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Background: Clear cell renal carcinoma (ccRCC) stands as the prevailing subtype

among kidney cancers, making it one of the most prevalent malignancies

characterized by significant mortality rates. Notably,mitochondrial permeability

transition drives necrosis (MPT-Driven Necrosis) emerges as a form of cell death

triggered by alterations in the intracellular microenvironment. MPT-Driven

Necrosis, recognized as a distinctive type of programmed cell death. Despite

the association of MPT-Driven Necrosis programmed-cell-death-related

lncRNAs (MPTDNLs) with ccRCC, their precise functions within the tumor

microenvironment and prognostic implications remain poorly understood.

Therefore, this study aimed to develop a novel prognostic model that

enhances prognostic predictions for ccRCC.

Methods: Employing both univariate Cox proportional hazards and Lasso

regression methodologies, this investigation distinguished genes with

differential expression that are intimately linked to prognosis.Furthermore, a

comprehensive prognostic risk assessment model was established using

multiple Cox proportional hazards regression. Additionally, a thorough

evaluation was conducted to explore the associations between the

characteristics of MPTDNLs and clinicopathological features, tumor

microenvironment, and chemotherapy sensitivity, thereby providing insights
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into their interconnectedness.The model constructed based on the signatures of

MPTDNLs was verified to exhibit excellent prediction performance by Cell

Culture and Transient Transfection, Transwell and other experiments.

Results: By analyzing relevant studies, we identified risk scores derived from

MPTDNLs as an independent prognostic determinant for ccRCC, and

subsequently we developed a Nomogram prediction model that combines

clinical features and associated risk assessment. Finally, the application of

experimental techniques such as qRT-PCR helped to compare the expression

of MPTDNLs in healthy tissues and tumor samples, as well as their role in the

proliferation and migration of renal clear cell carcinoma cells. It was found that

there was a significant correlation between CDK6-AS1 and ccRCC results, and

CDK6-AS1 plays a key role in the proliferation and migration of ccRCC cells.

Impressive predictive results were generated using marker constructs based on

these MPTDNLs.

Conclusions: In this research, we formulated a new prognostic framework for

ccRCC, integrating mitochondrial permeability transition-induced necrosis. This

model holds significant potential for enhancing prognostic predictions in ccRCC

patients and establishing a foundation for optimizing therapeutic strategies.
KEYWORDS

MPT-drive necrosis, clear cell renal carcinoma, lncRNAs, tumor microenvironment,
drug sensitivity, tumor prognostic model, programmed cell death
1 Introduction

Kidney clear cell carcinoma (ccRCC) represents approximately

3% of all human malignancies and is the predominant tumor affecting

the adult kidney, encompassing the majority of renal tumor cases (1).

Recent studies have revealed the concerning fact that the incidence of

Clear cell renal carcinoma (ccRCC) increases progressively with age, is

associated with a number of lifestyle and genetic factors, and is now

the 16th most important contributor to cancer-related mortality

worldwide (2, 3). Regrettably, the overall survival (OS) and

recurrence-free survival rates associated with ccRCC remain

suboptimal, necessitating the identification of novel therapeutic

targets and prognostic biomarkers. Hence, there is a pressing need

to explore and ascertain new avenues for the treatment of ccRCC (4).

Long non-coding RNAs (lncRNAs) are a distinctive class of RNA

molecules exceeding 200 nucleotides in length (5, 6). Unlike messenger

RNAs (mRNAs), which serve as templates for protein synthesis (7–9).

Mounting evidence supports the involvement of dysregulated long

non-coding RNAs (lncRNAs) in a wide range of diseases (10, 11).

Notably, these lncRNAs display distinct expression patterns that are

specific to spatial, temporal, and cell-state contexts, thereby assuming

crucial roles in tumorigenesis and the progression of cancer (12).

Recently, a growing body of research has identified an expanding

repertoire of long non-coding RNAs (lncRNAs) as pivotal regulators in

various biological processes. The dysregulation of lncRNAs has been

implicated in a wide range of human diseases, as highlighted in several

notable studies (13, 14). Emerging studies have highlighted the notable
02
contributions of long non-coding RNAs (lncRNAs) in the pathogenesis

of Clear cell renal carcinoma. Among the newly identified programmed

cell death pathways, MPT-driven necrosis has emerged as a distinctive

mechanism, triggering programmed cell death via specific signaling

cascades (15). Therefore, investigating MPT-driven necrosis lncRNAs

(MPTDNLs) associated with MPT-driven necrosis holds promising

prospects for unveiling novel prognostic approaches and elucidating

the immune microenvironment in tumor patients. Furthermore, the

utilization of advanced techniques like machine learning can facilitate

the development of precise prediction models, thereby bolstering

clinical treatment strategies and enabling personalized medicine.

Finally, by using qRT-PCR to investigate the function of 15

MPTDNLs, our model’s proficiency in prognostication has been

effectively illustrated. It should be underscored, though, that the

comprehension of MPT-driven necrosis-associated lncRNAs in

ccRCC remains in its formative phase.

As research progresses further, new targets and techniques for

immunotherapy continue to emerge. The discovery of MPT-driven

necrosis has led to new insights into the formation and progression of

tumor diseases (16). MPT-driven necrosis is a regulated cell death

triggered by changes in the intracellular microenvironment, including

severe oxidative stress and cytoplasmic calcium overload dependent on

cyclophilin D (CYPD) (15). Unfortunately, there are few studies on

MPT-driven necrosis and Clear cell renal carcinoma. Therefore, we are

investigating this aspect. Forecasting models occupy a pivotal position

in managing clear cell renal carcinoma, facilitating both clinicians and

patients to apprehend probable disease trajectories, thereby tailoring
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suitable therapeutic approaches. Conventional prognostic models rely

heavily on clinical variables, such as age and tumor stage, but typically

neglect to adequately integrate molecular biosignatures to cope with the

intrinsic molecular heterogeneity of tumors (17, 18). As a result, these

models often fail to provide accurate personalized prognostic

predictions. To address this issue more comprehensively, modern

research is increasingly favoring the integration of molecular biology

information into prognostic models to improve their predictive

properties and utility. This includes consideration of the molecular

subtype of the tumor, mutational load, and gene expression patterns.

This integration can provide clinicians and patients with more accurate

prognostic information, which can help develop more personalized

treatment strategies and improve treatment outcomes (17). Given these

limitations, this study aims to develop a new prognostic model that will

include the keymolecular biology feature of mitochondrial permeability

transition-driven necrosis to improve prognostic prediction in Clear cell

renal carcinoma. Our goal is to provide more accurate and personalized

prognostic predictions with this new model, which will help optimize

the management and treatment of Clear cell renal carcinoma.
2 Materials and methods

2.1 Data sources

The transcriptomic data and corresponding clinical information

of ccRCC patients were acquired from the TCGA database (https://

portal.gdc.cancer.gov/). Drawing from pertinent literature, the gene set

associated with mitochondrial permeability transition-driven necrosis

(MPTDN) was identified (19). Patients were then randomly stratified

into a training set and a test set at a proportion of 7:3, specifically

focusing on genes implicated in MPTDN for ensuing analyses.

Utilizing Strawberry Perl software, mRNA was distinguished from

lncRNA, with the latter being the subject of interest for subsequent

investigations within this study. The clinical variables included in this

study encompassed data on patient age, gender, tumor grade, and

stage, along with TNM classification (Supplementary Table 1).
2.2 Screening of MPTDNLs

Through the application of the R package “limma” (20), an

analysis was implemented to discern differentially expressed genes

among ccRCC patients as represented in the TCGA compendium.

The initial phase involved a targeted lncRNA screening,

subsequently succeeded by the computation of their correlation

with MPT-Drive Necrosis data. The enforcement of a correlative

coefficient benchmark of 0.4 (corFilter) and a p-value demarcation

of 0.001 (pvalueFilter) facilitated the identification of lncRNAs

demonstrating a significant association with the MPTDN data.
2.3 Development and validation of
prognostic models for MPTDNLs

To amalgamate the survival data of patients with MPTDNLs and

renal clear cell carcinoma (ccRCC), we employed the R package
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“limma” (20). Subsequently, a univariate Cox regression (uni-Cox)

(21–23) examination was implemented to discern differentially

articulated MPTDNLs that demonstrated a meaningful prognostic

correlation (coxPfilter<0.05). Drawing from this outcome, sample

randomization into training and test cohorts was undertaken at a 7:3

ratio, facilitated by the R package “caret” (24). Subsequently, a Least

Absolute Shrinkage and Selection Operator (LASSO) Cox regression

analysis was performed utilizing the R package “glmnet” (25), thereby

generating prognostic traits through multivariate Cox (muti-Cox)

regression analysis) (21–23). Leveraging these traits, we derived a risk

score equation expressed as risk level = Expressed lncRNA1 ×

CoeflncRNA1 + Expressed lncRNA2 × CoeflencRNA2 +… +

Expressed lncRNAn × CoeflincRNAn, with Coefi denoting the

correlation coefficient. Within this study, ccRCC patients were

stratified into low-risk and high-risk clusters. To evaluate the

prognostic predictive capacity of the feature, ROC curves were

plotted for various metrics. Internal validation was achieved by

displaying ROC curves for both the training and test sets.

Comparisons were made between the overall survival rates of the two

patient cohorts using Kaplan-Meier survival curves. Moreover, further

validation of the influence of clinical variables on patient prognosis was

pursued through clinical ROC curves, C-index, and subgroup analyses.
2.4 Nomogram construction

To evaluate the proficiency of risk scores as standalone

prognostic indicators and subsequently construct related

nomograms, analyses invoking both univariate and multivariate

Cox regression methodologies were undertaken. In the realm of the

TCGA-ccRCC collective, we harnessed the “rms” package (26) within

the R software to construct a columnar illustration, embodying risk

evaluations concurrent with clinicopathological characteristics,

designed to project survival prospects at intervals of 1, 3, and 5 years.
2.5 Functional enrichment analysis

Functional enrichment analysis of divergently expressed genes

was conducted within the ccRCC scope, intended for annotation

and pathway enrichment investigations. Utilizing the clusterProfiler

tool (27), an evaluation of Gene Ontology (GO) and KEGG

pathways was performed, offering insights into the functionality

and pathway involvements of the concerned genes. These insights

constitute a foundational guide for subsequent research endeavors.
2.6 Immunological analysis of
risk characteristics

We employed a suite of algorithms, namely XCELL (28),

TIMER (29), QUANTISEQ (30)), MCPCOUNT (31), EPIC (32),

CIBERSORT (30), and CIBERSORT-ABS (33) to conduct immuno-

infiltration analysis of risk profiles. Moreover, we drew comparisons

between the high- and low-risk groups regarding alterations in

immune checkpoints.
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2.7 Targeted drug sensitivity and
immunotherapy response prediction

To anticipate the response of ccRCC patients to immunotherapy

and their sensitivity to prevalent chemotherapeutic agents, we

employed a variety of approaches. Specifically, the R package

“oncoPredict” (34) was utilized to conjecture variations in the

sensitivity of ccRCC patients to frequently used chemotherapeutic

drugs. This package’s analysis was grounded in the half-maximal

inhibitory concentration (IC50) data of ccRCC patients sourced from

the Genomics of Drug Sensitivity in Cancer (GDSC) database (35).
2.8 Cell culture and transient transfection

The human renal clear cell carcinoma cell lines 769-P and

HKZ, complemented by the human proximal tubular epithelial

cell line HK-2, were propagated in Dulbecco’s Modified Eagle’s

Medium (DMEM, GIBCO) supplemented with 10% fetal bovine

serum (FBS; Hyclone), 100 U/L penicillin, and 100 mg/L

streptomycin (Thermo Fisher). The cellular cultures were

maintained at 37°C within an environment of 5% CO2. For

transient transfection, Lipofectamine 3000 (Invitrogen, Carlsbad,

CA, USA) was used according to the manufacturer’s instructions

to transfect Negative Control (NC) and CDK6-AS1 siRNA

(RiboBio, Guangzhou, China) into the CRC cells.
2.9 qPCR

Total RNA was extracted using the RNA Eazy Fast Tissue/Cell

Kit following the manufacturer’s protocols. The cDNA synthesis

was achieved using the FastKing RT Kit, following the

manufacturer’s suggested procedure. Real-time PCR was

performed with the SuperReal PreMix Plus (Sichuan Jielaimei

Technology Co., Ltd) reagent, employing the StepOnePlus Real-

Time PCR System. The PCR protocol began with a denaturation

phase at 95°C for 15 minutes, followed by 40 cycles of denaturation

at 95°C for 10 seconds, annealing at 72°C for 20 seconds, and a

concluding extension at 60°C for 20 seconds. The primer sequences

are detailed in Supplementary Table 2.
2.10 CCK-8 assay

Cell viability was determined using the Cell Counting Kit-8

(CCK-8) assay. Cells were seeded at a density of 1500 cells per well

in 200 µl of complete medium in 96-well plates and cultured at 37°

C. After each experiment, 20 µl of CCK-8 reagent (Beyotime,

Shanghai, China) was added to each well. The cells were then

incubated for an additional 2 hours, and the optical density value

(OD450nm) was measured using a microplate reader.
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2.11 Transwell assay

1×10^5 cells were seeded into either Matrigel-coated (BD

Biosciences, San Jose, CA) chambers for invasion assay or

uncoated chambers for migration assay. The upper chamber was

filled with serum-free medium, while the lower chamber contained

complete DMEM medium. After 24 hours of incubation, the cells

that migrated or invaded through the membrane were fixed with 4%

paraformaldehyde and stained with 0.1% crystal violet. The

quantification of cells was performed using a light microscope

(Thermo Fisher, Waltham, MA, USA).
2.12 Wound healing experiment

To evaluate the migratory capacity of renal clear cell carcinoma

cells, a wound healing assay was employed. Transfected cells, housed in

six-well plates, underwent incubation at 37°C until reaching

approximately 80% confluence. Subsequently, uniform wounds were

meticulously generated within the cell monolayer utilizing a 200 mL
sterile pipette tip. Following wound induction, cells underwent two

rounds of phosphate-buffered saline (PBS) rinsing to eliminate residual

material. Subsequently, the culture medium was supplemented with

serum-free medium. The progression of cell migration into the wound

area was meticulously documented using an Olympus inverted

microscope at both the 0 and 24-hour time points.
2.13 Plate cloning experiment

In the context of a plate cloning experiment, initial procedures

involve the procurement of target cells from a culture vessel to

ascertain their physiological robustness. Subsequently, these cells

undergo dispersion into singular entities via a mild centrifugation

process, ensuring the inception of each clone from an individual

cell. The execution of the cloning process necessitates the prior

coating of a petri dish or culture plate with a growth medium

comprising the requisite constituents, thereby establishing a

conducive milieu for cellular proliferation. Following the coating,

dispersed cells are introduced onto the prepared medium at a

density deemed suitable for the intended purpose. Thereafter, the

petri dishes or plates are positioned within a cell culture incubator

and subjected to cultivation under conditions encompassing

optimal temperature and controlled CO2 levels.
2.14 Statistical analysis

Statistical assessments were accomplished with R software version

4.2.3 and Strawberry Perl version 5.30.0. For juxtaposing overall survival

(OS) between cohorts of high-risk and low-risk, both Kaplan-Meier

(KM) survival trajectories and the log-rank evaluation were utilized.

The predictive potential of correlation features, as constructed by the

LASSO Cox regression model, was evaluated via ROC curves. We

examined the differential representation of tumor-infiltrating immune
frontiersin.org
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cells, immune checkpoints, and immune function between the groups

via the Wilcoxon test. Differences were deemed statistically significant

when p < 0.05 and FDR < 0.05. Results from the CCK-8 assay were

analyzed with GraphPad Prism Software (version 8.3.0). Data,

representing the means ± standard deviation (SD) from three

independent investigations, were scrutinized through analysis of

variance (ANOVA). A p-value less than 0.05 was designated as

indicative of statistical significance.
3 Results

3.1 Identification of candidate
mitochondrial permeability transitions
driving necrosis-associated LncRNAs

Our findings revealed the identification of 1437 long non-

coding RNAs (MPTDNLs) l inked with mitochondrial

permeability transition-driven necrosis. These identified lncRNAs

underwent a univariate Cox analysis, allowing the differentiation of

low-risk and high-risk lncRNAs associated with this condition

(Figures 1A, B). Implementing the Lasso algorithm enabled a

deeper analysis of these lncRNAs, whereby we pinpointed the

juncture with the smallest cross-validation error via Lasso

regression cross-validation. This procedure culminated in the

segregation of 24 lncRNAs, with their respective regression

coefficients and cross-validation patterns subsequently subjected

to analysis (Figures 1C, D). We then employed a multifactor Cox

proportional hazard regression model to streamline this high-

dimensional data, resulting in the final identification of 15

pertinent MPTDNLs; AC004112.1, AC008937.3, AC011752.1,

AC013731 .1 , AC018809 .2 , AC023090.1 , AC040934.1 ,

AC073534.2, AC079804.3, AC105105.3, AL121944.1, AL353801.2,

APCDD1L-DT, CDK6-AS1, and RUNX3 -AS1, along with their

respective regression coefficients, including 0.4138, 0.4786, 0.4745,

and 0.4086. The linear prediction model was constructed from these

15 MPTDNLs’ weighted regression coefficients within the

multivariate Cox analysis. Herein, the risk score was calculated as

risk score = (regression coefficient of MPTDNLs1 × expression level

of MPTDNLs1) + (regression coefficient of MPTDNLs2 ×

expression level of MPTDNLs2) +…… + (regression coefficient of

MPTDNLsn × expression level of MPTDNLsn). Further

investigation revealed a robust correlation between genes

associated with mitochondrial permeability transition-driven

necrosis and the MPTDNLs (Figure 1E). Moreover, the 15

MPTDNLs exhibited strong intercorrelations (Figure 1F).
3.2 Model construction and validation for
disease prediction

The predictive model was developed by segregating the samples

into training and verification cohorts in a 7:3 ratio. The training

cohort underpinned the model’s formulation, whereas the

verification set served to evaluate the model’s precision. Risk

scores for individual specimens were derived by aggregating the
Frontiers in Oncology 05
product of the expression levels of the 15 chosen necrosis-related

lncRNAs and their corresponding regression coefficients.

Subsequent to the classification of samples into high- and low-

risk groups, predicated on the dataset’s median value, correlative

training and validation cohorts were established. This methodology

facilitated the computation of risk scores for every specimen within

the TCGA collective. The risk scores of ccRCC patients across the

trio of datasets were arranged in order, yielding scatter plots that

mirrored survival status. An observed trend demonstrated increased

mortality rates with elevated risk scores in the TCGA cohort of

ccRCC patients (Figures 2A-F). The “pheatmap” package in R was

deployed to generate heatmaps (Figures 2G-I), which displayed the

distribution of 15 OS-associated lncRNAs’ expression profiles

among high- and low-risk cohorts. In the lower risk group, a

significant inverse correlation was observed in eight lncRNAs,

while they exhibited a positive correlation in the high-risk group,

marking them as high-risk lncRNAs.The residual seven lncRNAs

seemed to confer a protective function. To ascertain the prognostic

significance of our risk score model for ccRCC patients, we probed

the interplay among survival prognosis, survival span, and the

stratification of patients into elevated- and diminished-risk

groups. Kaplan-Meier analysis was employed to draft survival

trajectories, revealing marked variances (P<0.05) between the

elevated- and diminished-risk groups throughout the

comprehensive dataset (Figure 2J), as well as within the validation

(Figure 2K) and training segments (Figure 2L).In the diminished-

risk group, a more favorable overall survival was noted compared to

the elevated-risk cohort. The model’s performance in ccRCC

patients was gauged by plotting ROC curves. The AUC values

indicated the predictive accuracy of the model, with larger values

indicating superior performance. The findings substantiated that

the model possessed noteworthy predictive prowess and sensitivity

concerning patient prognosis, presenting AUC values of 0.782,

0.774, and 0.807 for survival at 1-year, 3-year, and 5-year

intervals, correspondingly (Figure 2M). To further validate the

model’s accuracy, internal validation of the randomly grouped

training and testing sets was performed via ROC analysis. The

AUCs after 1, 3, and 5 years were 0.830, 0.827, 0.862 for the training

set, and 0.717, 0.707, 0.736 for the test set, substantiating the

model’s efficacy in survival prediction (Figures 2M-O).
3.3 Principal component analysis of all
genes, MPT-driven necrosis-associated
genes, MPT-driven necrosis-associated
lncRNAs, and model lncRNAs

Drawing upon the principal component analysis of our risk

model, we discerned disparities across all genes, genes linked to

mitochondrial permeability transition-driven necrosis, lncRNAs

pertinent to mitochondrial permeability transition-driven

necrosis, and lncRNAs associated with risk (Figures 3A-D).

Remarkably, within the risk lncRNAs, substantial divergences

were perceptible between the elevated-risk and diminished-risk

assemblies, which were efficiently partitioned into two unique,

relatively self-contained clusters (Figure 3D). These findings attest
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to the robustness of our methodological strategy in differentiating

between cohorts of diminished and heightened risk, emphasizing

the stability, extensive versatility, and predictive prowess of the

established risk framework.
3.4 Correlative analysis of MPTDNLs with
clinicopathological features

To elucidate the relationship between high- and low-risk

categories and various clinical attributes, we generated correlation
Frontiers in Oncology 06
heatmaps that exhibited the interconnection between risk groups

and variables such as age, sex, tumor grade, stage, T-stage, N-stage,

M-stage, and risk score (Figure 4A), incorporating data from all

TCGA renal clear cell carcinoma patients. Additionally, we delved

into the variances in high and low-risk group distributions across

diverse clinical attributes, including age, gender, tumor grading,

staging, as well as T, M, and N designations. Concurrently, we

discerned dissimilarities in the patient population bearing different

clinicopathologic features within high- and low-risk groups. The 15

MPTDNLs noticeably impacted the prevalence of certain

clinicopathologic attributes (Figures 4B-H).
B

C D

E F

A

FIGURE 1

Isolation of Candidate Long Non-coding RNAs (lncRNAs) Associated with Mitochondrial Permeability Transition-Driven Necrosis. (A, B) Univariate
Cox regression analysis executed to evaluate the prognostic significance of lncRNAs implicated in mitochondrial permeability transition-driven
necrosis. (C) Tenfold cross-validation facilitates the fine-tuning of parameter selection in the Lasso model. (D) Visualization of Lasso coefficient
trajectories. (E) Heatmap illustrating the correlation matrix between the 15 lncRNAs and the genes implicated in mitochondrial permeability
transition-driven necrosis. (F) Exploratory correlation analysis conducted on 15 lncRNAs linked with mitochondrial permeability transition-driven
necrosis. Statistical significance is denoted as *p<0.05; **p<0.01; ***p<0.001.
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3.5 Clinical subgroup analysis of MPT-
driven necrosis-associated lncRNA models

Acknowledging the substantial variances in individual clinical

determinants of OS across high-risk and low-risk cohorts, and

intending to delve deeper and juxtapose whether prognostic

outcomes shift among distinct clinical subsets, we partitioned

ccRCC patients into seven diverse subgroups founded on their

clinical attributes. Survival curve discrepancies between high- and
Frontiers in Oncology 07
low-risk cohorts were scrutinized and compared via analysis and

juxtaposition of varying subsets about age (greater than 60 and 60

or below), gender (male and female), tumor grade (G1-G2 and G3-

4), M-stage (M0 and M1), N-stage (N0 and N1), clinical stage (I-II

and III-IV), and T-stage (T1-T2 and T3-T4) (Figures 5A–N). We

could discern that the overall survival of high-risk patients

markedly trailed that of the low-risk patients in all subgroups

barring patients with M1 and N1 stages, implying a survival

advantage for the low-risk patients. From the scrutiny of these
B C

D E F

G H I

J K L

M N O

A

FIGURE 2

portrays the Kaplan-Meier (KM) survival estimates for the overall data, as well as for the distinct training and testing cohorts from the constructed risk
model. Subfigures (A-C) delineate the distribution of risk scores assigned to ccRCC patients. Concurrently, subfigures (D-F) encapsulate the
dispersions of survival duration and status across the low- and high-risk categories of ccRCC patients. The differential expression of the selected 15
lncRNAs is illustrated via heatmaps within subfigures (G-I). Moreover, the overall survival (OS) trajectories for patients classified as high or low risk
across the distinct groups are depicted in subfigures (J-L).In a bid to gauge the sensitivity and precision of the prognostic model, the area beneath
the curve for survival estimates at one, three, and five years across the varied groups was calculated, as highlighted in subfigures (M-O).
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results, we inferred that our MPTDNLs risk framework acts as a

steadfast and reliable prognostic tool in the clinical setting, adept at

precisely anticipating the prognosis of distinct clinical

ccRCC subcategories.
3.6 Independent prognostic analysis of
clinical characteristics with nomograms

Considering the compelling link between the prognostic risk

schema we formulated and negative prognosis, we implemented both

univariate and multivariate independent prognostic analyses,

integrating risk scores with common clinical traits for each ccRCC

patient. The goal was to ascertain whether these 15 MPTDNLs could

act as independent prognostic determinants. Univariate analysis

revealed a significant relationship with the prognosis of ccRCC

patients concerning age, tumor grade, and clinical stage

(Figure 6A). Multivariate Cox analysis further highlighted

associations with age, gender, tumor grading, clinical staging, and

the risk score. This evaluation reinforced age, tumor grade, clinical

stage, and risk score as reliable and independent prognostic indicators

(p-value <0.05)(Figure 6B). To enhance the clinical feasibility and
Frontiers in Oncology 08
usefulness of the established risk schema, we created a column-line

diagram, employing gender, N stage, M stage, T stage, age, risk score,

staging, and grading as instruments to project the prognostic

probabilities of survival at 1-, 3-, and 5-year intervals (Figure 6C).

The risk score wielded the most significant influence on the

prediction of OS, suggesting that the prognosis of ccRCC could be

forecasted with greater precision through this risk model. The

calibration curves exhibited a noteworthy alignment between

projected and actual outcomes regarding the OS probability at 1, 3,

and 5 years, indicating the robust stability of the Nomogram plot

(Figure 6D). The risk score’s c-index value and the area beneath the

ROC curve outperformed other clinical metrics, further validating the

superior predictive capability of our established model over other

parameters in estimating patient survival (Figures 6E, F).
3.7 Enrichment analysis of ccRCC patients
based on prognostic markers

To elucidate the relationship between biological processes,

signal transduction pathways, and risk scores, we utilized GO

functional analysis and KEGG enrichment analysis on
B

C
D

A

FIGURE 3

showcases the Principal Component Analysis (PCA) plot for all the genes (A), the PCA plot specifically for genes implicated in mitochondrial
permeability transition-driven necrosis (MPT) (B), the PCA plot for lncRNAs associated with MPT-driven necrosis (C), and finally, the PCA plot
representing risk-associated lncRNAs (D).
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differentially expressed genes within elevated- and diminished-risk

collectives. Thresholds for markedly amplified items were defined at

logFCfilter=1 and fdrFilter=0.05, generating distinct enrichment

results in both risk assemblies. GO enrichment analysis revealed

that the most influential biological processes (BPs) included

protein-DNA complex assembly, organization of protein-DNA

complex subunit, extracellular matrix, external encapsulated

structure organization, among others. Cellular components (CC)
Frontiers in Oncology 09
were predominantly protein-DNA complexes, DNA packaging

complexes, and nucleosomes, etc. Protein heterodimer activity

and structural constituents of chromatin largely represented the

molecular function (MF) (Figures 7A, C). KEGG enrichment

underscored the major roles of cytokine-cytokine receptor

interactions, viral proteins in tandem with cytokine-cytokine

receptor interactions, protein digestion and absorption, and the

IL-17 signaling pathway (Figures 7B, D).
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FIGURE 4

delineates the outcomes of the correlational study between MPTDNLs and clinicopathologic characteristics. Subfigure (A) exhibits a heatmap
illuminating the association between risk scores and clinicopathologic traits. Figures (B-G) explicate the variance in patient counts within high- and
low-risk categories as they pertain to diverse pathological attributes, including age (B), gender (C), tumor grade (D), M-stage (E), N-stage (F), overall
cancer stage (G), and T-stage (H).
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3.8 Correlative predictive analysis of
immune cell infiltration and tumor
microenvironment by MPT-driven
necrosis-associated LncRNAs models

The intricate interaction between neoplastic cells and the tumor

microenvironment (TME) is intrinsically linked with cancer

expansion, infiltration, and metastasis. Tumor-infiltrating

immune cells (TIICs), integral to the TME, exhibit a composition

and distribution intrinsically linked to tumor advancement (36).

Initially, we probed the linkage between risk scores and TIICs

abundance leveraging seven distinct algorithms: XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT. Primarily, a positive relationship was detected

between immune cell infiltration and risk scores within the

algorithm, particularly with regard to T cells CD4+ Th2, M1

macrophages, and general macrophages (Figure 8A). Appreciating

the significance of immune cells in immunotherapy, we scrutinized
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differences in immune cell composition between high- and low-risk

cohorts. Several immune cell types exhibited significant

discrepancies between the risk groups, including T-cell CD4

memory quiescent, T-cell CD4 memory activated, T-cell follicular

helper, T-cell regulatory cells (Tregs), monocytes, macrophage M0,

macrophage M1, quiescent dendritic cell, and dormant mast cells.

Within this set, activated memory T cell CD4, follicular helper T

cells, regulatory T cells (Tregs), and M0 macrophages were more

prominent in the high-risk group while quiescent memory T cell

CD4, monocytes, M1 macrophages, quiescent dendritic cells, and

dormant mast cells were more prevalent in the low-risk group

(Figure 8B). Recognizing the crucial role of immune functionality,

we undertook a single-sample Gene Set Enrichment Analysis

(ssGSEA) focused on immune function. Distinct immune

function scores, including CD8+ T cells, pro-inflammatory cells,

and macrophages, were markedly increased in the diminished-risk

group. Conversely, Mast cells, MHC class I, and Type II IFN

Response scores prevailed in the elevated-risk group (Figures 8C,
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FIGURE 5

Under different clinical characteristics, we plotted Kaplan-Meier curves (A-N) for ccRCC patients in the low and high risk groups.
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D). Throughout our research, marked differences in immune

checkpoint expression between the risk groups were observed,

underlining the pivotal role of immune checkpoints in

modulating immune system functionality. Intriguingly, all 32

immune checkpoint genes demonstrated significant variation

(p<0.05). In the low-risk cohort, 15 immune checkpoint genes

(TNFSF15, TNFRSF14, CD40, ICOSLG, ADORA2A, KIR3DL1,

HHLA2, IDO1, HAVCR2, CD274, TNFRSF4, NRP1, CD200,

TNFSF18, and PDCD1LG2) were markedly up-regulated, whereas

the remaining 17 were substantially down-regulated, indicating a

potential increased significance for checkpoint-based

immunotherapy in therapeutic strategy (Figure 8E). Lastly, a

comprehensive analysis of the tumor microenvironment unveiled
Frontiers in Oncology 11
distinct differences in immune cell scores and immune-stromal cell

composite scores between the high- and low-risk groups. We

discerned that both the immune cell score and the immune-

stromal cell composite score were elevated in the high-risk group,

suggesting an increased stromal cell content (Figure 8F).
3.9 Differential analysis of drug sensitivity
of LncRNAs associated with mitochondrial
permeability transition-driven necrosis

The application of risk scores facilitates a comprehensive

assessment of immunotherapy effectiveness in ccRCC patients
B
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A

FIGURE 6

portrays the construction of the column-line schematic and the outcomes of the analysis related to independent prognostic determinants. (A, B) showcase
the findings of univariate and multivariate COX regression assessments. (C) presents column-line representations evaluating one-, three-, and five-
year OS for patients afflicted with ccRCC. (D) depicts calibration curves tailored to the column diagrams. (E) exhibits c-index trajectories for diverse
characteristics. Lastly, (F) illustrates ROC curves pertinent to varying features. Statistical significance is denoted as *p<0.05, ***p<0.001.
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and assists in adjusting medication dosages. Among the 12

immunotherapeutic agents employed for ccRCC treatment, there

was a notable difference in drug sensitivity between the elevated-risk

and diminished-risk collectives (p<0.05). Five medications -

Afuresertib, CZC24832, Entinostat, Pyridostatin, and XAV939 -

exhibited lower IC50 values in the elevated-risk group than in the

diminished-risk group, suggesting heightened sensitivity in

the elevated-risk group (Figures 9A, E, F, K, L). Conversely, the

remaining seven drugs - Axitinib, AZ6102, Cediranib,

GSK1904529A, KRAS (G12C) Inhibitor-12, osimertinib, and

P22077 - demonstrated higher IC50 values in the elevated-risk

group, indicating a diminished sensitivity in the elevated-risk group

compared with the diminished-risk group (Figures 9B-D, G-J). The

employment of risk scores enables an exhaustive study of

immunotherapy response in ccRCC patients, thereby enhancing

the accuracy of pharmacological interventions.
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3.10 CDK6-AS1 plays a key role in
stimulating the proliferation and migration
of renal clear cell carcinoma cells

The upregulation of CDK6-AS1 in renal clear cell carcinoma

cells was substantiated through quantitative polymerase chain

reaction (qPCR), aligning consistently with the outcomes of our

bioinformatics analysis (Figure 10A). To comprehensively

investigate the potential involvement of CDK6-AS1 in renal clear

cell carcinoma, a battery of in vitro experiments was conducted.

Notably, the CCK-8 assay demonstrated a significant reduction in

cellular proliferative capacity upon CDK6-AS1 silencing

(Figure 10B). Subsequent findings from transwell assays

underscored the consequential inhibition of cell invasion and

migration capabilities following interference with CDK6-AS1

expression (Figure 10C). The scratch assay results revealed the
B
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A

FIGURE 7

presents the results of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. (A) Bar graph
illustrating the ten most prominent terms in GO enrichment. (B) Bubble plots displaying the leading ten enriched terms within GO. (C) Histogram of
the seven most recurrent terms within KEGG enrichment. (D) Bubble chart highlighting KEGG’s seven most frequently encountered terms.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1276715
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2023.1276715
facilitative role of heightened CDK6-AS1 expression in tumor cell

migration (Figure 10D), while the plate cloning assay corroborated

that diminished CDK6-AS1 expression restrained the proliferation

and invasion potential of tumor cells (Figure 10E). Collectively,

these observations unveil the oncogenic properties attributed to

CDK6-AS1, elucidating its pivotal role in driving the proliferation,

invasion, and migration of renal clear cell carcinoma.
4 Discussion

Kidney clear cell carcinoma (ccRCC) represents a prevalent

histological subtype of renal cell carcinoma, bearing a dismal

prognosis and posing a significant societal health burden (37–39).

Addressing the challenge of predicting disease progression and

optimizing treatment strategies has emerged as a critical focus in
Frontiers in Oncology 13
research (40). Evidence suggests that lncRNAs are associated with

malignant traits in ccRCC, including tumor growth, invasion, and

metastasis, potentially contributing to tumorigenesis (40, 41).

Additionally, in the context of tumors, disturbances in

mitochondrial function, specifically mitochondrial permeability

transition (MPT), lead to a depletion of mitochondrial DNA and

RNA, thereby impeding the activity of the mitochondrial

respiratory chain, which ultimately culminates in tumor cell death

(42–46). MPT drives a rapid increase in the permeability of the

inner mitochondrial membrane. This ultimately leads to dissipation

of the mitochondrial membrane potential, uncoupling of the

respiratory chain, and entry of water and ions, which triggers

osmotic swelling of the mitochondrial matrix, ultimately leading

to mechanical rupture of the outer mitochondrial membrane.The

pronounced manifestation of the MPT has the potential to bring

about cell death by regulating the necrotic or apoptotic pathway
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FIGURE 8

Illustrates the predictive capacity of MPTDNLs risk scores for the tumor microenvironment and immunotherapy. (A) Bubble chart representing the
abundance of immune cells. (B) Depicts discrepancies in immune cell infiltration between high- and low-risk groups. (C, D) Contrast of immune
function disparities between the high- and low-risk cohorts. (E) Highlights variations in immune checkpoint expression between high and low-risk
groups. (F) Portrays the differences in tumor microenvironment scores between the high- and low-risk groups. Statistical significance is denoted by
*p<0.05; **p<0.01; ***p<0.001.
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FIGURE 9

Differences in IC50 of different immunotherapy drugs according to risk score: (A) Afuresertib, (B) Axitinib, (C) AZ6102, (D) Cediranib, (E) CZC24832,
(F) Entinostat, (G) GSK1904529A, (H) KRAS (G12C) Inhibitor-12, (I) Osimertinib, (J) P22077, (K) Pyridostatin, (L) XAV939.
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FIGURE 10

CDK6-AS1 has been demonstrated to boost the proliferation, invasion, and migration of renal clear cell carcinoma cells, as determined through a
range of analyses: (A) qPCR assessment, (B) CCK-8 analysis, (C) Transwell examination, (D) wound healing assay, and (E) plate cloning assay.
* denotes p-value <0.05, *** denotes p-value <0.001, **** denotes p-value <0.0001.
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(45–47). Studies have proposed that mitochondria-targeted

therapies hold promise in restraining cancer cell proliferation by

modulating the mitochondrial redox state or promoting cancer cell

apoptosis via MPT regulation (48). Although targeted therapies

such as sunitinib, sorafenib, bevacizumab, and ticlosimab

demonstrate some efficacy against renal clear cell carcinoma, their

sensitivity remains limited, necessitating the continued reliance on

surgical interventions as the primary treatment modality (49–51).

Recently, investigations have suggested that inducing MPT could

serve as a novel approach to the development of innovative cancer

therapies by promoting mitochondria-mediated cell death and

inhibiting cancer cell differentiation (52). Thus, to further

comprehend ccRCC pathogenesis, forecast tumor prognosis, and

establish a foundation for immunotherapy and drug-based

interventions, we seek to construct a model involving

mitochondrial permeability transition-driven necrosis-

associated lncRNAs.

Initially, we harnessed transcriptomic and clinical data from

ccRCC patients accessible through the TCGA database, integrating

it with mitochondrial permeability transition-driven necrosis

(MPTDN)-associated genomes. Employing Lasso regression

analysis and Cox proportional hazards regression analysis, we

identified 15 independent MPTDNLs as prognostic variables

uniquely pertinent to ccRCC. Subsequently, we stratified the

patients into elevated-risk and diminished-risk categories,

followed by evaluations on immune-associated metrics and drug

responsiveness. Remarkably, we observed substantial distinctions

between the two groups, consolidating the clinical relevance of our

risk model. Furthermore, we undertook clinicopathologic feature

correlation analysis and clinical subgroup analysis, enabling the

accurate prognosis prediction for distinct clinical subgroups within

the ccRCC cohort. These significant findings furnish a robust

theoretical foundation, empowering clinicians with the means to

render more precise decisions and enhance the overall survival

quality of ccRCC patients.

The elevated expression of APCDD1L-DT in renal clear cell

carcinoma cells has piqued the scientific community’s interest. This

heightened expression potentially correlates with tumor

development and progression, given the pivotal role that aberrant

gene expression levels often play in the genesis and dissemination of

malignant neoplasms. This influence extends to potential

modulation of tumor proliferation, apoptosis, and angiogenesis as

pivotal biological processes governing tumorigenesis. On a related

note, AC011752.1 presents an avenue of inquiry pertaining to its

involvement in the etiology of renal clear cell carcinoma and its

impact on the efficacy of immunotherapeutic interventions.

Although immunotherapy has emerged as a cornerstone in the

therapeutic arsenal against renal clear cell carcinoma, it remains an

incontrovertible fact that not all patients manifest a favorable

response to this treatment modality. Consequently, unraveling the

intricacies of AC011752.1 and similar biomarkers within the

context of immunotherapy offers the promise of discerning

patient responses and, in turn, refining the tailoring of

individualized therapeutic regimens (53, 54). Furthermore,

AC008937.3, AC018809.2, AC023090.1, CDK6-AS1, and

AC073534.2 were also found to feature prominently in prognostic
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assessments of lung cancer (55), bladder cancer (56), hepatocellular

carcinoma (57), gastric cancer (58), and acute myeloid leukemia

(59), further underscoring their relevance in disease progression

predictions across diverse malignancies. Remaining MPTDNLs,

while yielding limited information from existing research

findings, harbor untapped potential for predictive value,

warranting future investigation and exploration.

The tumor microenvironment (TME) is a complex network

encompassing tumor cells, mesenchymal stromal cells, blood

vessels, extracellular matrix, and growth factors, all collaboratively

influencing tumor proliferation, invasion, and metastasis (60, 61).

Given the TME’s heterogeneity and ongoing cross-talk with tumor

cells, its composition stands as a pivotal prognostic determinant in

cancer, while simultaneously governing the responsiveness to

emerging immunotherapies (62).In this investigation, we

discovered significant and positive associations between the risk

scores and T cell CD4+ Th2, as well as macrophage M1 and M2

infiltration within the ccRCC immune cells. High PCIF1 expression

exhibited a positive correlation with CD4+ T cell infiltration

specifically in renal clear cell carcinoma (63). Macrophages found

in primary or secondary tumor tissues are commonly designated as

tumor-associated macrophages (TAMs), representing the

predominant macrophage population within the tumor

microenvironment (64). These macrophages typically exhibit a

Th1-responsive gene expression profile and are proficient in

cytokine secretion while presenting MHC II and B7 molecules,

thereby effectively facilitating antigen presentation. This immune

machinery serves the dual purpose of defending against pathogenic

incursion, surveilling tumor pathogenesis, and inducing Th1

immune responses within the macrophage population (64, 65).

Additionally, the macrophage M2 co-expression factor

demonstrated a correlation with the immune microenvironment,

rendering it a promising prognostic indicator for renal clear cell

carcinoma (64). Notably, macrophages emerged as the

predominant immune cells within the tumor microenvironment

of renal clear cell carcinoma, with changes in their phenotypic

profile manifesting as potential indicators of unfavorable clinical

outcomes (66).

In this investigation, we conducted a comprehensive analysis of

immune checkpoints within the tumor microenvironment,

revealing significant distinctions between the two risk groups.

These findings underscore the pivotal role of immune

checkpoints in modulating immune system function and their

potential significance in tumor therapy. Among the 32 immune

checkpoint genes scrutinized, all exhibited notable differences in

expression levels between the two risk groups. Remarkably, the

high-risk group displayed elevated immune cell scores and stromal

cell immune cell composite scores, indicative of heightened stromal

cell content within the tumor microenvironment. Such observations

potentially link increased stromal cell presence to tumor

malignancy and prognosis. These immune checkpoint study

outcomes hold profound importance for the advancement of

immunotherapy, which has emerged as a pivotal approach in

tumor therapy. Immune checkpoint inhibitors have garnered

substantial attention as a therapeutic strategy, with notable

immune checkpoints, including CTLA4, PD-1, PD-L1, and LAG3,
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identified as effective targets for stimulating T cell-mediated anti-

tumor immunity (67). The significance of PD-L1 in oncology has

undergone extensive investigation, owing to its status as a pivotal

immune checkpoint mechanism (68), which serves to curtail

hyperactivation of the immune response via its interaction with

the programmed death receptor 1 (PD-1) situated on activated

lymphocytes (69, 70). It is noteworthy that chemotherapy has been

observed to augment PD-L1 expression through diverse

proliferative pathways (69). Furthermore, immune checkpoint

inhibitors, encompassing those targeting CTLA-4 and PD-1, have

demonstrated their capacity to incite tumorigenic reactions within

the realm of renal clear cell carcinoma (71, 72).

The study of chemosensitivity in ccRCC is of great importance,

especially in the construction of prognostic models and precision

medicine. Our study successfully categorized patients with ccRCC

into two groups, high-risk and low-scoring risk, based on the

MPTDNLs signature, which provides critical information for more

targeted treatment decisions. Regarding the analysis of

chemotherapy sensitivity, we further investigated the difference in

response between several common chemotherapeutic agents in high-

and low-scoring risk patients. This study not only helps to identify

which patients are more likely to benefit from chemotherapy but also

provides strong support for the implementation of precision

medicine. By gaining insight into the chemotherapy sensitivity of

ccRCC patients, physicians can better personalize treatment

regimens to increase treatment efficacy, reduce unnecessary drug

exposure, and mitigate adverse effects, thereby improving the quality

of patient survival. However, our analysis has some limitations.

Recent studies have reported new strategies for combining two drugs

to treat tumors; therefore, further mining of data available in

databases for assessing the sensitivity exhibited by patients after

combining two or more drugs is needed in our subsequent studies

(73). In addition, Schürer and his concurrent report that the Clinical

Kinase Index can be used as a method to prioritize understudied

kinases as drug targets for cancer therapy, providing great value for

the development of clinical biomarkers or drug targets (74).

Therefore, some clinical kinases should be included in our

subsequent studies, which is another limitation of our study.

Overall, our study reveals the important role of chemosensitivity

in individualized therapy in ccRCC patients, which provides strong

support for future clinical practice and development of therapeutic

strategies. This finding will hopefully contribute to the development

of more precise and effective therapies to benefit patients

with ccRCC.

Our investigation, aimed at establishing a prognostic model

centered on mitochondrial permeability transition-driven necrosis-

associated long non-coding RNAs (LncRNAs), bears significant

clinical implications concerning the prognosis and therapeutic

strategies for patients afflicted with renal clear cell carcinoma.

Additionally, our study yields novel insights into the potential

identification of fresh prognostic biomarkers. Nonetheless, it is

essential to acknowledge the presence of certain limitations in our

research. Firstly, our study relied exclusively on data from the

TCGA dataset, and although attempts to validate it via external
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datasets were made, the availability of valid lncRNA information

was hampered by inherent biases and data limitations.

Consequently, the validation process demands the incorporation

of additional real-world data to reinforce its credibility.

Accordingly, forthcoming experiments will be conducted to

substantiate the validity of our assertions. Secondly, in pursuit of

heightened specificity and accuracy within the prognostic model, we

incorporated 15 MPTDNLs as independent prognostic variables for

ccRCC. However, we acknowledge that this approach may impose a

financial burden on patients. As our research endeavors continue,

addressing these limitations will be pivotal to bolster the clinical

utility and applicability of our findings in the context of renal clear

cell carcinoma management.
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