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Head and neck cancer (HNC) is the sixth most common type of cancer, with

more than half a million new cases annually. This review focuses on the role

of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons,

molecular effectors and pathways, as well as the HPV-associated

particularities of genetic and epigenetic changes and of the tumor

microenvironment occurred in different stages of tumor development. Oral

dysbiosis is associated with the evolution of HNCs, through multiple

mechanisms such as inflammation, genotoxins release, modulation of the

innate and acquired immune response, carcinogens and anticarcinogens

production, generation of oxidative stress, induction of mutations. Thus,

novel microbiome-derived biomarkers and interventions could significantly

contribute to achieving the desideratum of personalized management of

oncologic patients, regarding both early diagnosis and treatment. The results

reported by different studies are not always congruent regarding the

variations in the abundance of different taxons in HNCs. However, there is

a consistent reporting of a higher abundance of Gram-negative species such

as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis,

Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas,

Enterobacterales, which are probably responsible of chronic inflammation

and modulation of tumor microenvironment. Candida albicans is the

dominant fungi found in oral carcinoma being also associated with shorter

survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes

and Peptostreptococcus) have been associated with later stages and larger
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tumor, suggesting their potential to be used as biomarkers for tumor

stratification and prognosis. On the other hand, increased abundance of

Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of

HNC. Microbiome could also provide biomarkers for differentiating between

oropharyngeal and hypopharyngeal cancers as well as between HPV-positive

and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive

tests for microbiome-derived biomarkers detection in oral and throat

cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis

could also impact the HNCs therapy and associated side-effects of

radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors

harbor fewer mutations, as well as different DNA methylation pattern and

tumor microenvironment. Therefore, elucidation of the molecular

mechanisms by which oral microbiota and HPV infection influence the

HNC initiation and progression, screening for HPV infection and

vaccination against HPV, adopting a good oral hygiene, and preventing oral

dysbiosis are important tools for advancing in the battle with this public

health global challenge.
KEYWORDS

HNC, risk factors, signaling pathways, oral microbiota, HPV infection,
tumor microenvironment
1 Introduction

Head and neck cancers (HNCs) encompass a group of

malignancies that predominantly originate in the squamous cells

(HNSCC) lining the upper aerodigestive mucosa (1) and rank as the

sixth most common cancer globally, with an annual incidence of

over half a million new cases, projected to exceed 900,000 new cases

in 2020 (2).

HNCs have a multifactorial etiology, including genetic and

epigenetic mechanisms (3), oral dysbiosis (4), infections with

human papilloma virus (HPV), mostly oncogenic types 16 and 18

(5), and EBV (Epstein-Barr virus) (6), laryngopharyngeal reflux (7),

prior exposure to radiotherapy (8) as well as various lifestyle features,

such as heavy smoking and alcohol consumption (9, 10), chewing

betel quid (Areca nuts) (11), marijuana use (12), poor oral hygiene

(13, 14), pro-inflammatory diet (e.g., fried, smoked, or roasted meat)

(15), oral dysbiosis (16), prolonged exposure to sunlight, inhalation of

chemical pollutants (17–22) (Figure 1). These multifaceted risk

factors highlight the need for comprehensive strategies in both

prevention and management to combat HNCs effectively.

Infectious agents, including bacteria, fungi, parasites and viruses

are known to cause an important percentage of the total number of

cancers. Among viruses, HPV is one of the main risk factors for

HNCs, the HPV infection being among the several biomarkers that

can be used for the early diagnosis of HNCs (the viral DNA being

found in approximately 4.5% of all cancers and 25% of HNCs

(23–27).
02
Recent evidence shows that human microbiome and dysbiosis

are also associated with HNCs and could provide novel biomarkers

for getting one step closer to the desideratum of personalized

management of oncologic patients. The oral dysbiosis has been

associated with chronic inflammation (28), genotoxins release (29),

generation of carcinogens or inhibition of anticarcinogenic

compounds synthesis (30), favoring the occurrence of a pro-

tumor local microenvironment and causing tumor growth (29).

All these effects could be involved in the genesis or progression of

different malignancies such as upper aerodigestive tract, esophagus,

stomach, pancreas, colorectum, liver, lung and breast cancer (31).

Several papers recently described the role of HPV infection and

the composition of the host microbiome in HNCs carcinogenesis (4,

28, 32–35). However, there is still a lack of understanding of the

association between human microbiota signatures and the risk of

HNCs, designating new biomarkers in HNCs diagnosis, and the

implication of dysbiosis in HNCs therapy. Therefore, in this review,

we discussed first the most recent original paper and clinical trials

aiming to investigate the human microbiota signatures associated

with HNC and human microbiota signatures associated with a

reduced risk of HNC. Secondly, we discussed the potential

microbiome-derived biomarkers for HNCs diagnosis and

implications of oro-pharyngeal dysbiosis in HNCs therapy,

presenting the results from the very recent studies over the past

two years (36–53). Finally, we discussed the contribution of HPV

infection to HNCs initiation and progress and implications for

prevention, early diagnosis, and treatment.
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2 Oral microbiota, dysbiosis and
pathogenesis of HNCs

The oral cavity represents one of the most complex

microbiomes in the human body (54), providing support and

resources for an impressive number of microbial species (from

700-750 to several thousands) (28, 29), which include bacteria,

archaea, fungi and protozoa (55), from at least 12 phyla (28), such as

Actinobacteria , Bacteroidetes, Firmicutes, Proteobacteria ,

Spirochaetes, Synergistetes and Tenericutes (28). Oral microbes

colonize both soft tissues (tongue, soft palate, oral mucosa, and

tonsils) and hard tissues (teeth), developing specific biofilms (55).

Under normal conditions, called eubiosis, the healthy microbiota
Frontiers in Oncology 03
shows relatively constant proportions of different taxons and stable

diversity, which, in dysbiosis state, are disrupted in favor of

commensal proinflammatory and pathogenic species (29).
2.1 Human microbiota signatures
associated with HNCs

At phylum level, Firmicutes, Proteobacteria, Bacteroidetes,

Fusobacteria, and Actinobacteria were the five most abundant phyla

and accounted for > 90% of the bacterial community in aerodigestive

tract cancers, including HNC (51). Other studies reveal a decrease of

the phyla Actinobacteria and Cyanobacteria in HNCs (4, 29, 56).
FIGURE 1

Schematic overview of the predisposing factors for HNCs and the general pattern of carcinogenesis. The activated carcinogens can produce DNA
damage or are excreted. When the cellular repairing mechanisms are functioning properly, the DNA damage is repaired, but when these
mechanisms are ineffective, genetic defects are perpetuated and can ultimately lead to HNCs.
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At the genus level, Streptococcus, Abiotrophia, Prevotella and

Leuconostoc were significantly reduced in the aerodigestive tract

cancers group, Haemophilus increased, while Neisseria has been

reported to have either high or low abundance (51, 57).

Other genera commonly associated with HNCs are

Fusobacterium , Leptotrichia , Selenomonas , Treponema ,

Clostridium, and Pseudoalteromonas (40). In oral squamous cell

carcinoma (OSCC), an increased abundance of Parvimonas,

Fusobacterium (including F. nucleatum, which is reported to be

the most abundant species in OSCCs samples, and F.

periodonticum), Pseudomonas (Pseudomonas aeruginosa is

reported to be the second most abundant species in OSCCs),

Porphyromonas gingivalis (reported in gingival squamous cell

carcinoma), Peptostreptococcus, Alloprevotella, Capnocytophaga,

Prevotella, Bacteroidetes and Solobacterium, Actinomyces,

Lactobacillus, Rothia, Haemophilus and Veillonella are reported

(4, 29, 56–59).

Certain aerobic and facultative anaerobic bacteria, including

Klebsiella, Citrobacter, Streptococcus, Enterobacter, and Serratia,

have been found to affect the local tumor microenvironment in

oral carcinoma (4).

Candida albicans is the dominant fungi found in oral

carcinomas, a strong association between higher Candida carriage

and a notably shorter overall survival (OS) being observed in

patients with OSCC (60).

The abundance of different microbial species may change

during tumor progression, and possible microbiota signatures can

be associated with tumor stages and prognosis. High levels of serum

class G antibodies against F. nucleatum were found in patients with

gastrointestinal cancer and HNCs. However, in HNSCC developed

by non-smokers, the abundance of F. nucleatum is associated with

early tumor stages, but with reduced likelihood of recurrence, and

increased survival duration (36).

During the progression of OSCC from stage I to IV, the abundance

of F. periodonticum, Parvimonas micra, Streptococcus constellatus,

Haemophilus influenzae, and Filifactor alocis gradually increases,

while Actinobacteria phyla and Streptococcus mitis, Haemophilus

parainfluenzae and Porphyromonas pasteri decrease (56, 61).

Decrease of Parvimonas and increase of Fusobacterium (especially

that of F. nucleatum), Rothia, Haemophilus, Veillonella, and

Actinomyces is associated with early stages of tumor development

(36, 56, 62, 63). A comprehensive systematic review concluded that F.

nucleatum is present and in higher abundance in oral cancer samples

when compared to non-cancer samples, suggesting that could

contribute to oral cancer development (64). However, it is also

possible that tumor colonization by F. nucleatum reflects its ability to

exploit and replicate effectively in the hypoxic tumor

microenvironment. To date, several F. nucleatum-carcinoma

mechanisms have been discovered: promotion of the Wnt/b-catenin
signaling pathway through FadA binding to E-cadherin (65), inhibition

of the cytotoxicity of immune cells such as NK cells and T-cell activity

(66), LPS binding to TLR4/MYD88 pathway and mediating

downstream NF-kB expression (67) and the release of Fap2 that

binding to Gal-GalNAc ligands (68). This evidence that F. nucleatum

colonization begins early in the process of malignant transformation

supports a potential role formicrobiome changes in the pathogenesis of
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the disease (64). Consequently, Coppenhagen-Glazer and collaborators

found that F. nucleatum is a key organism between early and late

colonisers and its outer membrane adhesin Fap2 is partly responsible

for facilitatingmultispecies biofilm formation (69). Also, it was revealed

that the enrichment of F. nucleatum in OSSC is associated with host

gene promoter methylation, including hypermethylation of tumor

suppressor genes LXN and SMARCA2, a gene involved in ATP-

dependent chromatin remodeling related to DNA repair and

replication. This suggests that F. nucleatum enrichment may cause

cell proliferation through epigenetic silencing (70).

Increasing abundance of Bacteroidetes and Peptostreptococcus

has been associated with later stages and larger tumors (61). In

terms of subsequent development, the presence of higher numbers

of Stenophotromonas, Staphylococcus, Centipeda, Selenomonas,

Alloscordovia, and Acinetobacter genera in the saliva of

individuals with OSCC is associated with poor prognosis and

poorer survival rate (63). Dou and collaborators observed that

increased numbers of Schlegelella and Methyloversatilis in HNCs

are associated with poor prognosis, while abundant Bacillus,

Lactobacillus, and Sphingomonas are found in patients with

favorable prognosis (37, 71).

Salivary bacteria, such as S. salivarius, Corynebacterium, and

Stomatococcus, are associated with a strong oxidative stress that may

contribute to oncogenesis and cancer development (4). The presence of

P. gingivalis in the oral cavity tend to be associated with higher

mortality rates (61, 72, 73). P. gingivalis is known to stimulate the

production of myeloid-derived dendritic suppressor cells, which can

inhibit the activity of cytotoxic T lymphocytes, a key component of the

antitumoral immunity. Additionally, this bacterium can induce the

overexpression of matrix metalloproteinase-9 and reduce the

expression of the tumor suppressor gene TP53, thereby promoting

cell proliferation and potentially contributing to cancer development

(74). Some members of oral microbiota are metabolizing alcohol to

acetaldehyde, a potent carcinogen and are reducing the synthesis of

anticarcinogenic compounds, including siderophore group non-

ribosomal peptides, 12-, 14- and 16-membered macrolides and

monoterpenoids (30), The abundance of microorganisms in the

phyla Actinobacteria is associated with mutations in TP53, while

high numbers of Firmicutes with recurrent mutations in FAT1,

FZR1, AXIN1 and WNT (29).

C. albicans was also discovered to play a role in accelerating the

progression of OSCC in vitro. This acceleration was attributed to

several mechanisms, including the increased synthesis of matrix

metalloproteinases and oncometabolites, the promotion of pro-

tumor signaling pathways, and the upregulation of genes associated

with prognostic markers for metastatic events (44, 75). Given these

insights, there is potential for interventions targeting C. albicans to

serve as a therapeutic strategy for HNC, offering promising avenues

for developing novel treatments.
2.2 Human microbiota signatures
associated with a reduced risk of HNC

The abundance of microorganisms of the genera

Corynebacterium, Kingella (especially K. denitrificans), Neisseria,
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Abiotrophia, and Capnocytophaga is associated with a reduced risk

of laryngeal cancers and the increased abundance of Actinomyces

(A. oris), N. sicca and Veillonella denticariosi species with a reduced

risk of pharyngeal and other HNCs (29, 74). Many commensal

bacteria from the genera Corynebacterium and Kingella appear to

have a preventive effect on developing HNCs (76), and the

abundance of Veillonella is associated with better overall

prognosis of OSCCs (63). In 2018, a nested case-control study

including 129 HNC patients, revealed that Corynebacterium and

Kingella can reduce the risk of developing HNCs by contributing to

the breaking down and neutralization of harmful toxic substances,

including compounds like toluene, styrene, and chlorobenzene (76).

Another recent nested case-control study aiming to investigate

the relationship of oral microbiome with HNC demonstrated that

the presence of oral fungi and relative abundance of multiple

microbial species, including the red- and orange-complex

periodontal pathogens (C. albicans, K. oralis, P. gingivalis), were

associated with reduced risk of HNC (53).

The relationships between several types of HNCs and

microorganisms is summarized in Table 1.
2.3 Potential microbiome-derived
biomarkers for HNCs diagnosis

In HNC, the current standard of screening and diagnosis relies

on a physical exam and identification of lesions, followed by

imaging, invasive biopsy, and histopathological evaluation (90).

Current research aims to investigate and establish new

microbiome signatures as potential microbiome-derived

biomarkers for HNC diagnosis (45, 61, 84, 85, 91).

Differences in the microbiome profile between oropharyngeal

and hypopharyngeal cancers were observed, with S. anginosus
Frontiers in Oncology 05
showing significant elevation in the saliva of oropharyngeal

cancer patients (84). Mutational changes influence the abundance

of bacterial groups like Firmicutes and Bacteroidetes, varying among

different mutation profiles (61). In HPV-positive oropharyngeal

cancers, a pilot study revealed distinct microbiome profiles

compared to healthy controls, with a notable correlation between

Haemophilus and Gemella genera in HPV-positive oropharyngeal

cancer (80). Furthermore, certain bacterial species, including

Actinomyces, Parvimonas, Selenomonas, and Prevotella, were more

abundant in oral cavity cancers (91). At the species level, S.

salivarius and S. vestibularis were identified as abundant in oral

OSCC samples, while species from the vaginal microbiota, such as

L. gasseri / johnsonii and L. vaginalis, were abundant in saliva (92).

Banavar and collaborators conducted a study including 242 patients

with oral cancer, aiming to develop and investigate machine-

learning classifiers using metatranscriptomic data from saliva

samples. The developed metatranscriptomic signatures

incorporated both taxonomic and functional microbiome features,

and revealed several taxa and functional pathways associated with

oral cancers. The authors observed that several genera, such as

Streptococcus, Haemophilus, and Actinomyces, are downregulated,

while some other genera, like Fusobacterium, do not appear to be

differentially expressed. At the genus level, the results revealed

periodontal bacteria like Fusobacterium, Prevotella, and

Porphyromonas in saliva samples from oral cancers. More

recently, the same research group conducted a clinical trial

aiming to develop and validate a non-invasive test for biomarkers

detection in oral and throat cancers within a high-risk population.

The authors collected saliva samples from 1175 patients and used

machine learning methods to obtain a salivary microbial and

human metatranscriptomic signature. This developed test, named

CancerDetect for Oral and Throat Cancer (CDOT), has received the

FDA’s breakthrough designation for accelerated review (45). These
TABLE 1 Association of some types of HNCs with microorganisms present in the oral cavity and their outcomes.

Cancer type Taxon Associated
impact

Outcome Reference

HNCs

Fusobacterium, Leptotrichia, Selenomonas,
Treponema, Clostridium, Pseudoalteromonas

Common ? (40)

Corynebacterium, Kingella Presence Preventive effect (76)

oral fungi Presence reduced risk (53)

red- and orange-complex
periodontal pathogens

Presence and
relative

abundance
reduced risk (53)

HNSCC,
non-smokers

Fusobacterium nucleatum Presence
Early tumor stages
Reduced recurrence

Increased survival duration
(36)

OSCC

Parvimonas

Increased

? (56)

Fusobacterium, Pseudomonas ? (58)

Peptostreptococcus, Alloprevotella,
Capnocytophaga, Prevotella,
Bacteroidetes, Solobacterium,

?
(29)
(56)

(Continued)
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TABLE 1 Continued

Cancer type Taxon Associated
impact

Outcome Reference

Actinobacteria, Cyanobacteria, Streptococcus,
Porphyromonas, Actinomyces, Rothia,

Haemophilus and Veillonella
Decreased ?

Fusobacterium periodonticum, Parvimonas
micra, Streptococcus constellatus, Haemophilus

influenzae, Filifactor alocis

Gradually
increased during

stages I–IV
?

(12, 24, 53, 56,
77–82-61)Actinobacteria phyla, Streptococcus mitis,

Haemophilus parainfluenzae,
Porphyromonas pasteri

Gradually
decreased

during stages
I–IV

?

Parvimonas Decreased

Early tumor stages

(56)
(36)
(62)
(63)

Fusobacterium, Rothia, Haemophilus,
Veillonella, Actinomyces

Increased

Bacteroidetes, Peptostreptococcus Increased
Later stages

Larger tumors
(61)

Stenophotromonas, Staphylococcus, Centipeda,
Selenomonas, Alloscordovia, Acinetobacter Increased

in saliva

Poor prognosis
Poorer survival rate (63)

Veillonella Better overall prognosis

Laryngeal cancer
Corynebacterium, Kingella (especially Kingella

denitrificans), Neisseria,
Abiotrophia, Capnocytophaga

Abundance Reduced risk (29)

Pharyngeal
cancer

Actinomyces oris, Veillonella denticariosi Increased Reduced risk (29)

Gingival
squamous

cell carcinoma
Porphyromonas gingivalis Increased ? (29)

Oral
mucosal cancer

Streptococcus constellatus, Streptococcus mitis,
Streptococcus oralis, Streptococcus sanguis,

Streptococcus salivarius

Translocated to
lymph nodes

Drainage of microorganisms to lymph nodes and
global circulation

(83)
(31)

HNC,
aerodigestive
tract cancer

Leuconostoc, Streptococcus, Abiotrophia Increased Increased risk of all cancers
(51)

Prevotella, Haemophilus, Neisseria Decreased Lowest risk of all cancers

Oral carcinoma

Klebsiella, Citrobacter, Streptococcus,
Enterobacter, Serratia

Increased Affecting the local tumor microenvironment

(4)

S. salivarius, Corynebacterium, Stomatococcus Presence
Strong oxidizing properties; Oncogenesis and

cancer development

HNCs
Schlegelella and Methyloversatilis Presence and

relative
abundence

Poor prognosis
(37, 71)

Bacillus, Lactobacillus, Sphingomonas Favorable prognosis

OSCC C. albicans Presence
Accelerate progression; promotion of pro-tumor signaling
pathways; upregulation of genes associated with prognostic

markers for metastatic events
(44, 75)

Oral carcinoma P. gingivalis Presence
Stimulate the production of myeloid-derived dendritic
suppressor cells; Reduce the expression of the tumor
suppressor gene TP53; cancer development

(74)

oropharyngeal
and

hypopharyngeal
cancers

S. anginosus
Significant
elevation

non-invasive diagnostic biomarker (84)

oropharyngeal
cancers

Haemophilus and Gemella
Significant
elevation

distinct microbiome profiles in cancer group (80)

(Continued)
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studies demonstrated the potential of a machine-learning tool for

oral cancer diagnosing, opening a new era of non-invasive

diagnostics, enabling early intervention, and improving

patient outcomes.

In addition, Inchingolo and collaborators conducted a meta-

analysis to evaluate the interplay between microbiota and oral

cancer and the presence of biomarkers as risk predictors. The

analysis of the results from 21 studies revealed the correlation

between oral cancers and changes in the microbiota, which explains

the paramount value of precision medicine in the diagnosis and

treatment of HNCs (47). Ganly and collaborators observed that oral

microbiota was extensively changed in oral cancer patients due to

the increase of periodontal pathogens like Fusobacterium,

Prevotella, and Alloprevotella and the reduction in commensal

Streptococcus. Based on these marker genera, the oral microbiota

was split into two types: periodontal-pathogen-low and

periodontal-pathogen-high. This classification predicted oral

cancer with 80% accuracy. In addition to the three periodontal

pathogens discovered in the samples, the cumulative abundance of

14 periodontal pathogens increased gradually throughout the

sequence of negative controls. These data consistently indicate

that periodontal infections are an independent risk factor in

patients who do not have substantial oral risk factors (86).

Furthermore, in 5 patients with OSCC, saliva metaproteomics

indicated a substantial rise in Prevotella and the adhesion and

virulence factors linked to S. gordonii, as well as oral pathogens like

Fusobacterium (93). In a study by Li and collaborators, the

microbial composition in three distinct groups of samples from

patients with oral cancer was investigated using metagenomic

sequencing. The study found that while there was limited

variation in the microbial diversity of the three groups, the oral

microbiome of patients with precancerous lesions exhibited greater

diversity than that of both oral cancer patients and healthy controls.

Notably, a specific strain of Bacteroidetes within the phylum

displayed differential enrichment in the oral cancer samples.

Furthermore, at the genus level, the primary differentially

enriched taxa included Prevotel la , Peptostreptococcus ,

Carnobac t e r ium , and Dia s t e l l a . P . in t e rmed ia and
Frontiers in Oncology 07
Peptostreptococcus stomatis were identified as having distinct

species-level enrichment patterns, suggesting that these profiles

can be employed as diagnostic markers (67). A rise in potentially

pathogenic bacteria, such as Capnocytophaga, and other LPS-

producing bacteria, such as Neisseria, were seen in the oral

microbiome of 56 HNC patients. The study concluded that HNC-

related symptoms in conjunction with salivary microorganisms

such as Capnocytophaga may be employed as a noninvasive

technique for screening, identification, and treatment monitoring

of HNC (94). In patients with OSCC, significant increase of

Fusobacterium and a concomitant reduction in Firmicutes and

Actinobacteria phyla have been found. Significant distinctions

were also revealed in Actinobacteria, Firmicutes, Fusobacteriia,

Fusobacteriales, Fusobacteriaceae, and Fusobacterium. These

findings brought into light five unique oral microorganisms with

high confidence and may be used to predict clinical diagnosis and

prognosis (48).
2.4 Implications of oro-pharyngeal
dysbiosis in HNCs therapy

The composition of a patient’s gut microbiota impacts the

effectiveness and side effects of radiotherapy, chemotherapy, and

immunotherapy, playing a significant role in HNC outcomes. A

prospective pilot study including 20 HNC patients has shown that a

pre-treatment microbiota enriched with Eubacterium, Victivallis, and

Ruminococcus is associated with a higher risk of experiencing OM, a

common side effect of cancer treatment that affects the mouth and

throat. Conversely, when the gut microbiota has a higher relative

abundance of immunomodulatory microbes such as Faecalibacterium,

Prevotella, and Phascolarctobacterium, patients are at a lower risk of

tumor recurrence (32). These microbes seem to play a role in

modulating the response to immunotherapy by potentially

enhancing the expansion and function of CD8+ T cells, which are

crucial for mounting an effective antitumor immune response.

However, it is essential to note that more extensive research is

required to validate these associations and determine whether
TABLE 1 Continued

Cancer type Taxon Associated
impact

Outcome Reference

oral cancer Streptococcus, Haemophilus, and Actinomyces Downregulated Potential-microbiome biomarkers in HNC diagnosis (85)

oral cancer Fusobacterium, Prevotella, Alloprevotella
Significant
elevation

oral microbiota was extensively changed (86)

oropharyngeal
cancers

Faecalibacterium,
Prevotella, Phascolarctobacterium

Significant
elevation

lower risk of tumor recurrence (32)

oral and
throat cancers

Actinobacillus, Mannheimia, Streptobacillus Presence increased severity of oral mucositis (OM) (87)

oral cancer Fusobacterium, Haemophilus
Significant
elevation

increased susceptibility to inflammatory complications (88)

HNCs

Eubacterium, Victivallis, and Ruminococcus Presence increased severity of OM

(89)Faecalibacterium, Prevotella,
and Phascolarctobacterium

Presence better treatment outcomes
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modifying the gut microbiota can predict and optimize treatment

outcomes for HNC patients. Dysbiosis has been shown to promote the

persistence of ulcers and delay the healing process (88). The presence of

certain bacteria, such as Actinobacillus, Mannheimia, and

Streptobacillus, has been associated with increased severity of OM

(87). Fusobacterium and Haemophilus, when dominant in the oral

microbiome before radiotherapy, are associated with an increased

susceptibility to inflammatory complications. Specific bacteria,

including Prevotella, Fusobacterium, Streptococcus, Megasphaera, and

Cardiobacterium, have been considered as prognostic biomarkers for

the onset of OM (88). Research by Jiang and collaborators

demonstrated that patients who received probiotics during

chemoradiotherapy experienced a lower incidence of oral mucositis

compared to those who did not receive probiotics (95). Similarly, a

study by Ma and collaborators found that patients who received

probiotic therapy were more likely to complete radiotherapy without

complications, in contrast to those without probiotics, where patients

had to discontinue treatment due to complications (96). The research

conducted by Al-Qadami and collaborators has revealed significant

associations between specific bacterial genera and the severity of OM

and treatment outcomes in cancer patients. Three bacterial genera,

namely Eubacterium, Victivallis, and Ruminococcus, were found to be

linked to more severe OM. On the other hand, the presence of bacterial

genera Faecalibacterium, Prevotella, and Phascolarctobacterium was

associated with better treatment outcomes (89). In conclusion,

modifying the gut microbiota to align with more favorable treatment

outcomes represents a promising avenue for future research and

clinical practice.

According to Routy et al., patients who do not respond well to

immunotherapy often have gut dysbiosis (97). Other studies show

that addition of dietary supplementation with Bifidobacterium

appears to have a comparable effect on tumor control compared

to treatment with a specific antibody therapy targeting programmed

death-ligand 1 (PD-L1). Furthermore, when combined, these

therapies nearly eliminated the expansion of tumors, suggesting a

synergistic or enhanced therapeutic effect (98). Similarly,

Lactobacillus and Bacteroides species could trigger type I

interferon production in dendritic cells, enhancing the cross-

priming of antitumor CD8+ T cells having different impacts on

the immunostimulatory effects (43). Additionally, those who have

undergone antibiotic therapy, particularly immediately before or

during cancer treatment, face a higher risk of rapid disease

progression (97).

The severity of oral injuries in patients undergoing radiation

therapy, such as changes in saliva quantity and composition,

alterations in the oral microbiota, and tooth damage, is primarily

linked to the radiation dose delivered to the oral cavity region (99).

Radiation-induced acidification of the oral environment creates a

favorable condition for the proliferation of acidogenic and

cariogenic bacteria, such as S. mutans, Actinomyces, and

Lactobacillus, while reducing the populations of Neisseria,

Fusobacterium, and S. sanguinis. Untreated, these caries-

associated bacteria contribute to developing radiation therapy-

related dental caries (87). Furthermore, C. albicans can take

advantage of these shifts in the oral microbiota, potentially

leading to superinfections during and after therapy (99). A study
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by Huo et al. prospectively evaluated the dynamic changes in oral

microbiota during radiation therapy and its association with the

progression or aggravation of oropharyngeal mucositis in a cohort

of nasopharyngeal carcinoma patients. The results showed that

while the overall richness and evenness of mucosal bacterial

diversity did not vary significantly during treatment, certain

bacteria, such as Prevotella, Fusobacterium, Treponema, and

Porphyromonas, exhibited noticeable synchronized shifts in their

abundance throughout radiation therapy. These shifts often

coincided with the onset of severe mucositis, suggesting that

dysbiosis of the oral mucosal microbiota may play a role in

exacerbating mucositis in nasopharyngeal carcinoma patients

during radiation therapy (99). A clinical study by Mougeot and

collaborators investigated the oral microbiome implications in

developing post-radiotherapy caries in 31 HNC patients. The

results suggested that baseline microbiome difference is an

essential factor explaining dental caries outcomes in radiation-

treated HNC patients. Also, the cariogenic role of P.

melaninogenica and a potential protective role of specific bacterial

species such as A. defectiva was reported (100).

In HNC patients undergoing chemoradiotherapy, treatment is

often associated with challenging side effects, such as mucositis and

dysphagia, to which oropharyngeal microbiota might contribute, but

the precise causal relationship and clinical significance have remained

unclear. To shed light on this matter, a prospective longitudinal

observational study involving 47 HNC patients was conducted to

determine if dysbiosis is present in HNC and to assess the impact of

chemoradiotherapy on the dynamics of dysbiosis during and after

treatment. The salivary microbiome in the HNC patients before

initiating treatment exhibited notable differences in composition and

decreased diversity compared to a control group of healthy

individuals. During treatment, there was a significant decrease in

a-diversity and a marked shift in b-diversity, suggesting a significant
change inmicrobial composition compared to the pre-treatment state

and healthy controls. The microbiome analysis showed no significant

difference in a-diversity between HNC patients with severe mucositis

and those with mild to moderate mucositis before treatment.

However, marked differences in a-diversity emerged immediately

after the completion of chemoradiotherapy (52). Omega-3 (w-3)
polyunsaturated fatty acids have recently gained a particular interest

in dealing with oral diseases owing to their anti-inflammatory,

antioxidant, and wound-healing properties (101). In a recent

clinical study conducted by Morsy and collaborators, 34 HNC

patients received radiotherapy and topical Omega-3 nanoemulgel.

A significant reduction in Firmicutes/Bacteroidetes ratio was observed

after six weeks in the test group, indicating less microbial dysbiosis.

The results demonstrated that topical omega-3 nanoemulgel has a

beneficial effect in preventing radiation-induced OM with the

possibility of regulating oral microbial dysbiosis (50).

The success of immune checkpoint inhibitors in the context of

palliative systemic therapy for HNSCC and the potential for combining

these immunotherapies with radiotherapy have brought to the

forefront the exploration of interactions between the tumor

microenvironment and the immune landscape (39, 102). It has

become increasingly clear that the regulation of the immune system

by the microbiota is of paramount importance for both innate and
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adaptive immune surveillance against tumors and for the success of

treatment with these immune checkpoint inhibitors (39, 103).
2.5 Microbiome-based interventions for
managing cancer therapy-related
side effects

Recently, a meta-analysis conducted by Frey-Furtado and

colleagues examined nine articles to evaluate the therapeutic

effectiveness of probiotics in managing OM. Among these studies,

four clinical trials reported a decrease in the severity of OM by using

specific strains of bacteria, including Lactobacillus (L. casei and L.

brevis CD2) and B. clausii UBBC07. Preclinical studies revealed the

positive effects of L. lactis, L. reuteri, and S. salivarius K12 in

reducing the severity of OM and the size of ulcers (46).

Moreover, three distinct meta-analyses conducted by research

teams from Taiwan, Italia and China, encompassing a total of 22

randomized clinical trials, investigated the potential of probiotics in

preventing OM induced by cancer therapy and in managing the

occurrence of chemotherapy-induced diarrhea and OM. These

studies revealed the effectiveness of probiotics in preventing and

alleviating cancer therapy-induced OM and addressing adverse

reactions associated with chemotherapy (38, 41, 49).

Lactobacillus rhamnosus GG (LGG) is a naturally occurring gut

commensal bacterium known for its anti-inflammatory properties

and has been a pioneer in oncology research (104). LGG maintains

the equilibrium of the intestinal mucosa by neutralizing harmful

pathogens and toxins, effectively preventing breaches in the

mucosal barrier through a high-affinity binding system (105).

LGG is also recognized for enhancing the anticancer effects of

geniposide, an anticancer molecule, and its potential as a beneficial

adjuvant during cancer treatment (106). In the context of cancer

treatment, Lactobacillus brevis CD2 lozenges have been found to

reduce the occurrence of OM in patients undergoing high-dose

chemotherapy (107). Additionally, L. brevis lozenges have shown

benefits in reducing oral ulcers in individuals with recurrent

aphthous stomatitis (108).

Xerostomia, a condition characterized by dry mouth, has a

detrimental impact on the oral health of many patients undergoing

radiotherapy for HNSCCs. In a pilot study, Vesty and collaborators

explored the potential of using an oral probiotic to influence the oral

bacterial community following radiotherapy positively. The authors

conducted a four-week intervention involving oral probiotic lozenges

containing Streptococcus salivarius M18 in seven patients and

compared the changes in oral health and the composition of

bacterial communities in plaque and saliva with a control group of

six patients who received a placebo. Both groups improved

periodontal screening and plaque index scores after the intervention.

Surprisingly, the oral probiotic did not lead to significant alterations in

the composition or diversity of bacterial communities in the oral

cavity. Network analyses revealed potential negative interactions

between administered probiotics and bacteria from genera known

for their association with periodontal disease, such as Campylobacter,

Fretibacterium, Selenomonas, and Treponema (109).
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In a comprehensive meta-analysis, Lu and the research team

investigated the impact of oral probiotics on the management of

side effects induced by radiotherapy, chemotherapy, or

chemoradiotherapy in cancer patients. Their study analyzed data

from 16 randomized controlled trials involving 2,097 patients. The

study’s findings revealed that when compared to placebo groups,

the use of oral probiotics (Bifidobacterium longum,B. infantis,

Lactobacillus acidophilus, Bacillus clausii, L. plantarum, L.

rhamnosus, L. crispatus, Enterococcus faecium) yielded significant

reductions in the occurrence of side effects associated with

radiotherapy and chemotherapy across various cancer types,

including HNSCCs. Additionally, the analysis indicated that the

incidence of OM in HNSCCs patients significantly decreased

following the oral administration of probiotics (42).

In a randomized clinical trial conducted by Doppalapudi and

their research team, the primary objective was to evaluate the

impact of probiotic bacteria on oral Candida counts in cancer

patients undergoing head and neck radiotherapy at a tertiary care

center. The study involved randomly allocating participants into

three equal-sized groups: the probiotics group, the candid group,

and the combination group. Participants in the probiotics group

were administered probiotic sachets containing a minimum of 1.25

billion live cells consisting of a blend of four probiotic strains,

namely L. acidophilus, L. rhamnosus, Bifidobacterium longum, and

Saccharomyces boulardii. The study results unveiled a statistically

significant reduction in the mean counts of Candida species

(measured in colony-forming units per milliliter, CFU/ml) after

the intervention. This notable reduction was primarily observed in

both the probiotics group and the combination therapy group.

Furthermore, besides a decrease in C. albicans, there was a

significant reduction in C. glabrata and C. tropicalis following

probiotic usage compared to the other groups (110). These

findings strongly suggest that probiotic bacteria effectively reduce

the presence of oral Candida species and could be recommended as

a standalone approach or combined with traditional antifungal

agents to effectively reduce oral Candida in patients undergoing

head and neck radiotherapy.
3 HPV viral components and
molecular genetic and epigenetic
mechanisms involved in HNCs

From the >220 HPV viruses at least 12 are oncogenic (111, 112).

Of all HNC cases caused by chronic, persistent HPV infection,

approximately 85% are positive for the HPV16 or HPV18 types.

The remaining approximately 15% are caused by HPV33, HPV35,

HPV52, HPV45, HPV39, HPV58, HPV53, and HPV56 (26, 27).

The HPV6, HPV11, HPV16, HPV18, HPV31, HPV33, HPV45,

HPV52, and HPV58 strains are accounting for 90% of HNC cases

(24, 26, 113). The percentage of HPV positivity varies with the type

of HNCs and the different geographic regions (26, 27, 113–117), the

highest incidence being reported for sub-Saharan African region

(HPV has been identified in 50% of oropharyngeal cancers, 27% of
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laryngeal cancers, and 23% of oral cavity cancers, with the

predominance of HPV16 (118).
3.1 Genetic peculiarities of HPV-positive
and HPV-negative HNCs

Of the HPV viral components, the nonstructural E (early)

proteins E5, E6 and E7 are associated with virus-mediated cellular

transformation, the most active and expressed in HPV-positive

tumor cells being E6 and E7 (27, 119). These viral proteins once

accumulated intracellularly can initiate the carcinogenic process,

affect the immune system, alter the activity of tumor suppressor

proteins (e.g., E6 binds the TP53 protein via the cellular ubiquitin-

protein ligase E6AP/E3A or UBE3A, mediating its proteasomes

degradation) and circumvent cell-cycle checkpoints (5, 120) (Figure

2). TP53 activity is modulated by MDM2 (mouse double minute 2,

also named retained in humans). According to an in silico study by
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Bouzid and collaborators, in HPV-positive HNSCC, MDM2 is

overexpressed compared to HPV-negative tumors (33). The TP53

gene is only rarely mutated in HPV-positive, but very frequently in

HPV-negative tumors, in which disruptive mutations are associated

with reduced survival (27, 121). Actually, the number of mutations

in HPV-positive tumors is twice as low as in HPV-negative

tumors (122).

HPV-positive tumors have TpC transversions and structural

alterations of RNA and DNA, including insertion of the viral genes

E6, E7, and E2F1 (the latter being amplified) and, in some cases,

defects in the TRAF3 (TNF Receptor Associated Factor 3) gene.

Defects in TP53 and CDKN2A genes are absent or rare, with

frequent alterations in PIK3CA, PTEN (phosphatase and tensin

homolog), FBXW7 (F-Box and WD Repeat Domain Containing 7),

and KRAS genes.

HPV-positive tumors include two subtypes: HPV–KRT, with

amplification of the 3q region, presence of mutations in PIK3CA,

and overexpression of genes involved in keratinocyte differentiation
FIGURE 2

Mechanisms of carcinogenesis induced by persistent HPV infections. Viral particles infect epithelial cells in the oral or oropharyngeal mucosa (A),
with HPV DNA randomly integrating into the host cell genome (B). It is replicated as the epithelial cells multiply, and the virus is activated when it
reaches the surface. After integration into the host cell genome, viral DNA is copied into mRNA, and proteins are released into the nucleus and
cytoplasm. The E6 protein recruits the cellular ubiquitin-protein ligase E6AP and targets the cellular protein TP53 (C), which is involved in maintaining
the genetic health of cells. Complexed with E6 and E6AP, TP53 protein is degraded in proteasomes (D), an event that promotes resistance to
apoptosis and malignant progression. Lacking the DNA integrity checkpoint mechanism, the cell can accumulate defects, leading to genomic
instability and malignant progression. On the other hand, the E6 protein, and less E7, forms a complex with E6AP and NEX1 (neurogenic
differentiation factor 6) (E), which activates TERT/hTERT (F). This telomerase reverse transcriptase promotes telomere elongation and cell
immortalization. Further, cells with inactive TP53 due to proteasomal degradation may acquire genetic instability and be transformed toward
malignant progression. The E6 protein inactivates IFR3 (G), normally promoting the IFNA-IFNAR complex (H) formation. By inhibiting the formation
of this complex, E6 decreases immune recognition of HPV and helps the spreading of HPV infection. The E5 protein activates the EGFR-mediated
signaling pathway (I), promoting cell division and proliferation toward malignant progression. The E7 protein forms a complex with RB, leading to
proteasome degradation (J). In the absence of RB, P16 synthesis is activated (K), which binds and disrupts CCND1 complexes with CDK4 and CDK6
(L), CCND1 contributing to uncontrolled DNA replication and cell division, which can further lead to malignant progression. The E7 protein stimulates
CDK2 activity (M), leading to cell proliferation and malignant progression.
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(CDH3–Cadherin 3, and TP63– Transformation-Related Protein

63/Tumor Protein 63) and oxidation-reduction processes (CDH1

and KRT16), and HPV-IMU, characterized by deletion of the 16q

region, differentiation of mesenchymal cells dictated by the BCL2

gene, activating mutations of the PIK3CA gene and a strong

immune response based on activation of the NFKB (Nuclear

Factor Kappa B), RELB (RELB Proto-Oncogene, NF-KB Subunit)

and FOXP3 (Forkhead Box P3) genes (123).

Amplification of the 7p region containing the EGFR (Epidermal

Growth Factor Receptor) gene, encoding a transmembrane receptor

in the RAS–RAF–MEK–ERK and PIK3–AKT–mTOR signaling

pathways, is also absent (124–128).

In HPV-posi t ive premal ignant t i ssue , the SYCP2

(synaptonemal complex protein 2), involved in the organization

of chromatin is up-regulated (5), and in HPV-positive HNSCC

recurrent mutations have been identified in the tumor suppressor

genes PTEN and TRAF3, and in the PIK3CA (phosphatidylinositol-

4,5-bisphosphate 3-kinase catalytic subunit alpha) gene, which

promotes carcinogenesis (129). Also, Hinic and collaborators

identified overexpression of PCNA (proliferating cell nuclear

antigen) genes, associated with cell proliferation and

transformation in cancer, TNFRSF14 (TNF receptor superfamily

member 14), which promotes inflammatory and inhibitory T cell

immune response, TRAF1 (TNF receptor-associated factor 1),

TRAF2 (TNF receptor-associated factor 2), which mediate anti-

apoptotic and pro-survival signals from TNF receptors, BIRC3

(baculoviral IAP repeat containing 3) and BCL2 (B-cell

lymphoma 2), with anti-apoptotic functions (130). A set of genes

associated with the extracellular matrix-receptor interaction

pathway, which include ITGA5 (integrin alpha five subunits),

ITGB1 (integrin beta 1 subunit), LAMB1 (laminin beta 1

subunit), and LAMC1 (laminin gamma 1 subunit), are

overexpressed in HPV-positive HNCs (and cervical cancers).

Genes associated with T lymphocyte function, CD3D (CD3 delta

subunit of T-cell receptor complex), CD3E (CD3 epsilon subunit of

T-cell receptor complex), CD8B (CD8 beta subunit), LCK (LCK

proto-oncogene, SRC family tyrosine kinase), and ZAP70 (zeta

chain of T-cell receptor-associated protein kinase 70kDa), are

underexpressed in HPV-positive HNCs and cervical cancers. The

observed dysregulation in the latter set of genes in both cancers

indicates some expression specificity related to HPV infection,

showing a significant prognostic impact on HPV-associated

cancers (131).

The HPV-negative tumors frequently harbor CpG

transversions, defects in TP53, CCND1, MYC, miR let-7c, TP63,

and AJUBA genes, amplification of EGFR, ERBB2 (Erb-B2 Receptor

Tyrosine Kinase 2), FGFR1 tyrosine kinase receptor genes, deletions

in NSD1 (Nuclear Receptor Binding SET Domain Protein 1),

CDKN2A, NOTCH1, SMAD4 (SMAD Family Member 4), FAT1

genes, NFE2L2, KEAP1 (Kelch Like ECH Associated Protein 1),

CUL3 (Cullin 3), KMT2D/MLL2, HLA-A/CMH-IA, and co-

amplifications of 11q13, with CCND1, CTTN (Cortactin) and

FADD (Fas Associated via Death Domain) genes, and 11q22, with

YAP1, BIRC2 (Baculoviral IAP Repeat Containing 2), and CASP8

+/–HRAS genes, in some subsets of HPV-negative tumors (128). In
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a small number of HNCs, the MET (MET Proto-Oncogene,

Receptor Tyrosine Kinase) gene transcript with missing exon 14,

a form recognized as oncogenic in non-small cell lung cancer, and

mRNAs of TP63 and KLK12 (Kallikrein Related Peptidase 12) genes

as specific splicing variants have been reported (126). The harbor

frequent inhibitory mutations in TP53 and the CDKN2A/B deletion

associated or not with CCND1 amplification occur are leading to

G1/S checkpoint abrogation (129). Activating mutations in the

NOTCH1 gene and increased transcription of the FGF1

(Fibroblast Growth Factor 1) gene result in increased cell

migration and invasiveness and increased mortality in patients

with oral cancers (77). Depending on the presence or absence of

gene copy number amplification, HPV-negative tumors are divided

into two main subtypes: tumors without copy number amplification

or class “M” (from mutations) tumors, which occur in the oral

cavity and in which mutations are reported in the HRAS and

CASP8 genes as well as in mismatch repair genes (in tumors

developed by those who chew betel quid), but lack the TP53 gene,

and tumors with copy number amplification. These are divided into

three subtypes, basal, classical, and mesenchymal, found in frequent

smokers. The basal subtype is characterized by deletions in the 9p

arm, which includes the CDKN2A gene (9p21. 3), amplifications of

genes in the 3q arm, 11q13/q22 co-amplification, coexistence of

mutations in the HRAS and CASP8 (Caspase 8) genes, inactivation

ofNOTCH1, which has an oncogenic function but in HNCs appears

to have a tumor suppressor function, and reduced activity of the

SOX2 (SRY-Box Transcription Factor 2) gene (3q26.33). The

classical subtype is present in high proportion in laryngeal

squamous cell cancers, shares with the basal subtype the presence

of deletions in the 9p arm, with loss of CDKN2A and apposition of

genes in the 3q arm, and is characterized by mutations in the TP53

gene, changes in KEAP1, CUL3 and NFE2L2 genes, involved in

oxidative stress management. In the mesenchymal subtype,

epithelial-mesenchymal transitions, amplification of the 3q region,

activation of the WNT-b-catenin pathway, mutations of the HLA-

A/CMH-IA gene, and increased activity of the CD56/NCAM1

(Cluster of differentiation 56/Neural Cell Adhesion Molecule 1),

VIM (Vimentin), DES (Desmin), TWIST1 (Twist Family BHLH

Transcription Factor 1) and HGF (Hepatocyte Growth Factor)

genes predominate. In both HNCs, amplification of the 3q26/28

region has been identified with TP63, SOX2, and PIK3CA genes, the

product of the latter being part of the PIK3–AKT–mTOR signaling

pathway with an important role in cell proliferation and evasion of

apoptosis (128).

E6 also contributes to the downregulation of the immune

response against HPV by suppressing IFR3 (Interferon Regulatory

Factor 3), a transcription factor for interferons (IFNs) (132, 133),

and by inhibiting IFNA (interferon alpha) interaction with its

receptor (134). E7 acts synergically by inhibiting TLR9/CD289

(Toll-like receptor-9), present intracellularly in several immune

cell types (135, 136).

Also, by stimulating CDK2 (cyclin-dependent kinase 2) activity

and inactivating its inhibitors, P21CIP1 and P27KIP1, E7 supports

cell division (135) and tumorigenesis. Viral protein E7 binds and

degrades RB (retinoblastoma) tumor suppressor cell proteins (137).
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Further, RB inactivation induces expression of P16/P16INK4

(cyclin-dependent kinase inhibitor protein 16), which binds and

disrupts the CCND (cyclin D) and CDK4 (cyclin-dependent kinase

4)/CDK6 (cyclin-dependent kinase 6) complexes, amplifying cyclin

D1 and promoting uncontrolled DNA replication and the transition

of cells from G1 to S phase (138).

In addition, E6 and E7 (to a lesser extent) are involved in

stimulating cell division and cell immortalization by promoting

TERT/hTERT (telomerase reverse transcriptase) expression, which

is repressed in normal cells and elongates telomeres through

repl icat ion and by prevent ing end-to-end-fus ion-of-

chromosomes-and-cell apoptosis.

P16 expression and HPV status influence the prognosis of

oropharyngeal tumors. HPV+ and P16+ oropharyngeal tumors

have a better prognosis than HPV+ and P16– or HPV– and P16+

tumors, while HPV– and P16– tumors have the poorest

prognosis (139).

E5 mediates hyperactivation of the EGFR-mediated signaling

pathway, stimulating cell proliferation (140).

Another mechanism by which viral proteins inhibit cell

apoptosis is by blocking the FAS/FASL (Fas cell surface death

receptor/Fas cell surface death receptor ligand) pathway and

binding to TNFR1 (tumor necrosis factor receptor 1).

Depending on the affinity of viral proteins for inhibited cellular

proteins, there are low-risk HPV strains and high-risk HPV strains

that develop tumors. For example, the low-risk HPV11 is generally

suppressed by innate immunity, and when this is overcome, it can

cause benign lesions (5). On the contrary, high-risk strains, such as

HPV16 and HPV18, are not suppressed by the innate immune

system and are free to develop long-term infections and produce the

majority of HNCs (27). However, HPV infections alone do not

appear to be sufficient for the tumorigenic transformation of cells,

this process requiring new mutations induced by other risk factors,

including smoking and alcohol consumption, or infection with

other oncoviruses, such as the polyomaviruses BKV and JCV

(John Cunningham virus), the simian vacuolating virus 40 (SV40)

and the most likely Epstein-Barr virus type B (141–145).

This could explain the different clinical manifestations of

oropharyngeal cancer in HPV-positive versus HPV-negative

patients (146, 147). Primary HPV-positive tumors are small in

size but develop frequent, more extensive lymph node metastases

(148), with frequent immune infiltrates rich in CD8+ cytotoxic T

lymphocytes and PDL1 overexpression compared to HPV-negative

tumors (82). Correlated with P16 expression, CD8+ T lymphocyte

accumulation in the tumor microenvironment improves overall

survival in OSCC (82, 149).
3.2 Contribution of HPV infection to the
epigenetic changes occurring in HNCs

In addition to gene expression changes induced by nucleotide

sequence alterations, in neoplastic development, an important role is

also played by gene expression changes induced by epigenetic
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alterations, including DNA methylation, posttranslational covalent

histone modifications, and non-coding RNA (150, 151). Methylation

occurs through the DNMTs (DNAmethyltransferases) activity in the

presence of AdoMet (S-adenosylmethionine) as a cofactor. In cancer,

DNMTs activities are altered, with tumor suppressor genes being

silenced by hypermethylation while numerous other sequences

spread throughout the genome are hypomethylated, leading to

DNA double helix fragmentation and genomic instability (152). In

HNCs, the methylation range of different genes is variable. It has been

reported that there are significant differences in terms of DNA

methylation between HPV-positive and HPV-negative HNCs, due

to the fact that E6 and E7 viral proteins interfere with cellular DNA

methylation complexes. For example, the inactivation of TP53 by E6

protein stops repression of DNMT1 (DNA (cytosine-5)-

methyltransferase 1) promoter, altering the global cytosine

methylation pattern (153, 154). Also, changes in cellular DNA-

methylation machinery lead to altered gene expression. The

affected gene classes are genes involved in cell cycle regulation and

programmed cell death: CDKN2A (cyclin-dependent kinase inhibitor

2A, tumor suppressor which is hypomethylated in salivary samples of

HPV-positive HNC patients) (155, 156), RASSF1 (Ras association

domain family 1, tumor suppressor which is hypomethylated in

NHCs) (156, 157), CCNA1 (cyclin A1, whose promoter is

hypermethylated in HNCs) (155, 156); genes involved in cellular

adhesion and communication: Cadherin Family Genes (involved in

cell adhesion and playing important roles in cell signaling and

communication, whose pşromoters are hypermethylated) (124, 156,

158), ITGA4 (integrin alpha 4, hypermethylated) (159, 160); genes

involved in cellular migration and tumor progression: TIMP3 (tissue

inhibitor of metalloproteinase and tumor suppressor, whose

promoter methylation is reported in a few studies in HPV-driven

HNCs) (78, 161), ELMO1 (engulfment and cell motility 1 protein,

which is relatedto increased invasion and metastasis in several types

of cancer and hypermethylated in HNCs) (81, 160); other genes:

MEI1 (meiotic double-stranded break formation protein 1), whose

promoter is hypomethylated in HNCs) (81, 124), and LINE1 (long

interspersed nuclear element 1, an abundant retrotransposome found

in human genome, which is hypermethylated in HNCs) (155, 162,

163). In HPV-negative tumors, LINE1 is hypomethylated (162). Also,

the HPV integrated genomes become subjects of DNA methylation/

hypermethylation (164). Even some studies have reported similar

findings in matter of HPV-driven DNA-methylation signatures,

making proposals for using them as biomarkers for HNCs, these

patterns have not been comprehensively investigated. Their

inconsistence requires further investigations for identifying the

diagnostic methylation targets for HNCs (164).

Little progress has been made in using DNA demethylation as

an approach in HVP-positive HNCs. Thus, Stich and collaborators

reported that the demethylating agent 5-aza-2’-deoxycytidine can

reduce E6 and E7 gene expression in HPV-infected HNCs and

cervical cell lines effectively, with some restoration of TP53 and P21

function and increased tumor suppressor microRNA 375 levels,

contributing to overall decrease in cancer cell growth and survival

(165). These results lead to the conclusion that the ability to reverse
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DNAmethylation makes it an attractive target for drug intervention

in HNCs (independent of HPV status), unlike mutations and

deletions, which are quite more difficult to correct (166, 167).
3.3 Influence of HPV infection on tumor
microenvironment features in
HNCs tumorigenesis

The tumor microenvironment is a complex entity that

comprises diverse cellular components and extracellular matrix

constituents and, through bidirectional interaction with tumor

cells, can contribute to tumor progression (168). The cellular

component of the tumor microenvironment is very diverse and

comprises genetically transformed stromal cells, including

endothelial cells, adipocytes, cancer-associated fibroblasts,

peripheral nervous system-derived nerve fibers, blood or

lymphatic cells, infiltrating immune cells (T lymphocytes, B

lymphocytes, and NK cells), neuroendocrine cells, macrophages,

neutrophils, antigen-presenting dendritic cells, and myeloid-

derived suppressor cells. The immune component of the tumor

microenvironment comprises cytotoxic T lymphocytes, regulatory

T lymphocytes, B lymphocytes, NK cells, macrophages, neutrophils,

antigen-presenting dendritic cells, and myeloid-derived suppressor

cells infiltrating the tumor stroma. The NK cells target and induce

apoptosis in transformed cells and virus-infected cells that escape

the action of cytotoxic T lymphocytes. Macrophages maintain

tumor progression by secretion of activating cytokines,

angiogenesis, and metastasis. Myeloid-derived suppressor cells

promote tumor growth, inhibition of T lymphocyte cytotoxicity,

tumor angiogenesis, disintegration of extracellular matrix by

secretion of MMPs, inhibition of NK cell activity, and activation

of regulatory T lymphocytes with immunosuppressive function

(169, 170). The tumor-associated B lymphocytes can trigger

humoral antitumoral immunity through interactions with

regulatory T lymphocytes and dendritic cells. Dendritic cells are

among the most potent antigen-presenting cells, providing

cytotoxic CD8+ T lymphocytes with recognition keys to tumor

targets (171, 172).

In HNSCC, CD56dim NK cell infiltration is markedly higher

in HPV-positive tumors and probably contributes to their more

favorable prognosis. NK cells recognize unhealthy or foreign cells

that expose inappropriate HLA/MHC class I molecules.

Activation of NK cells requires that the proportion of activating

signals exceeds that of inhibitory signals and occurs directly via

membrane receptors in two pathways and indirectly via soluble

factors. The first direct activation pathway requires binding

FCGRIIIA/CD16, one of the most potent NK cell activating

receptors, to the Fc region of immunoglobulins. The low affinity

of the FCGRIIIA/CD16 receptor allows NK cells to recognize and

release immunoregulatory cytokines against antibody-coated

cellular targets (173). The second pathway of direct NK cell

activation occurs via NKG2D and NCRs (Natural Cytotoxicity

Receptors), such as NKP30 and NKP46, and is strongly induced

under stress conditions in viral infections, including HPV

infection and in tumor cells (174, 175). Indirect activation
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occurs via soluble cytokines, including the interleukins IL2,

IL12, IL15, IL18, and IL21, TNFA (Tumor Necrosis Factor

Alpha), and IFN (type I interferon) (170, 176).

Neutrophils are among the first immune cells recruited in

infections (177) and inflammation in the microenvironment of

HNSCC (178). Infiltration of neutrophils in the tumor stroma and

an elevated neutrophil to lymphocyte ratio is associated with poor

overall surviving for HNSCC patients (179). In HNSCC, the

neutrophil increase is lower in HPV-positive than in HPV-

negative tumors. However, in the former, an increased neutrophil

count is associated with reduced survival duration (180).

Dendritic cells infiltrating HNSCC of the tonsil are of two types:

plasmacytoid CD123+ dendritic cells, with characteristics of

lymphocytes and classical dendritic cells, myeloid CD11c+

dendritic cells, with three subtypes, CD1c+ myeloid dendritic

cells, CD141+ myeloid dendritic cells, and CD1c-CD141- myeloid

dendritic cells (181). HNSCC significantly reduces the number of

CD11c+ myeloid dendritic cells in the peripheral circulation, which

increases after tumor resection. Due to antigen-presenting activity

to T lymphocytes, CD1a+ myeloid dendritic cell clusters in the

stroma of HNSCC are associated with favorable prognosis and

increased survival duration, with some studies indicating them as a

favorable prognostic marker for some HPV-positive but not HPV-

negative tumors, but this is not always the case (182).

Cytotoxic CD8+T lymphocytes are the main cellular immune

effectors against tumor cells. Activation of cytotoxic CD8+ T

lymphocytes occurs through TCR (T cell receptor) recognition of

HLA/MHC antigens presented by dendritic cells and interaction of

co-stimulatory factors B7/CD80 on antigen-presenting cells and

CD28 on T lymphocytes. CD28 activates CTLA4/CD152, expressed

predominantly on cytotoxic CD8+ T lymphocytes and less on

activated B lymphocytes, monocytes, dendritic cells, regulatory

CD4+ T lymphocytes, and granulocytes, induces TGFB

(Trans forming Growth Fac tor Be ta ) synthes i s wi th

immunosuppressive effects (183). In tumor tissue, TGFB synthesis

leads to overexpression of CTLA4/CD152, with depletion of T

lymphocytes (184), which begin to release inhibitory molecules,

including PD1, CTLA4, TIGIT (T Cell Immunoreceptor With Ig

And ITIM Domains) and LAG3 (Lymphocyte Activating 3), which

reduce their activity and production of cytokines and cytolytic

molecules (185). PD1 is part of the CD28 family of receptors and

has PDL1 and PDL2 ligands, and both are expressed on antigen-

presenting cells, endothelial cells, and activated lymphocytes (186).

Increased expression of PD1 and PDL1 in the tumor

microenvironment cells leads to the inactivation or depletion of

cytotoxic CD8+ T lymphocytes, and even when these cells are

present in large extent, it favors tumor survival (187). HPV

infections are known to increase the number of specific CD 8+ T

lymphocytes, whose proliferation is triggered mainly by L1 protein

(188). In a similar manner, HPV-positive tumors attract an increased

number of HPV-specific CD 8+ T lymphocytes, which account 0.1 to

10% among all the tumor-infiltrating CD8+ T lymphocytes, while

their presence in peripheral blood is very low (0.02%), indicating a

strong association with the tumor microenvironment. One subset of

HPV-specific CD 8+ T lymphocytes is expressing the TCF7 and other

genes associated with with PD1+ stem-like CD8 T lymphocytes,
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which are very important for maintaining T cell responses when

HPV-antigen presence is prolonged. When stimulated with the HPV

peptides, the PD1+TCF1+ stem-like subset of CD8+ T lymphocytes

proliferates and differentiates into several subsets of effector cells, and

the presence of functional and proliferative HPV-specific PD1+TCF1

+CD45RO+ stem-like CD8 T proves that in HPV-positive NHC

tumors there is active mechanisms to overcome the PD1 blockade

(189), leading to chronic inflammatory reaction and poor prognosis

in OSCC wif’th high expression of PD1 and its ligands (190, 191). On

the other hand, 82 show that PDL1 expression on macrophages

infiltrating HPV-positive tumors indicates a trend toward improved

overall survival. Since HPV-positive HNCs are able to develop

responsive mechanisms to PD1 blockade, the PD1–PDL1

pair could be an attractive target for antitumor therapies (192). In

some cancer cases, PD1/PDL1 antibody therapies invigorate tumor-

infiltrating CD8+ T lymphocytes, but their efficacy on heterogeneous

CD8+ T cell populations is uneven (193). However, the tumor

response to PD1 inhibitor therapy depends on tumor type. It is
Frontiers in Oncology 14
expected that, in the presence of CD8+ T lymphocytes, PD1+ tumors

are more responsive compared to PD1-negative tumors

(194–196), and anti-tumor therapeutic decisions may be guided

by the results of immunohistochemical tests for PDL1

expression (197).
4 Discussion

HNCs continue to be a global health challenge and a topic of

significant contemporary importance. HNCs are aggressive tumors,

with more than 90% of their origin in squamous cells from the

mucosae of the upper aerodigestive tract, ranking sixth among the

most common cancers. Recent advances in omics and

bioinformatics technologies are vital for gaining insights into the

biology and clinical behavior of HNCs, unveiling potential

biomarkers and therapeutic targets with practical applications in

this problematic disease (198–201).
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FIGURE 3

Effects of HPV infection and microbiota on head and neck tumors. HPV infection favors the development of head and neck cancers (mainly from the
oral and oropharyngeal sphere), but their general prognosis is better than that of HPV-negative tumors (A); Corynebacterium and Kingella have a
preventive effect on head and neck cancers (B); Bacillus, Lactobacillus and Sphingomonas sustain favorable prognosis (C); Leuconostoc,
Streptococcus and Abiotrophia increase the risk of head and neck cancers (D); Streptococcus salivarius, Corynebacterium and Stomatococcus favor
oncogenesis and the development of oral tumors (E); Stenophotromonas, Staphylococcus, Centipeda, Selenomonas, Alloscordovia and
Acinetobacter predict poor prognosis and poorer survival rate for OSCCs (F); Fusobacterium nucleatum is generally associated with early oral
squamous cell carcinomas stages, reduced recurrence and increased survival duration (G); the fungus Candida albicans stimulates pro-tumor
signaling pathways (H); Veillonella is an indicator for better overall prognosis for OSCCs (I); Bacteroidetes and Peptostreptococcus are associated
with large oral squamous cell carcinomas (J); the presence of the genera Corynebacterium, Kingella, Neisseria, Abiotrophia and Capnocytophaga
reduce the risk of the appearance or progression of laryngeal tumors (K); the species Actinomyces oris and Veillonella denticariosi are associated
with reduced risk of occurrence or progression of pharyngeal tumors (L); species from the genera Faecalibacterium, Prevotella and
Phascolarctobacterium reduce the risk of pharyngeal cancer recurrence (M).
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The dysbiosis occurred in the complex oral microbiome is

associated with the evolution of HNCs, through multiple

mechanisms such as inflammation, genotoxins release,

modulation of the innate and acquired immune response, of

carcinogens and anticarcinogens productions, generation of

oxidative stress, induction of mutations (34). Thus, novel

microbiome-derived biomarkers and interventions could

significantly contribute to achieving the desideratum of

personalized management of oncologic patients, regarding both

early diagnosis and treatment.

The most common microorganisms associated with HNCs are

Porphyromonas gingivalis, Fusobacterium, Leptotrichia,

Selenomonas, Treponema, Parvimonas, Pseudoalteromonas,

Prevotella, Alloprevotella, Capnocytophaga, Bacteroidetes,

Solobacterium, Clostridium and Peptostreptococcus. A higher

abundance of Bacteroidetes and Peptostreptococcus are associated

with later stages and larger tumors, while increased salivary levels of

Stenophotromonas, Staphylococcus, Centipeda, Selenomonas,

Alloscordovia, and Acinetobacter with poor prognosis and poorer

survival in oral cancer (Figure 3).

However, the results reported by different studies are not always

congruent regarding the variations in the abundance of different

taxons in HNCs. Thus, Actinobacteria phylum and Neisseria,

Capnocytophaga, Veillonella genera are reported either with high

or with low abundance in HNCs. The current studies are consistent

in reporting a higher abundance of Gram-negative species such as

Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis,

Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas,

Enterobacterales, which are probably responsible of chronic

inflammation and modulation of tumor microenvironment. On

the other side, a recent study shows that the presence of oral fungi

and of red- and orange-complex periodontal pathogens was

associated with reduced risk of HNCs. C. albicans is the

dominant fungi found in oral carcinoma being also associated

with shorter survival rate. The abundance of different microbial

species such as F. nucleatum, Bacteroidetes and Peptostreptococcus

has been associated with later stages and larger tumor, suggesting

their potential to be used as biomarkers for tumor stratification

and prognosis.

On the other side, some microbiota signatures, such as the

abundance of microorganisms of the genera Corynebacterium,

Kingella, Abiotrophia are associated with a reduced risk of HNCs.

Microbiome could also provide biomarkers for HNCs diagnosis,

the profiles being different between oropharyngeal and

hypopharyngeal cancers as well as between HPV-positive and

HPV-negative tumors. Ongoing clinical trials aim to validate non-

invasive tests for microbiome derived biomarkers detection in oral

and throat cancers, especially within high-risk populations. These

studies demonstrate the potential of machine-learning tools for oral

cancer diagnosing, opening a new era of non-invasive diagnostics,

enabling early intervention, and improving patient outcomes.

Oro-pharyngeal dysbiosis could also impact the HNCs therapy

and associated side-effects of radiotherapy, chemotherapy, and

immunotherapy, such as OM or tumor recurrence.
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Elucidation of the molecular mechanisms by which oral

microbiome and HPV infection influences the HNCs initiation

and progression, screening for HPV infection and vaccination

against HPV, adopting good oral hygiene, and preventing oral

dysbiosis are important tools for advancing in the battle with this

public health global challenge. Reducing pathogenic bacteria and

promoting a healthy microbiome has been shown to enhance the

effectiveness of both immunotherapy and chemotherapy.

Furthermore, maintaining a balanced gut microbiome can help

mitigate the side effects associated with these treatments, improving

the overall experience for cancer patients (202, 203).

Current studies investigate the potential of probiotics in

modulating the course of the disease and managing cancer

therapy-related side effects in HNSCC and OSCC patients (38, 41,

42, 46, 49, 204). The current evidence underscores the potential of

probiotics such as LGG and L. brevis in alleviating cancer associated

oral mucosal problems and promoting overall health.

However, the current findings raise questions about the

beneficial properties of particular oral probiotics, necessitating

further investigation to better understand their effects and

potential drawbacks. While the results regarding the use of

microbiome-based interventions are promising, further research is

recommended, specifically advocating for additional randomized,

double-blind, multicenter trials conducted on a more extensive and

diverse population. This approach will help provide a more robust

understanding of the potential benefits of probiotics in managing

cancer therapy-related side effects, such as the inflammation of the

oral mucosa frequently encountered in individuals undergoing

radiotherapy and chemotherapy (205).

As we gain a better understanding of the molecular traits

distinguishing HPV-positive from HPV-negative HNSCCs, there

is hope for developing novel early diagnosis markers (e.g., with

methylated circulating tumor DNA) and targeted, personalized

therapies. The specific genetic and epigenetic events occurred in

each HNCs stage are influenced by the HPV infection status. HPV-

positive tumors are characterized by fewer mutations, occurring

predominantly in PIK3CA, PTEN, FBXW7, and KRAS genes,

whereas HPV-negative tumors carry defects in a more extensive

number of genes. In addition to inhibitory and activating

mutations, in HNCs, gene expression is altered by several

epigenetic changes, which, in the case of DNA methylation, are

also influenced by the HPV status. The HPV status also influences

the tumor microenvironment cellular components, particularly the

NK, neutrophils, dendritic cells, and CD8 positive T cells. However,

despite notable advancements in comprehending the molecular

mechanisms by which HPV influences the HNCs evolution and

response to treatment, the significant disparity in survival and

clinical outcomes between HPV-positive and HPV-negative

HNSCC patients following standard-of-care treatment remains

enigmatic. Several research teams have proposed potential factors,

including the elevated rates of cell proliferation and DNA damage

in HPV-positive tumors compared to their HPV-negative

counterparts (206). Future studies that address aberrant DNA

methylation, histone post-translational modifications, non-coding
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RNAs, dysbiosis, and approaches to minimize immunosuppression

within the tumor microenvironment will provide the science-based

evidence for revolutionizing HNCs managment (207). Personalized

treatments, encompassing targeted therapies, immunotherapies,

cancer vaccines, and epigenetic inhibitors tailored to each

individual’s molecular profile, hold great promise in overcoming

the limitations of conventional therapies, offering patients more

effective and precisely tailored care in clinical settings.
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