLK-Unet maintained a

high sensitivity of 80.84 in detecting small BMs (≤10 mm), whereas

previous models showed a relatively lower performance for small

BMs (sensitivity: 15–50) (7, 29). Second, we used a few large kernels

instead of a stack of small kernels in the CNN. This approach

resulted in larger effective receptive field more efficiently, thereby

significantly increasing the sensitivity from 84.52 to 88.36

(Supplementary Material S2) (23). However, because of trade-off
FIGURE 3

Representative figures, voxel counts of ground truth, prediction, true positives and DSC scores of large BM (A–C) and small BM (D–F). Red and
green colors indicate false positives and false negatives, respectively, while the yellow color represents true positives.
TABLE 3 Detection and segmentation performance of RLK-Unet.

Small BM Large BM All

Detection

Sensitivity (%) 80.84 ± 7.32 98.66 ± 1.26 86.90 ± 4.07

Missed BM/patient (%) 1.67 ± 0.93 0.03 ± 0.05 1.71 ± 0.86

FP/scan 1.60 ± 0.19 0.15 ± 0.10 1.76 ± 0.22

Precision (%) 78.39 ± 8.27 91.10 ± 6.18 79.60 ± 6.46

Segmentation

DSC 0.54 ± 0.08 0.85 ± 0.03 0.66 ± 0.02
BM, brain metastasis; DSC, Dice similarity coefficient; FP, false-positive.
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between sensitivity and precision, the precision of RLK-Unet was

unfortunately decreased from 80.6 to 68.4. To replenish this, we

implemented MHFs, which maximize the contrast between BMs

and normal brain tissue, thereby increasing precision. Lastly, the

surface mask effectively decreased FPs, by suppressing some blood

vessels that were incompletely suppressed in BB images (34). The

choroid plexus also frequently mimicked BMs in our model. It was

successfully removed using the choroid plexus mask.

RLK-Unet demonstrated a DSC of 0.66 in segmenting BMs.

This value is lower than that reported in previous studies (0.77–

0.85) (7, 10, 28). We suggest the following explanation for this

result: the DSC cannot incorporate the size of the BMs within its

score. Only small pixel differences between the GT and the

prediction in small BMs may substantially decrease the score

(Figure 3) (35). In line with this suggestion, our results showed

excellent segmentation performance in larger BMs (DSC of large

BMs vs. small BMs: 0.85 vs. 0.54). We presume that small pixel

differences in the segmentation of small BMs rarely affect the

volumetric assessment. The excellent agreement in the volume

measurement of the BM between the GT and the prediction in

our results also supports our assumption.

Volumetric measurement may provide a more objective and

sensitive quantification to evaluate tumor response to treatment than

does linear measurement in the current RANO-BM criteria (36).

However, it is not clinically feasible because the manual volumetric

measurement is a labor-intensive, time-consuming, and complex task

(37). The clinical significance of our work lies in the fact that our
Frontiers in Oncology 07
automated DL algorithm may alleviate these tedious and labor-

intensive tasks while maintaining results similar to those of

conventional tumor assessment by a radiologist. Cho et al. (38)

recently showed the possibility of end-to-end automated treatment

response evaluation of BM. However, the sensitivity of BM detection in

their system was relatively low (58.0%–80.0%). In addition, their BM

segmentation method included internal necrosis, which should be

avoided in volumetric measurements. Previous studies have reported

that the presence of necrosis in BMsmay be an indication of a response

to chemotherapy or radiation therapy (14). Furthermore, various

imaging characteristics can change during the course of treatment.

For instance, patients receiving a combination of tyrosine kinase

inhibitors and intracranial radiation therapy are more likely to

experience hemorrhages within their BMs (39). Additionally, the

values of the apparent diffusion coefficient show alterations before

and after chemoradiation therapy (40). As a result, monitoring changes

in these imaging characteristics is essential for assessing the treatment

effects on BMs. Considering these aspects, our method may offer

improved performance and better alignment with real-world clinical

scenarios. Based on these perspectives, our method may have better

performance and may better reflect real-world clinical settings.

However, RLK-Unet also showed three disagreements with the

conventional RANO-BM criteria for treatment assessment (5.1%; 3/58

patients). RLK-Unet may overestimate treatment responses because it

records an equivocal enhancement as a true lesion and may

underestimate treatment responses because it ignores subtle

enhancement after treatment. The incorporation of dynamic
TABLE 4 Response assessment by the radiologists and by the deep learning algorithm.

Response assessment by the deep learning algorithm

CR PR/SD PD

Response assessment by radiologist CR 3 0 0

PR/SD 1 24 1

PD 0 1 28
CR, complete response; PR/SD, partial response/stable disease; PD, progressive disease.
A B

FIGURE 4

Volumetric correlations between ground truth and automated segmentations of BMs. (A) Pearson correlation (r) at the lesion level. The shaded area
indicates the 95% confidence interval (95% CI) of the fitted line (y = the regression equation). (B) Bland–Altman analysis at the lesion level. The solid
line indicates the mean difference between the two segmentations, whereas the dotted lines indicate the 95% limit of agreement. BM, brain
metastasis; GT, ground truth.
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information from longitudinal images into the DL algorithm may

improve performance. With an in-depth comparison of pre- and

posttreatment images, the DL algorithm may better detect subtle

changes in tumor size and assess the treatment response more

precisely (41).

Our study has some limitations. First, it was a retrospective single-

center study, which is insufficient to address variability in scanning

techniques and hardware implementation across hospitals. We used

five-fold cross-validation for detection and segmentation and a

temporally separated internal test set for the treatment response

assessment; however, a multicenter study in the near future is

required to improve the generalizability of our results. Second, RLK-

Unet has some limitations in assessing leptomeningeal seeding,

pachymeningeal seeding, and skull metastases because we excluded

these factors from our cohort or removed the skull during

preprocessing. Third, RLK-Unet was based on patients with lung

cancer and may not be applicable to patients with other primary

cancers. Finally, in this work, a contrast-enhanced BB T1WI (3D fast

spin echo T1-weighted technique) was used for developing our

algorithm because a previous study showed that the performance of

an algorithm based on 3D BB T1WI was superior to that based on 3D

GRE T1WI (sensitivity: 92.6 vs. 76.8) (8). Our study aligns with this

result, with sensitivity, DSC, and precision for 3D BB T1WI and 3D

GRE T1WI as follows: 86.9, 0.66, 79.6 vs. 53.7, 0.46, 68.7, as shown in
Frontiers in Oncology 08
Supplementary Material 7. Consequently, our algorithm may not be

optimally applied to the 3DGRET1WI sequence, which is more widely

used for BM imaging. Lastly, the performance of our algorithm may

not be directly compared with previous studies because of a different

dataset. However, we ran publicly available algorithms such as 3D U-

Net and nnU-Net, which were utilized in prior studies (8, 30, 32), for

our dataset, and their performances are inferior to the results of our

algorithm (Supplementary Material S7). Consequently, we may

conclude that RLK-Unet shows a comparative performance for BM

detection and segmentation.
5 Conclusions

Our developed DL model for the treatment response assessment

of BM had more favorable features in clinical practice than did

models reported in previous studies. RLK-Unet uses a single

modality but shows excellent performance for the detection and

segmentation of BMs, even for small metastases. Moreover, our

segmentation results very well predicted GT, while avoiding cysts or

necrosis, and exactly measured the volumetric tumor burden. The

assessment of the treatment response showed good agreement with

the decision of the radiologists. We believe that this research takes

DL-based BM evaluation to the next level and may facilitate the

clinical workflow for radiologists or neuro-oncologists.
FIGURE 6

Examples of the underestimation of treatment response for brain
metastasis by the deep learning (DL) algorithm. (A) The baseline
contrast-enhanced three-dimensional (3D) turbo spin-echo (TSE)
black blood (BB) T1WI shows a metastasis in the right parieto-
temporal lobe (red box). (B) Our DL algorithm predicted a
corresponding metastasis. (C) On the follow up 3D TSE BB T1WI, the
radiologist classified this case as a partial response/stable. (D) The
DL algorithm missed a remaining tumor and assessed this case as
complete remission.
FIGURE 5

Examples of the overestimation of treatment response for brain
metastasis by the deep learning (DL) algorithm. (A) The baseline
contrast-enhanced three-dimensional (3D) turbo spin-echo (TSE)
black blood (BB) T1-weighted image (T1WI) shows two metastases
in both parietal cortices (green arrows). (B) Our DL algorithm
predicted two corresponding metastases. (C) In the follow-up 3D
TSE BB T1WI, the radiologist classified this case as stable. (D) The DL
algorithm regarded the equivocal enhancement (red box) in right
deep white matter as a new lesion and assessed this finding
as progression.
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TABLE 5 Comparison of published DL-based BMs detection and segmentation performance.
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