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Background and purpose: A novel radiotracer, 18F-fluciclovine (anti-3-18F-

FACBC), has been demonstrated to be associated with significantly improved

survival when it is used in PET/CT imaging to guide postprostatectomy

salvage radiotherapy for prostate cancer. We aimed to investigate the

feasibility of using a deep learning method to automatically detect and

segment lesions on 18F-fluciclovine PET/CT images.

Materials and methods: We retrospectively identified 84 patients who are

enrolled in Arm B of the Emory Molecular Prostate Imaging for Radiotherapy

Enhancement (EMPIRE-1) trial. All 84 patients had prostate adenocarcinoma

and underwent prostatectomy and 18F-fluciclovine PET/CT imaging with

lesions identified and delineated by physicians. Three different neural

networks with increasing levels of complexity (U-net, Cascaded U-net, and

a cascaded detection segmentation network) were trained and tested on the

84 patients with a fivefold cross-validation strategy and a hold-out test, using

manual contours as the ground truth. We also investigated using both PET

and CT or using PET only as input to the neural network. Dice similarity

coefficient (DSC), 95th percentile Hausdorff distance (HD95), center-of-

mass distance (CMD), and volume difference (VD) were used to quantify

the quality of segmentation results against ground truth contours provided

by physicians.

Results: All three deep learning methods were able to detect 144/155 lesions

and 153/155 lesions successfully when PET+CT and PET only, respectively,

served as input. Quantitative results demonstrated that the neural network

with the best performance was able to segment lesions with an average DSC

of 0.68 ± 0.15 and HD95 of 4 ± 2 mm. The center of mass of the segmented

contours deviated from physician contours by approximately 2 mm on

average, and the volume difference was less than 1 cc. The novel network

proposed by us achieves the best performance compared to current

networks. The addition of CT as input to the neural network contributed to

more cases of failure (DSC = 0), and among those cases of DSC > 0, it was

shown to produce no statistically significant difference with the use of only

PET as input for our proposed method.
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Conclusion: Quantitative results demonstrated the feasibility of the deep

learning methods in automatically segmenting lesions on 18F-fluciclovine

PET/CT images. This indicates the great potential of 18F-fluciclovine PET/CT

combined with deep learning for providing a second check in identifying

lesions as well as saving time and effort for physicians in contouring.
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Introduction

Prostate cancer has been estimated to have contributed the most

new cancer cases in men in 2021 (1). Prostatectomy is a common

approach to treatment of prostate cancer patients. Among patients

who have undergone prostatectomy, 20%–40% of them may have

disease progression, which is strongly associated with metastases

(2). Adjuvant or salvage radiation therapy can then be delivered

after prostatectomy depending on risk group, pathology, and

prostate-specific antigen (PSA) concentration trend after surgery.

The design of a radiation treatment plan requires the identification

of disease such that radiation doses can be delivered to include these

disease sites. Additionally, accurate definition of these lesions may

permit focal dose escalation to further increase tumor control while

sparing normal tissue (3).

Current imaging modalities such as CT and bone scans are

crucial in the characterization of therapy recurrence. However, they

are known to have low diagnostic yield as well as not being useful in

lesion delineation for radiation treatment planning (4). MRI, in

contrast, provides superior soft tissue contrast for lesion detection

and contouring. It has been shown to be effective in detecting local

recurrence in the surgical bed but is less useful for metastatic disease

(5). Standard 18F-FDG PET also has limited utility since prostate

cancer can be indolent and not highlighted on the images.

Moreover, the excretion of FDG in the bladder may affect the

image reading of surrounding anatomy.

Recently, 18F-fluciclovine (anti-1-amino-3-[18F]fluorocyclobutane-

1-carboxylic acid) was approved by the US Food and Drug

Administration (FDA) as a novel PET radiotracer with promising

diagnostic performance for restaging of biochemically recurrent

prostate cancer. As a synthetic amino acid analog with little renal

excretion and transport through sodium-dependent and sodium-

independent pathways (6–8), 18F-fluciclovine has shown higher

diagnostic accuracy than conventional imaging studies (9, 10). The

improved performance of 18F-fluciclovine also enables physicians to

make suitable treatment decisions. Studies have reported that, as a result

of considering 18F-fluciclovine PET/CT images during treatment

planning, radiation oncologists changed to salvage radiotherapy

management for more than one-third of patients with biochemical

recurrence after prostatectomy who first underwent conventional
02
imaging (8). A recent phase 2/3 randomized controlled trial

demonstrated that 3-year event-free survival was 63.0% in the

conventional imaging group versus 75.5% for the 18F-fluciclovine

PET/CT group, which means that the inclusion of 18F-fluciclovine

PET in post-prostatectomy radiotherapy decision-making and planning

significantly improved rates of survival free from biochemical

recurrence or persistence (11).

One of the basic tasks during the integration of this novel PET

radiotracer into radiotherapy planning is lesion identification and

delineation, which is key for radiotherapy plan quality and

subsequent clinical outcomes, since the therapeutic benefit of

radiation therapy relies on high-dose coverage of target volumes

while sparing surrounding normal tissues by optimizing beam

parameters. Currently, manual contouring on medical images is a

routine clinical practice, while in recent years, automatic

segmentation methods, especially deep learning-based methods,

have become attractive given the time-consuming and observer-

dependent nature of manual contouring (12). Although a recent

study has reported the feasibility of deep learning in segmenting

prostate and dominant intraprostatic lesions on PET images (13),

no validated auto-contouring approach has been proposed for 18F-

fluciclovine PET. Moreover, the task of segmentation of the post-

prostatectomy lesion itself is also more challenging, since the

possible lesion locations range from the surgical bed to pelvic

nodes. In this study, we aimed to investigate the feasibility of our

in-house deep learning-based automatic segmentation method for

lesion segmentation on the novel 18F-fluciclovine PET.
Materials and methods

Patients

We retrospectively identified 84 patients enrolled in the Emory

Molecular Prostate Imaging for Radiotherapy Enhancement

(EMPIRE-1 NCT01666808) trial. The patients from this trial had

prostate adenocarcinoma and underwent prostatectomy, with

detectable PSA and no systemic metastasis on conventional

imaging. Detailed information about the trial can be found in

(11). All 84 patients were from Arm B, i.e., receiving radiotherapy
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directed by conventional imaging plus 18F-fluciclovine PET/CT.

The median age among the 84 patients was 67 (range 50–83).

Institutional review board approval was obtained; informed consent

was not required for this Health Insurance Portability and

Accountability Act (HIPAA)-compliant retrospective analysis.

The PET/CT images were acquired using a GE Discovery 690

PET-CT scanner (GE Healthcare, Milwaukee, WI, USA) with 10

mCi 18F-fluciclovine injected for each patient. PET images were

reconstructed using an iterative technique (VUE Point Fx [GE

Healthcare]; three iterations, 24 subsets, 6.4-mm filter cutoff) and

transferred to a MIM Vista workstation (MIM Software,

Beachwood, OH, USA) for interpretation. The reconstructed size

of each PET image was 192 × 192 with pixel spacing of 3.646 × 3.646

× 3.270 mm3, and that of each CT image was 512 × 512 with spacing

of 0.977 × 0.977 × 3.270 mm3. Both sets of images were imported

into the Velocity AI software (Varian Medical Systems, Palo Alto,

CA, USA). Abnormal focal uptake over normal marrow was

detected by a nuclear radiologist in the region of prostate beds

and extraprostatic sites. A region of interest (ROI) was set around

the lesion. A threshold representing the percentage of the maximum

standardized uptake value (SUV) in the ROI was applied to the ROI

with a 5% increment until the lesion could be clearly identified. The

segmented lesion was then reviewed by a physician, who applied

necessary fine-tuning; this served as the ground truth contour in

this study. For each patient, the PET image volume and lesion

contours were then resampled using bilinear interpolation to the

size of the CT image volume for the input for network training and

testing. Note that these PET-defined contours were not used as final

contours in radiation therapy. They were sent to radiation

oncologists for use as a reference in defining the final volumes

during the treatment planning process. The specific workflow can

be seen in our previous publication (14).
Neural network

In this study, we implemented three different neural networks

with increasing levels of complexity (U-net, Cascaded U-net, and a

cascaded detection segmentation network) to investigate the general

applicability of neural networks in segmenting lesions on 18F-

fluciclovine PET/CT. U-net is a well-established neural network

that has been widely used in a variety of image segmentation tasks

(15). It is a fully convolutional neural network that consists of an

encoding path and a decoding path with skip connections between

them. The encoding path extracts image features in reducing spatial

information, and the decoding path upsamples the combined

features and spatial information layer by layer.

Cascade U-net is a derivative of U-net. It cascades two U-nets,

and the second model uses the features extracted by the first model

(16). It applies separate sets of filters for each stage, and therefore its

performance is expected to be improved, while GPU memory

consumption and training time are increased.

The cascaded detection segmentation network was innovatively

developed for this study. It consists of two deep learning-based

subnetworks, i.e., localization and segmentation. The localization
Frontiers in Oncology 03
subnetwork aims to locate the target from the input image and thus

reduce the complexity of the segmentation. The segmentation

subnetwork then takes the cropped image as input and performs

segmentation therein. The PET and/or CT images were first fed into

the localization subnetwork to detect the location of the target, i.e.,

the volumes of interest (VOIs) of lesions. Information on the

location of the target, i.e., the center and boundary of the ground

truth VOI, was used to supervise the localization subnetwork. The

localization subnetwork is implemented via a fully convolutional

one-stage (FCOS) object detection network. After estimation of the

location of the detected VOI, the PET and/or CT images were

cropped within the VOIs and then fed into the next segmentation

subnetwork. The segmentation subnetwork is a fully end-to-end

encoder–decoder network. It is used to generate a binary mask of

the input. A combination of Dice and cross-entropy loss is used to

supervise the segmentation subnetwork. During inference, with the

trained cascaded detection segmentation networks, the model takes

the newly arrived image as input and obtains the localization

information (VOIs) of the target and the segmentation within the

VOIs. Subsequently, based on the localization information, we

traced back the segmentation into the original image coordinates

to derive the final segmentation.
Evaluation

The Dice similarity coefficient (DSC) was calculated to quantify

the similarity and volume overlap between manual contours and

auto-segmentation results. The 95th percentile Hausdorff distance

(HD95) was calculated to measure the top 5% of the surface

distance between the two contours. Center-of-mass distance

(CMD) and volume difference (VD) were used to quantify the

difference between the general locations and volumes of the manual

contours and segmentation results.

To evaluate the performance of the deep learning methods, we

retrospectively investigated 155 lesions from 84 prostate cancer

patients who underwent 18F-fluciclovine PET/CT scans. Each

dataset had lesions contoured by physicians, which served as the

ground truth and training targets. The proposed network was

trained and evaluated using a fivefold cross-validation strategy

among 99 lesions from 58 patients (17) and was further tested on

the remaining 26 patients with 56 lesions as a hold-out test. All the

test results were analyzed using the aforementioned evaluation

metrics and summarized together. The deep learning networks

investigated were designed using Python 3.6 and TensorFlow and

implemented on an NVIDIA Tesla V100 GPU that had 32 GB of

memory. Optimization was performed using the Adam gradient

optimizer (18).

In addition to comparing three different networks, for each

network, we compared the scenarios of using both PET and CT as

input and only using PET as input to investigate the optimal

training and testing strategies. We applied the Student’s t-test

with a threshold p-value of <0.05 to evaluate the statistical

significance of differences between the quantitative metrics in

different scenarios.
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Results

Figure 1 demonstrates segmentation results for two illustrative

patients. It is seen that all neural networks can generate accurate

contours for the lesion when its boundary is clear (below), while a

large discrepancy is generated when the boundary is blurred

(above). Among the 155 lesions from the 84 patients detected by

physicians, all of the three networks successfully detected 153

lesions when only PET served as input for training and testing,

compared with 144 lesions detected by all three networks when PET

and CT both served as input. Figure 2 and Table 1 demonstrate the

DSC distribution among the 155 lesions using PET+CT or PET only

as input for all three networks. It is shown that the addition of CT

led to more failed cases (DSC = 0). It is seen that using PET only

resulted in higher median and mean DSC for the proposed method.

After exclusion of all the failed cases, we summarize the

statistical results in Table 2. In general, neural networks are able

to segment lesions with DSC of approximately 0.65 and HD95 of

approximately 4 mm on average. The center of mass of the

segmented contours deviates from physician-generated contours

by approximately 2 mm on average. It is seen that using PET+CT is

superior to using PET only for Cascade U-net, while for U-net and

the proposed network, any advantage is not statistically significant.

Among different networks, we found that the performance of the

networks improves with complexity in general. When using PET

+CT as input, the proposed method outperforms the other two

networks on all the metrics, especially on DSC and VD, with

significant differences (p < 0.05).

As shown in Table 2, all the neural networks segmented lesions

with volume errors of less than 1 cc on average; the proposed

method with PET+CT as input achieved volume errors of less than

0.6 cc. Linear regression and Bland–Altman plots representing the

volumes of contours predicted by the proposed method with PET

+CT as input are shown in Figure 3. The average volumes of

segmented contours and ground truth contours were 2.59 cc and

2.29 cc, respectively. A statistically significant (p < 0.05) over-

estimation of volume was found; however, the magnitude of over-
Frontiers in Oncology 04
estimation was minimal (0.3 cc) compared to 2.29 cc, which was the

average volume of lesions in this study.
Discussion

In this study, we investigated the feasibility of using deep

learning-based automatic segmentation methods on PET/CT

images produced using a novel 18F-fluciclovine radiotracer. We

trained and tested three different neural networks on 155 lesions of

84 patients with corresponding manual contours. The deep learning

methods were shown to detect 144/155 lesions and 153/155 lesions

successfully when PET+CT and PET only, respectively, served as

input. Quantitative results demonstrated that neural networks were

able to segment lesions, with an average DSC of 0.68 ± 0.15 for a

novel network proposed by us.

In recent years, there has been active research into the use of
18F-fluciclovine as a radiotracer for PET/CT imaging. A recent

phase 2/3 clinical trial showed that 18F-fluciclovine PET/CT can be

used to guide postprostatectomy salvage radiotherapy for prostate

cancer in radiotherapy decision-making and planning, with

significantly improved rates of survival free from biochemical

recurrence or persistence compared to conventional imaging

(bone scan and either CT or MRI) (11). However, most lesions

are less than 3 cc and are only visible on a small number of slices;

thus, they may be neglected. In this study, deep learning methods

were able to identify over 90% of lesions. This approach can serve as

a redundant check for lesion identification in order to avoid missing

targets for treatment. In addition to identification, this method can

also delineate lesions to save time for physicians. Moreover, the

neural network generates contours more consistently than humans,

which can mitigate intra-observer variation. The combination of
18F-fluciclovine PET/CT and deep learning methods has great

potential in benefiting post-prostatectomy prostate cancer patients.

Compared to other segmentation studies, this study was more

challenging due to the small size of the target. The challenges were

twofold. For the neural network, a small target means fewer image
FIGURE 1

Segmentation results for two illustrative patients. The top row and bottom row show the CT and PET images, along with contours of lesions
produced by a physician, the proposed method, U-net, and Cascaded U-net.
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features presented on the image, which poses difficulty in feature

extraction during training and testing. Furthermore, current

evaluation metrics may not properly quantify the segmentation

results for targets of very small size. A subtle difference, which may

not be clinically important, can lead to a large decline in DSC

because the difference between two contours can be comparable in

magnitude with the target size. The difficulty in segmenting small

objects, such as chiasms, has also been reported in other studies

(19–22). In this regard, distance-based metrics such as HD95 may

be more suitable for small objects, since they directly measure the

contour surface distance, which can be critical for small organs. In
Frontiers in Oncology 05
this study, the HD95 was approximately 4 mm. Note that the pixel

spacing of PET images is approximately 3 mm. Thus, the contour

surface error was of the magnitude of a pixel.

The addition of CT as input to the neural network contributed

to more cases of failure (DSC = 0), and among those cases of DSC >

0, it was shown to have no statistically significant difference with the

use of PET only as input for our proposed method. A potential

reason is that lesions are not well presented on CT images. The

addition of CT images that contain few features of lesions may

confuse the network in some cases. However, although a CT image

does not provide lesion features, it does provide more anatomy
TABLE 1 The distribution of DSC among all lesions using different networks and inputs.

I: U-net II: Cascade U-net III: Proposed

DSC PET+CT PET only PET+CT PET only PET+CT PET only

[0.9, 1] 0 0 0 0 0 1

[0.8, 0.9] 10 15 15 8 24 34

[0.7, 0.8] 46 49 50 57 55 51

[0.6, 0.7] 41 34 43 34 34 27

[0.5, 0.6] 19 20 14 22 11 17

[0.4, 0.5] 16 12 12 8 10 9

[0.3, 0.4] 6 12 6 13 6 9

[0.2, 0.3] 5 6 2 7 3 3

[0.1, 0.2] 1 2 1 4 1 1

(0, 0.1] 0 3 1 0 0 1

0 11 2 11 2 11 2
DSC, Dice similarity coefficient.
FIGURE 2

Box plots of the distribution of DSC among all lesions using different networks and inputs. Crosses and dots indicate the mean and outlier data
points, respectively. DSC, Dice similarity coefficient.
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features than PET and may help the network to identify the general

location of lesions. However, our method already has a dedicated

step for localizing lesions from the entire image volume, which may

explain the limited improvement produced by the inclusion of CT.

For U-net and Cascade U-net, which do not include the localization

step, CT provides additional anatomic information to help locate

lesions, and thus, its benefit is clearer.

There are a few limitations to this feasibility study that need to

be overcome before the clinical use of deep learning segmentation
Frontiers in Oncology 06
methods. First, the training and testing datasets in this study were

biased toward small-volume lesions. Among the 155 lesions

investigated in this study, 115 lesions had a volume of less than 3

cc. Thus, the trained model may be more suitable for small-volume

lesions. In order to minimize such bias, it would be desirable to

collect data from more patients with large-volume lesions for a

more balanced training and testing dataset. In addition, all of the

datasets in this study were from the same PET/CT scanner with an

identical image reconstruction algorithm. It is unclear how different
FIGURE 3

Linear regression (left) and Bland–Altman plot (right) for the volumes of ground truth contours and contours segmented by the proposed method
with PET+CT as input. The blue dots represent lesions that are successfully detected. The orange triangles on the left represent lesions that failed to
be detected.
TABLE 2 Summary of quantitative evaluation metrics for different networks and inputs.

DSC HD95 (mm) CMD (mm) VD (cc)

Network Input:
PET
+CT

PET only
PET
+CT

PET only
PET
+CT

PET only
PET
+CT

PET only

I: U-net
Mean 0.631 0.613 4.329 4.579 2.261 2.461 0.831 0.802

Std 0.145 0.183 1.962 2.390 1.520 1.802 0.828 1.158

p-value
PET+CT vs.
PET only

0.434 0.140 0.389 0.720

II: Cascade
U-net

Mean 0.652 0.615 4.738 4.501 2.160 2.407 0.829 1.003

Std 0.148 0.169 7.498 2.139 1.522 1.808 1.158 1.188

p-value
PET+CT vs.
PET only

0.001 0.027 0.193 0.004

III: Proposed
Mean 0.676 0.675 3.982 4.162 2.003 2.158 0.597 0.679

Std 0.149 0.171 2.233 2.335 1.466 1.638 0.862 1.069

p-value
PET+CT vs.
PET only

0.348 0.520 0.614 0.128

p-value*

I vs. II 0.001 0.496 0.327 0.976

I vs. III <0.001 0.003 0.005 <0.001

II vs. III 0.002 0.219 0.082 <0.001
f

DSC, Dice similarity coefficient; HD95, 95th percentile Hausdorff distance; CMD, center-of-mass distance; VD, volume difference.
*P-value is calculated for PET+CT only.
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reconstruction algorithms would affect the performance of the

neural networks evaluated in this study. Incorporating datasets

from multiple centers with different scanners and reconstruction

algorithms would enable further evaluation of the generalizability of

the models. Second, although we reported the differences between

auto-segmentation results and manual contours in terms of

quantitative metrics, their potential clinical impact on plan

optimization and treatment outcomes needs further investigation.

Moreover, the current ground truth contours are based on the

experience of our physicians in selecting the percentage of SUV.

More studies are needed to investigate the selection criteria of SUV

percentage for this novel radiotracer so that the neural network can

be trained with contours closer to the ground truth in order to

reduce inter-observer variation. On the other hand, a thorough

study of inter-observer variation would also help in understanding

the performance of the neural networks. For example, all the neural

networks in this study segmented lesions with volume errors of less

than 1 cc on average, which seems non-negligible when compared

with the average volume of lesions in this study of 2.29 cc. However,

it is more desirable to compare this value with inter-observer

variation, so that the uncertainty of neural network performance

can be compared with human uncertainty. The partial volume

effects in PET images may further add systematic errors by reducing

the measured maximum SUV (23), for which the contours were

drawn on. We are currently also collecting patients with prostate-

specific membrane antigen (PSMA) PET imaging scans to train and

validate deep learning-based segmentation models. This new FDA-

approved scan provides more precise detection of prostate cancer

and its migration; thus, its integration with deep learning is worth

further investigation.
Conclusions

We investigated the feasibility of using deep learning-based

automatic segmentation methods on PET/CT images produced

using a novel 18F-fluciclovine radiotracer with 155 lesions from

84 patients. The study demonstrated that deep learning has great

potential in segmenting lesions on 18F-fluciclovine PET/CT images,

with a high detection rate and high delineation quality. Our

originally developed neural network was shown to have better

performance than current ones used in this task. The use of a

deep learning-based auto-segmentation method on 18F-fluciclovine

PET/CT images would provide a second check in identifying lesions

as well as saving time and effort for physicians in contouring.
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