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Introduction: AI-assisted ultrasound diagnosis is considered a fast and accurate

new method that can reduce the subjective and experience-dependent nature

of handheld ultrasound. In order to meet clinical diagnostic needs better, we first

proposed a breast lesions AI classification model based on ultrasound dynamic

videos and ACR BI-RADS characteristics (hereafter, Auto BI-RADS). In this study,

we prospectively verify its performance.

Methods: In this study, the model development was based on retrospective data

including 480 ultrasound dynamic videos equivalent to 18122 static images of

pathologically proven breast lesions from 420 patients. A total of 292 breast

lesions ultrasound dynamic videos from the internal and external hospital were

prospectively tested by Auto BI-RADS. The performance of Auto BI-RADS was

compared with both experienced and junior radiologists using the DeLong

method, Kappa test, and McNemar test.

Results: The Auto BI-RADS achieved an accuracy, sensitivity, and specificity of

0.87, 0.93, and 0.81, respectively. The consistency of the BI-RADS category

between Auto BI-RADS and the experienced group (Kappa:0.82) was higher than

that of the juniors (Kappa:0.60). The consistency rates between Auto BI-RADS

and the experienced group were higher than those between Auto BI-RADS and

the junior group for shape (93% vs. 80%; P = .01), orientation (90% vs. 84%; P =

.02), margin (84% vs. 71%; P = .01), echo pattern (69% vs. 56%; P = .001) and

posterior features (76% vs. 71%; P = .0046), While the difference of calcification

was not significantly different.

Discussion: In this study, we aimed to prospectively verify a novel AI tool based

on ultrasound dynamic videos and ACR BI-RADS characteristics. The prospective

assessment suggested that the AI tool not only meets the clinical needs better

but also reaches the diagnostic efficiency of experienced radiologists.
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1 Introduction

According to the latest statistics on cancer incidence and

mortality from the International Agency for Research on Cancer

(GRIBOCAN) in 2020, breast cancer incidence has risen to the top

and become the first cause of death among women worldwide (1).

Early screening for breast cancer is crucial to reducing death rates.

National guidelines for breast cancer screening vary from country to

country. Due to the high proportion of dense breasts in Chinese

women and the low sensitivity of mammography, the National

Cancer Centre of China proposes that the ultrasound (US) should

be the preferred method for breast cancer screening in Chinese

women and recommends that women over 45 years old should be

screened by ultrasound alone every 1-2 years (2). China has a large

population which brings the heavy workload of breast cancer

ultrasound screening. Therefore, it is necessary to develop a clinical

application AI tool that can assist in diagnosis quickly and efficiently.

In clinical practice, to improve the accuracy of diagnosis,

standardize ultrasound description, and communicate effectively

with the physician, worldwide radiologists generally use the

American College of Radiology Breast Imaging Reporting and

Data System (ACR BI-RADS) lexicon for breast US (3). The

radiologist scans the whole breast with handheld ultrasound and

gives BI-RADS category. However, since handheld ultrasound

depends on the operators and experience, different radiologists

have different opinions on the interpretation of BI-RADS

characteristics, resulting in a high inter-observer variability, poor

repeatability and low work efficiency (4–6).

To the best of our knowledge, AI is the most likely tool to

improve diagnostic effectiveness and reduce the subjective and

experience-dependent nature of handheld ultrasound. In recent

years, with the continuous application of AI in clinics, deep learning

has been favored by human experts due to its strong capacity for

autonomous feature extraction and expression (7). Several studies

applied deep learning to classify US images of breast lesions and

have reported that it could achieve a high diagnostic performance

similar to or better than that of experienced radiologists. Becker

et al. (8) used a deep neural network to identify malignant lesions in

637 breast lesions. Han et al. (9) used the GoogLeNet convolutional

neural network to classify benign and malignant ultrasound images

of 7408 breast lesions. However, these studies are all based on a

keyframe image which was not in accord with the actual situation of

the clinical ultrasound dynamic scan. Moreover, a single static

image cannot contain all the information about the entire breast

lesion. In addition, studies (10, 11) showed that one person may also

have other diagnoses within videos and static images for one lesion.

Youk et al. (12) showed that in radiologists’ interpretation of BI-

RADS characteristics, videos had a higher diagnostic performance

than static images. What’s more, the above studies all belong to the

benign and malignant dichotomy, which is of little clinical guiding

significance compared with the multi-classification of BI-RADS.

Ciritsis et al. (13) and Qian et al. (14) tried to use deep learning to

conduct multi-classification studies of BI-RADS on breast lesions.

However, they all merged BI-RADS 4a, 4b, and 4c into category 4,

which was not in line with clinical practice, and at the same time,

they still failed to overcome the limitations of using static images.
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To overcome the above limitations, we first proposed an

approach to scan the breast lesions and record their ultrasound

dynamic videos per unified criteria, obtaining ACR BI-RADS

morphological characteristics, and realizing the BI-RADS

category. Compared to traditional methods based on single-frame

static images, it not only captures comprehensive and complete

breast lesion information, avoiding missing lesion features in static

images but also better suits clinical diagnostic scenarios. In this

approach, we introduce an AI diagnostic model (hereafter, Auto BI-

RADS), which includes a YOLOV5 network with improved

attention mechanism and morphological image processing

algorithms. Based on effectively screening, localizing, and

capturing tumor lesions in breast ultrasound dynamic videos,

Auto BI-RADS can obta in BI-RADS morpholog ica l

characteristics, achieve BI-RADS category and make a benign or

malignant prediction. In this study, we prospectively verified its

performance through a comparative test.
2 Materials and methods

2.1 Study sample

The institutional review board approved this study, and the

requirement to obtain informed consent was waived (approval

number: B-2022-182). In the development of Auto BI-RADS, we

include retrospective data from the First Affiliated Hospital of

Shantou University Medical College (Guangdong, China) with a

total of 480 pathologically proven lesions. Figure 1 presents the

inclusion and exclusion criteria. A total of 480 ultrasound dynamic

videos equivalent to 18122 static images comprised the training and

validation sets at 3:1 (mean age, 45 years; range, 18–82 years, May

2019 to June 2022). In the testing study, the dataset was screened

with the same criteria and included two hospitals: internal test set

(mean age 45 years, range,19-76 years, First Ultrasound

Department, First Affiliated Hospital of Shantou University

Medical College[Hospital 1], July 2022 to March 2023, n = 228);

and external test set (Mean age: 50 years old; range,26-73 years old;

Ultrasound Department, Shantou Chaonan Mingsheng Hospital

[Hospital 2], July 2022 to March 2023, n = 64). A flowchart

describing the research process is shown in Figure 1. Baseline

clinical pathologic data, including age, sex, pathologic findings,

and US diagnosis reports, were derived from the medical records.

US video data were recorded by two experienced radiologists per the

criteria below (SM.Q., with 7-8 years of experience, Hospital 1;

JH.W., with 11-12 years of experience, Hospital 2).
2.2 US examination

US examinations were performed with linear array transducers

of real-time US systems. All patients in hospital 1 were examined

with the following US scanners: Canon Toshiba (Japan, Aplio I800,

L9-18 MHz), SIUI (China, Apogee 6800, L8-12 MHz), and Siemens

(Germany, Acuson S3000, L9-12MHz). Patients in hospital 2 were

examined with Siemens (Germany, Acuson Sequoia, L4-10MHz).
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US video acquisition: The patients held the supine position and

raised their hands to fully expose their axilla and breast. We selected

the maximum transverse diameter section of breast lesions and used

the body mark showing the position; adjusted the depth to place the

lesions in the center of the screen and the focus at the bottom of

them; activated the storage function; kept the transducer at a

constant speed to scan the lesions until some normal breast

tissues appear, and pressed the storage key to acquire the video.
2.3 US image analysis

The six lexicon categories of BI-RADS were labeled as

identifying features (shape, orientation, margin, echo pattern,

posterior acoustic features, and calcification). The shape was a

binary classification feature: regular or irregular; orientation was

also binary: parallel or not parallel; the margin was another binary
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feature: circumscribed or not circumscribed. The echo pattern was

mapped to three binary classification features: Anechoic,

homogeneous echo (including homogeneous low, equal, and high

echoes), heterogeneous echo (including heterogeneous solid and

cystic-solid echoes); Posterior acoustic features are also classified

into three classification features: no change, enhancement, or

shadowing. Calcification is the last category, classified into three

classification features: no calcification, coarse calcification, and

punctate calcification (Figure 2).

In the training set, two experienced radiologists (DP.L. and

XX.C, both with 10 years of US experience) were blinded to

histopathologic results and independently manually labeled masks

for each breast lesion video. Image classification was then

performed based on the fifteen features of the six main BI-RADS

lexicon. Groups would make a discussion to reach a consensus. In

the validation dataset, the initial performance of Auto BI-RADS was

evaluated by those two radiologists.
FIGURE 1

Overview of the retrospective and prospective workflow. It should be pointed out that all BI-RADS categories in this study were determined on 2D
US videos exclusively.
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For the test data set, four radiologists blinded to histopathologic

results were split into two groups: experienced radiologists (BQ.Z.

and XY.L., with 30 and 28 years of ultrasound work experience,

respectively) and junior radiologists (ZY.L. and X.C., with 3 and 4

years of ultrasound work experience, respectively). Each radiologist

independently evaluated the features of breast lesions in dynamic

videos and determined the benign or malignant nature of the mass.

When the evaluation results were inconsistent, a group consensus

was reached through discussion.
2.4 AI model development

2.4.1 The establishment of Auto BI-RADS
diagnosis model

The diagnostic AI model of Auto BI-RADS consists of three

parts (Figure 3). The first part is based on the YOLOV 5 attention

and segment network for object detection and segmentation. This

model first converts the input breast lesions US video into

sequence frames and selects frames containing lesions, then

extracts and segments the regions of interest and their

corresponding masks (15–18). In order to improve the detection
Frontiers in Oncology 04
performance of the network, we added the simple attention

mechanism (Sim AM) to the model, which enhances the

recognition effect of the small breast tumor target. We also

combined the binary cross entropy loss (BCE loss) function,

focal loss (FL loss) function, and Complete-Intersection-Over-

Union (CIOU) loss function to optimize the network (19, 20). The

second part focuses on extracting features of breast lesions using

image processing algorithms. In this part, tumor regions of

interest and their corresponding masks are obtained. These

regions of interest and masks undergo equalization processing

and data augmentation (21). After that, morphological image

processing algorithms are used to extract features such as shape,

orientation, margin, echo pattern, posterior acoustic features, and

calcification from these tumor slices. The third part involves a

feature score fusion algorithm based on weighted thresholds.

Because multiple and unevenly distributed features may present

in the breast lesions ultrasound video sequences, we establish

threshold values based on the proportion of frames in which

different features appear. Then, we merge the scores of all detected

features and use a rank threshold score table to divide the tumor

into its BI-RADS category and distinguish its benign or

malignant nature.
FIGURE 2

Examples of US images with Six American College of Radiology Breast Imaging Reporting and Data System characteristics. Characteristics include
(A) regular, (B) irregular, (C) parallel, (D) not parallel, (E) circumscribed, (F) not circumscribed, (G) Anechoic, (H) hypoechoic, (I) hyperechoic,
(J) Isoechoic, (K) complex cystic and solid, (L) heterogeneous, (M) enhancement, (N) shadowing, (O) no posterior features, (P) macrocalcifications,
(Q) punctate echogenic foci, (R) no calcification.
FIGURE 3

Proposed network scheme of the Auto BI-RADS model for breast lesions diagnosis based on American College of Radiology Breast Imaging
Reporting and Data System US characteristics.
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The predictive results of the Auto BI-RADS include the BI-

RADS category, benign or malignant, and the assessment results of

six significant features for each nodule. Figure 4 shows the

prediction results of the Auto BI-RADS model in a case,

compared with the interpretation results of experienced and

junior radiologists.

2.4.2 The design of the YOLOV5 att-seg network
based on the Sim AM

The deep learning model in this study is the YOLOV5 network

based on the Sim AM. Hereafter we call it the YOLOV5 Attention

Segmentation model (YOLOV5 att-seg).

The YOLOV5 network model consists of feature extraction and

feature processing. The feature extraction part includes a Cross

Stage Partial Network (CSP Net) (21) and a Path Aggregation

Network (PA Net) (16) (Figure 5).

The CSP net is primarily composed of multiple Conv

+BatchNorm+SiLU (CBS) modules, Cross Stage Partial modules 1

(CSP1), and spatial pyramid pooling fast (SPPF) modules. This

network extensively utilizes residual structures and convolutional

modules for refining image features and reducing feature map

dimensions through downsampling. Additionally, it preserves

feature maps at different depths within the network, allowing

subsequent parts of the PA Net network to further integrate

features from different levels.

The PA Net Network is primarily used for generating feature

pyramids to enhance the model’s detection of objects at different

scales. It is an improvement based on the Feature Pyramid Network

(FPN) architecture. The network consists of CBS modules, CSP2

modules, and Sim AM modules. Since CSP Net already captures

sufficiently deep-level feature information, a non-residual module

called CSP2 is used in the PA Net section to accelerate training and

inference speed. The inclusion of Sim AM aims to further enhance

the network’s detection performance for small lesions. Sim AM is a

parameter-free attention mechanism module based on the theory of

neural energy functions (17). It calculates the neural energy of the

input image and performs Hadamard multiplication with the input

image to spontaneously enhance or suppress the neural pathways.

(Figure 6) shows that YOLOV5 without Sim AM failed to identify

tumor targets in some small breast tumor slices. However, the

YOLOV5 att-seg model, which incorporates the Sim AM, exhibited

improved detection performance for small tumor targets.
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The second part is the feature processing section. It mainly

involves processing the feature information obtained from the

feature extraction section. The previous CSP Net and PA Net

have effectively refined and aggregated the image features.

Therefore, this part of the work is divided into two branches:

mask segmentation and tumor target detection. One branch

utilizes upsampling layers and CBS modules to further refine the

edge information of the features, thereby obtaining better details of

the mask edges. The other takes the three different-sized receptive

field feature maps (RFFM) output by the PA Net network, adjusts

them to the same dimension using CBS modules, and fuses them

with the Concat function to enhance the network’s detection of

objects of different sizes. Finally, the network outputs the categories

and detection boxes (22).
2.4.3 Performance validation of the YOLOV5 att-
seg network model

The YOLOV5 att-seg network in this study was trained using

18122 static images extracted from 480 ultrasound dynamic videos.

The detection box data was obtained by extracting the bounding

rectangles from the masks. 75% of the samples were used for

network training. The network was trained for 300 epochs, and

the results are shown in (Figure 7).

In the remaining 25% samples for validation, we compared the

detection performance of YOLOV5 att-seg with YOLOV5, Vgg-16

and Resnet50 networks. We also compared the segmentation

performance of YOLOV5 att-seg with YOLOV5, Unet and Fcn-

16s networks. The result is shown in Table 1.

The detection result shows that YOLOV5 att-seg has an

improved performance in detecting smaller tumors in ultrasound

images. In comparison, YOLOV5 att-seg vs. YOLOV5 vs. Vgg-16

vs. Resnet50, the precision, recall, and specificity are (0.98, 0.93,

0.94, vs. 0.97, 0.92, 0.9, vs. 0.84, 0.86, 0.82, vs. 0.78, 0.77,

0.77), respectively.

The segmentation result shows that YOLOV5 att-seg has an

improved performance in precision, recall, Dice. and Iou.

comparing with YOLOV5, Unet and Fcn-16s (0.98, 0.93,

0.77,0.68, vs. 0.98, 0.93, 0.75,0.67, vs. 0.60, 0.76, 0.62,0.53, vs. 0.53,

0.66, 0.53,0.46, respectively). However, the specificity of YOLOV5

att-seg (0.94) was slightly lower than that of Unet (0.97) and Fcn-

16s (0.96). This indicates that the YOLOV5 att-seg model used in
FIGURE 4

The left side displays a series of key frames extracted from an ultrasound dynamic video of a breast lesion that was pathologically proven as
malignant. The right side shows the predictive results of the Auto BI-RADS model for the lesion based on ACR BI-RADS, as well as the interpretation
results of the experienced (Exp.) and junior (Jun.) radiologists.
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this study achieves a more balanced performance compared to Unet

and Fcn-16s. Unet and Fcn-16s tend to have overly conservative

segmentation contours for ultrasound tumor targets, resulting in

abnormally high specificity values. On the other hand, the

enhancement in small target detection of YOLOV5 att-seg leads

to improved segmentation performance compared to YOLOV5.
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In terms of network running speed, YOLOV5 att-seg achieves

significant improvement by using a single network to extract image

features and obtain detection boxes and segmentation masks for

tumor targets. This network demonstrates much faster speed

compared to the traditional approach using separate networks for

detection and segmentation.
FIGURE 6

(A) the original image of a breast tumor. (B) the manually annotated ground truth by experienced physicians. (C) the detection results of YOLOV5
seg. (D) the detection results of YOLOV5 att-seg.
FIGURE 5

YOLOV5 att-seg Architecture.
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2.5 Statistical analysis

The areas under the receiver operating characteristic curves

(AUCs) with 95% confidence intervals (CI) were compared using

the DeLong test (23) for Auto BI-RADS and two groups of

radiologists. The threshold of Auto BI-RADS was established

using validation sets. Performance metrics (sensitivity, specificity,

positive predictive value, and negative predictive value) of Auto BI-

RADS and the two groups of radiologists were evaluated. The

Kappa test was used to compare the consistency of the breast

lesion BI-RADS category between Auto BI-RADS and the two

groups of radiologists. The McNemar test was used to compare
Frontiers in Oncology 07
the consistency rate of breast lesion characteristics recognition

among Auto BI-RADS, the experienced group, and the junior

group. Data were analyzed with SPSS, version 26.0 (IBM), and

MedCalc, version 20.2 (MedCalc Software). P<0.05 was considered

indicative of a statistically significant difference.
3 Results

3.1 Patient characteristics and clinical
features of breast lesions

A total of 698 patients were included in this study. In model

development, 420 patients (480 pathologically confirmed lesions: 284

[60%] benign and 196 [40%)] malignant) from Hospital 1 were

collected for training and validation in a 3:1 ratio. In the test data set,

there were 278 patients (292 pathologically confirmed lesions: 168

[58%] benign and 124 [42%] malignant) from Hospitals 1 and 2.

Figure 2 shows the workflow of patient inclusion and exclusion for

model development and independent test. The specific pathological

composition and distribution of the lesions are shown in Table 2.
3.2 Performance of Auto BI-RADS
experienced radiologists and junior
radiologists for diagnosing benign and
malignant breast lesions

In the test set, the AUC value was slightly lower than that of the

experienced group but significantly higher than that of the junior

group as shown in Figure 8.

The AUC, sensitivity, specificity, positive predictive value, and

negative predictive value of Auto BI-RADS were 0.87 (95%CI: 0.82,

0.90), 93% (116 out of 124 lesions), 81% (136 out of 168 lesions),

78% (116 out of 148 lesions), and 94% (136 out of 144 lesions),

respectively. The false positive of the Auto BI-RADS is 6%, as much

as the experienced group. We found no evidence of a statistical
FIGURE 7

The box loss, segmentation loss, and target category loss of YOLOV5 att-seg achieve 0.0097, 0.0109, and 0.0034, respectively. It indicates that the
network has achieved a good fit to the overall data.
FIGURE 8

Areas under the receiver operating characteristic curves (AUCs) of
the Auto BI-RADS model for breast lesions based on the American
College of Radiology Breast Imaging Reporting and Data System and
two radiologist groups with different experience levels who used
BI-RADS.
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difference between the Auto BI-RADS model and the experienced

group for AUC (P = 0.06), but there were statistically significant

differences compared to the junior group (P < 0.001) (Table 3).
3.3 Comparison of consistency among
Auto BI-RADS, experienced radiologists,
and junior radiologists in the BI-RADS
category in the test set

In the test set of 292 breast lesions, the consistency between the

Auto BI-RADS model and the experienced radiologists in the BI-

RADS category was higher than that of the junior radiologists, with

kappa values of 0.82 and 0.60, respectively (Table 4).
3.4 Comparison of consistency rates
among Auto BI-RADS, experienced
radiologists, and junior radiologists in the
identification of breast lesions
characteristics in the test set

In the test set of 292 lesions, the consistency rate between Auto

BI-RADS and experienced radiologists was higher than that

between Auto BI-RADS and junior radiologists in the

identification of morphology, orientation, margin, internal echo,

posterior echo with respective values for morphology (93% [n =

271] vs. 80% [n = 234]; P = 0.01), orientation (90% [n = 265] vs.

84% [n = 247]; P = 0.02), margin (84% [n = 246] vs. 71% [n = 209];

P = 0.01), internal echo (69% [n = 202] vs. 56% [n = 163]; P = 0.01)

and posterior echo (76% [n = 221] vs. 71% [n = 207]; P = 0.046). In

the identification of calcification, there was no statistically

significant difference in the consistency rates between Auto BI-

RADS and experienced radiologists or junior radiologists (P =

0.4) (Table 5).
4 Discussion

In this study, we first developed a breast lesions AI classification

model. By identifying the BI-RADS characteristics within the

ultrasound dynamic videos, it can automatically evaluate the
Frontiers in Oncology 08
lesions’ BI-RADS category and predict their benign or

malignant nature.

The development of the Auto BI-RADS model was based on

480 breast lesions ultrasound videos equivalent to 18122 static

images from Hospital 1, with a 3:1 ratio for training and

validation. To verify the stability and efficiency of the model,

we made an independent test in this study in 292 breast lesions

testing sets from Hospital 1 and Hospital 2. Compared with those of

experienced and junior radiologists, it showed that Auto BI-RADS

achieved high performance in distinguishing between benign

and malignant breast lesions (AUC: 0.87, sensitivity: 93%,

specificity: 0.81), which was close to the experienced radiologists

(AUC: 0.89, sensitivity: 93%, specificity: 86%), and significantly

better than juniors (AUC: 0.74, sensitivity: 72%, specificity: 74%).

Tracing back to the previous studies, Han et al. (9) first used an end-

to-end deep learning framework to classify regions of interest

selected by radiologists in a dataset of 7,408 static ultrasound

breast lesions. They reported a sensitivity of 0.86, specificity of

0.93, and AUC >0.9. Ciritsis et al. (13) used a deep learning model

that mimicked human decision-making to detect and classify

ultrasound breast lesions in a dataset of 1,019 static images.

In an external test dataset, they reported a sensitivity of 0.894,

specificity of 1.0, and AUC of 0.967. Qian et al. (14) developed a

neural network model that combined ultrasound B-mode

and color Doppler to classify static ultrasound images of the

breast in a larger dataset. Their bimodal model reported an AUC

of 0.982, specificity of 88.7%, and sensitivity of 97%. Although the

diagnostic performance indicators reported in those studies

may appear higher than our study, they are not directly

comparable. Firstly, the above studies were based on keyframes

that can reflect the main BI-RADS characteristics of breast lesions.

However, in clinical practice, not all radiologists were able to select

the most critical frames. Secondly, a single static image cannot

reflect all the morphological features of one breast lesion. Therefore,

the results of those studies may have significant bias and low

reproducibility, with limited clinical applicability. Additionally,

none of the above studies conducted independent testing, raising

questions about the stability of the models. In contrast, we used

ultrasound dynamic videos for independent testing, which could

improve its clinical generalizability with more objective and

reproducible consequences.

In addition, we also compared the consistency among Auto

BI-RADS, experienced radiologists, and junior radiologists in the
TABLE 1 Comparison of performance metrics for object detection and segmentation in validation set.

Network Function Precision Recall Specificity Dice. Iou.

YOLOV5 att-seg det./seg. 0.98|0.98 0.93|0.93 0.94|0.94 0.77 0.68

YOLOV5 det./seg. 0.97|0.98 0.92|0.93 0.91|0.91 0.75 0.67

Vgg-16 det. 0.84 0.86 0.82 – –

Resnet50 det. 0.78 0.77 0.77 – –

Unet seg. 0.60 0.76 0.97 0.62 0.53

Fcn-16s seg. 0.53 0.66 0.96 0.53 0.46
frontier
det, detection; seg, segmentation; Dice, Dice coefficient; Iou, Intersection over Union.
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BI-RADS category (the Kappa values were 0.82 and 0.60,

respectively). The results showed that Auto BI-RADS were

highly consistent with experienced radiologists. Finally, we

compared the identification of breast lesions ’ BI-RADS

characteristics. The results showed that Auto BI-RADS had a

higher consistency rate with experienced radiologists in

morphology, orientation, margin, internal echo, and posterior

echo. This indicates that the model conforms to the visual

judgment of experienced human experts. These comparative

studies have not been mentioned in previous studies. As for the

recognition of calcification, there was no difference among the

Auto BI-RADS model, experienced and junior radiologists. We

speculate that this is because the characteristics of calcification are

more complex, and their distribution in terms of location, size,

and shape varies greatly. The image algorithm identifies different

grayscale thresholds to determine whether calcification exists, and
Frontiers in Oncology 09
it will fail when there are only show slight changes in grayscale. It

was also found that some tumors with high echogenic envelopes

were mistakenly identified as calcifications. Chen et al. (24) had

similar explanations in their identification of thyroid calcification.

Later, we will increase the calcification samples and improve the

algorithm to enhance the identification of calcification.

To meet the practical application, we first developed the Auto

BI-RADS model based on ultrasound dynamic videos combining

deep learning and image processing algorithms. There have been no

similar reports previously. In the first step, we employed a YOLOV5

deep convolutional neural network to track and segment the targets.

Then, we utilized image processing algorithms to extract BI-RADS

features. Finally, we performed feature algorithm fusion to obtain

target classification. For video tracking and segmentation, Yap et al.

(25) have compared multiple types of deep learning neural

networks, demonstrating their powerful capabilities in object

tracking and segmentation. Relevant studies (26–28) have also

indicated that deep learning exhibits uncertainty and a lack of

interpretability in lesion feature recognition. Continuous learning

required large sample sizes for the identification of each specific

feature (29). However, machine learning has unique advantages in

extracting breast lesion features. Hamyoo et al. (30) used machine

learning alone to extract 13 features from lesions using the BI-

RADS lexicon in a multi-center study (1288 static ultrasound

images from three countries: Malaysia, Iran, and Turkey) and

obtained an AUC value of 0.88, demonstrating the strong feature

recognition capabilities of machine learning through comparison

with human expert readings. Herein, our study constructed an Auto

BI-RADS model based on deep learning and image processing

algorithms to achieve the identification and classification of breast

lesions in ultrasound dynamic videos. The prospective assessment

indicates that the Auto BI-RADS model demonstrates good

diagnostic performance and has significant potential.

Reviewing other imaging for breast cancer screening,

mammography is considered a recommended method for reducing

breast cancer-related mortality, but it involves radiation and is less
TABLE 2 Patient demographics data and breast lesion characteristics.

Characteristic Retrospective
Training and
Validation sets

Prospective test sets

Hospital
1 Set

Hospital
2 Set

Number of patients 420 214 64

Age (years) (mean) 45 ± 12 45 ± 12 50 ± 11

Number of lesions 480 228 64

Lesion maximum diameter(mm)

2-10 167(35%) 89(39%) 13(20%)

10-20 185(38%) 90(40%) 34(53%)

20-30 128(27%) 49(21%) 17(27%)

BI-RADS category a

2 34(7%) 18(8%) 0(0%)

3 110(23%) 30(13%) 10(16%)

4a 106(23%) 70(31%) 8(13%)

4b 80(17%) 41(18%) 14(22%)

4c 74(15%) 35(15%) 22(34%)

5 76(16%) 34(15%) 10(15%)

Lesion type

Invasive ductal
carcinoma

82(17%) 26(11%) 14(22%)

Invasive lobular
carcinoma

73(15%) 43(19%) 16(25%)

Ductal carcinoma
in situ

21(4%) 10(4%) 6(9%)

Other malignant b 20(4%) 4(2%) 5(8%)

Fibroadenoma 141(30%) 64(28%) 13(20%)

Other benign c 143(30%) 81(36%) 10(16%)
The BI-RADS category a is based on the interpretation of the radiologist who originally
performed the US examinations before the biopsy test, not the radiologists involved in the
reader study. It should be noted that all BI-RADS categories involved in this study were
determined on breast-US video images only. b Includes non-specific malignant results.
c Includes adenosis, hyperplasia, benign phyllodes tumors, and papillomata.
TABLE 3 Performance of Auto BI-RADS and two groups of radiologists
for diagnosis of benign and malignant breast lesions in test set.

Parameter
Auto

BI-RADS
Experienced
Radiologists

Junior
Radiologists

AUC 0.87[0.82,0.90] 0.89[0.85,0.92] 0.74 [0.68,0.79] †

Sensitivity (%) 93(116/124) 93(116/124) 72 (91/124)

Specificity (%) 81(136/168) 86(144/168) 74(125/168)

FP (%) 19(32/168) 14(24/168) 26(43/168)

FN (%) 6(8/124) 6(8/124) 25(33/124)

PPV (%) 78(116/148) 82(116/140) 68(91/134)

NPV (%) 94(136/144) 95(144/152) 79(125/158)
—Except where indicated, numbers in parentheses are numbers of lesions and 95% confidence
intervals are in brackets.
FP, False Positive; FN, False Positive.
NPV, negative predictive value; PPV, positive predictive value.
† Data are for comparison with Auto BI-RADS (P < 0.001).
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sensitive to dense breasts, making it unsuitable for all countries (31).

MRI is always used as a supplementary means (31). On the other hand,

the US is recommended by Asia medical experts due to its low cost,

non-radiation, and suitability for Asian women (31). The limitations of

ultrasound have always been operator dependence and observer

variability. Although many studies have focused on developing

artificial intelligence models to address these limitations, they have

not fully taken into account the practical clinical applications.

Considering the above problems, we propose to develop a novel AI

model simulating the clinical practice conducted by dynamic videos and

BI-RADS characteristic identification. This approach allows for more

objective, realistic, and reliable diagnostic results with high repeatability.

The application of Auto BI-RADS offers great practical significance and

provides better references for clinical practitioners with less experience.

Our study has several limitations. Firstly, the sample size for the

prospective evaluation of the model is not large enough, and it does

not include all categories of BIRADS, especially category 1 which

indicates no lesion. Afterward, to improve the adaptability and

stability of the model, we will include more external hospitals to

increase the samples and species. By strengthening the model’s

training, we increase the model’s robustness. Furthermore, it should

be noted that the breast lesions ultrasound videos used in this study
Frontiers in Oncology 10
may still exhibit variability due to handheld ultrasound. In the

future, if an Automated Breast Ultrasound System (ABUS) or

robotic arms can be used to record the videos, it would provide

more convincing results. Additionally, the latest fifth edition ACR

BI-RADS guidelines have added color Doppler and elastography to

evaluate breast lesions (32). It means that multimodal ultrasound

has become part of breast cancer assessment. Therefore, for further

improvement, this study can incorporate multiple ultrasound

modalities such as color Doppler, elastography, contrast-enhanced

ultrasound, etc., to develop a multimodal AI ultrasound

diagnostic model.
5 Conclusion

In conclusion, we first propose a novel method for breast tumor

AI diagnosis based on breast lesions ultrasound dynamic videos to

obtain ACR BI-RADS morphological characteristics, realize the BI-

RADS category, and predict benign or malignant lesions. In the AI

model development, we combined an improved attention

mechanism YOLOV5 network with image processing algorithms

to achieve it. This novel method not only avoids the problem of

missing and incomplete lesion features caused by traditional single-

frame static images but also better suits clinical diagnostic scenarios,

providing a fast and effective approach for breast cancer screening.
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Value

Rate between Auto BI-RADS and
Junior Radiologists (%)

Kappa
Value

BI-RADS 2 100(17/17)

0.82

82(14/17)

0.60

BI-RADS 3 97(36/37) 51(21/37)
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TABLE 5 Consistency rates between Auto BI-RADS Model and two
radiologist groups for identification of breast lesions characteristics in
test set.

US
Characteristic

Rate
between
Auto

BI-RADS and
Experienced
Radiologists

(%)

Rate between
Auto BI-RADS
and Junior
Radiologists

(%)

P
Value
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Margin 84(246) 71(209) 0.01

Echo pattern 69(202) 56(163) 0.01

Posterior features 76(221) 71(207) 0.046

Calcification 31(91) 29(85) 0.4
-Numbers in parentheses are numbers of lesions (n = 292).
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