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Integrative analysis reveals a
four-gene signature for
predicting survival and
immunotherapy response in
colon cancer patients using bulk
and single-cell RNA-seq data

Ruoyang Chai1*, Yajie Zhao2, Zhengjia Su2 and Wei Liang2*

1Department of General Practice, Ruijin Hospital, Shanghai Jiaotong University School of Medicine,
Shanghai, China, 2Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of
Medicine, Shanghai, China
Background: Colon cancer (CC) ranks as one of the leading causes of cancer-

related mortality globally. Single-cell transcriptome sequencing (scRNA-seq)

offers precise gene expression data for distinct cell types. This study aimed to

utilize scRNA-seq and bulk transcriptome sequencing (bulk RNA-seq) data from

CC samples to develop a novel prognostic model.

Methods: scRNA-seq data was downloaded from the GSE161277 database. R

packages including “Seurat”, “Harmony”, and “singleR” were employed to

categorize eight major cell types within normal and tumor tissues. By comparing

tumor and normal samples, differentially expressed genes (DEGs) across thesemajor

cell types were identified. Gene Ontology (GO) enrichment analyses of DEGs for

each cell type were conducted using “Metascape”. DEGs-based signature

construction involved Cox regression and least absolute shrinkage operator

(LASSO) analyses, performed on The Cancer Genome Atlas (TCGA) training

cohort. Validation occurred in the GSE39582 and GSE33382 datasets. The

expression pattern of prognostic genes was verified using spatial transcriptome

sequencing (ST-seq) data. Ultimately, an established prognostic nomogram based

on the gene signature and age was established and calibrated. Sensitivity to

chemotherapeutic drugs was predicted with the “oncoPredict” R package.

Results: Using scRNA-Seq data, we examined 33,213 cells, categorizing them

into eight cell types within normal and tumor samples. GO enrichment analysis

revealed various cancer-related pathways across DEGs in these cell types.

Among the 55 DEGs identified via univariate Cox regression, four independent

prognostic genes emerged: PTPN6, CXCL13, SPINK4, and NPDC1. Expression

validation through ST-seq confirmed PTPN6 and CXCL13 predominance in

immune cells, while SPINK4 and NPDC1 were relatively epithelial cell-specific.

Creating a four-gene prognostic signature, Kaplan-Meier survival analyses

emphasized higher risk scores correlating with unfavorable prognoses,

confirmed across training and validation cohorts. The risk score emerged as an

independent prognostic factor, supported by a reliable nomogram. Intriguingly,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1277084/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1277084/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1277084/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1277084/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1277084/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1277084/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1277084&domain=pdf&date_stamp=2023-10-31
mailto:ruoyangchai171@gmail.com
mailto:13601893105@163.com
https://doi.org/10.3389/fonc.2023.1277084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1277084
https://www.frontiersin.org/journals/oncology


Chai et al. 10.3389/fonc.2023.1277084

Frontiers in Oncology
drug sensitivity analysis unveiled contrasting anti-cancer drug responses in the

two risk groups, suggesting significant clinical implications.

Conclusion: We developed a novel prognostic four-gene risk model, and these

genes may act as potential therapeutic targets for CC.
KEYWORDS

colon cancer, single-cell RNA transcriptome, spatial transcriptome, bulk RNA transcriptome,
differentially expressed genes, prognostic prediction, drug sensitivity
Introduction

Based on global cancer statistics, colon cancer (CC) ranks as the

third most prevalent malignancy and the fourth leading contributor

to cancer-related fatalities worldwide (1). Predictions indicate 2.2

million new CC cases and 1.1 million CC-related deaths by 2030 (2).

While innovative surgeries and targeted treatments have

contributed to a reduction in CC mortality in recent years (3, 4),

the disease’s subtle onset and aggressive progression often result in

late-stage diagnoses, potentially leading to missed opportunities for

optimal treatment (5–7).

Given the significant clinical variability inherent to CC,

conventional clinical attributes such as the existing American

Joint Committee on Cancer (AJCC) staging, Tumor-Nodal

Involvement-Metastasis (TNM) staging, and tumor grades prove

inadequate in precisely forecasting individualized prognoses (8–11).

As a result, it becomes imperative to stratify CC patients and

innovate novel markers to reliably predict both prognosis and

therapy response. Over the last few decades, high-throughput

sequencing technologies, such as bulk transcriptome sequencing

(bulkRNA-seq), have emerged as powerful tools for identifying

novel molecular biomarkers and advancing our comprehension of

tumor development (12). Leveraging bulkRNA-seq data, significant

efforts have been directed towards elucidating the utility of distinct

gene signatures, including ferroptosis-related (13), RNA binding

proteins (RBPs)-related (14), and immune-related gene signatures

(15), for predicting CC prognosis. Notably, this encompasses our

recent work on an ECM-related signature (16). However, tissue-

level bulkRNA-seq predominantly focuses on the “average”

expression across all cells, a limitation that hampers its capacity

to capture the intricate molecular diversity within a tumor sample.

In contrast, single-cell transcriptome sequencing (scRNA-seq)

is an innovative technology that reveals individual gene expression

within cells, aiding in identifying cell subtypes and understanding

variability (17). Recent advances in scRNA-seq help categorize

colorectal cancer cells, explore gene differences, and distinguish

between primary tumors and metastases (18–20). A few studies

have effectively combined scRNA-seq and bulkRNA-seq data to

establish and validate prognostic signatures in CC (21–26), such as

identifying genes related to membrane tension and aging-related or

autophagy-related genes (21–23).
02
Nevertheless, research on constructing a prognostic signature

using DEGs across all cell types in the comparison between

cancerous and normal samples is still limited.

In this study, our goal was to create a scRNAseq cell type-level

DEGs-based prognostic model for CC patients. We identified DEGs

across major cell types in tumor and normal samples, leading to a

concise four-gene signature for predicting prognosis in COAD. We

then validated the model in two independent cohorts, confirmed

gene expression in scRNA-seq and single-cell spatial transcriptome

sequencing (ST-seq) datasets [], and developed a practical

nomogram incorporating the signature and clinical factors for 3-,

5-, and 10-year survival prediction. Additionally, we explored drug

response differences in risk groups. Our findings offer a potential

prognostic tool and therapeutic insights for CC prognosis.
Methods

Data sources

The single-cell transcriptome sequencing dataset (scRNA-seq)

was downloaded from GSE161277 (18). The spatial transcriptome

sequencing (ST-seq) dataset was downloaded from a spatial

transcriptomics research website (http://www.cancerdiversity.asia/

scCRLM/). The ST-seq data of two patients were used (27). The

bulk RNA-sequencing (bulkRNA-seq) dataset was derived from the

COAD cohort of The Cancer Genome Atlas (TCGA) and

downloaded from GSE39582 and GSE33382.
Single-cell RNA-seq analysis

We utilized the “Seurat” R package (version 4.1.1) and applied

standard downstream processing for scRNA-seq data (https://

github.com/satijalab/seurat) (28). Genes that were detected in less

than 3 cells as well as cells with less than 300 or more than 6,000

detected gene numbers were ruled out, and the mitochondria

proportion was limited to less than 15%. Then, the LogNormalize

method was applied for data normalization. Principal component

analysis (PCA) was performed. The “Harmony” R package was then

used to integrate all samples (29). Uniform Manifold Approximation
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and Projection (UMAP), a nonlinear dimensionality reduction

method, was used for unsupervised clustering and unbiasedly

visualizing cell populations on a two-dimensional map (30).

Subsequently, for cell type annotation, we initially employed the

“singleR” package (31) and subsequently verified the expression of

established markers specific to various cell types (Figures S1C, D, and

Figure 1D). Specifically, clusters 3, 5, 10, 12, 14, 17, 18, 19, 20, and 21

were characterized as epithelial cells by the expression of epithelial

marker EPCAM; clusters 0, 1, 2, 24, and 25 were identified as T cells

expressing CD3D, CD8A and IL7R; clusters 6 was identified as natural

killer cells (NK cells) expressing KLRD1; clusters 4, 7, and 15 were

follicular B cells due to the expression of MS4A1; cluster 8 was plasma

B cells expressing MZB1; clusters 9 and 11 were macrophages

corresponded to expression of CD68, CD14 and FCGR3A; cluster

16 was identified as fibroblasts expressing COL1A1 and DCN; and

cluster 23 was marked as endothelial cells by expression of VWF

(Figure S1D). The “FindlMarkers” function was utilized to identify

differentially expressed genes (DEGs) of each cell type. In addition, the

expression pattern of genes was visualized by applying the

“FeaturePlot” function in “Seurat” and functions in “ggplot2”.
Spatial transcriptomics data processing

For the ST-seq data analysis, we utilized the “Seurat” R

package (v4.1.1). The data underwent log-normalization for
Frontiers in Oncology 03
standardization (28). “RunPCA” was employed to run PCA.

Subsequently, the FindNeighbors and FindClusters functions

were applied to identify clusters of similar ST spots.

Preliminary annotations of distinct clusters were performed

based on hematoxylin-eosin (H&E) staining sections and

unsupervised clustering analysis. To enhance accuracy, the final

annotation of clusters was aligned with findings from previous

studies (18). In addition, the expression pattern of identified

genes was visualized by applying the “SpatialFeaturePlot”

function in “Seurat”.
Gene ontology analyses

To gain comprehensive insights into the distinctions between

various cell types within cancerous and normal samples, we

conducted GO analysis on the set of DEGs specific to each cell

type. These DEGs were subjected to enrichment analysis using the

Metascape platform, facilitating the exploration of gene ontology

term enrichment within each cell type (https://metascape.org/gp/

index.html#/main/step1) (32). This encompassed the assessment of

Biological Processes (BP), Cellular Components (CC), and

Molecular Functions (MF). We then used the “ggplot2” R

package to visualize the results.
A B

D E

C

FIGURE 1

Distinguishing eight primary cell types in tumor and normal tissues. (A–C) UMAP plots depicting sample distributions, organized by Seurat clusters,
group IDs, and cell types, respectively. (D) Dot plot illustrating expression levels and percentages of marker genes for each of the primary cell types.
(E) Shift in proportions of each cell type observed across the three groups. UMAP, Uniform Manifold Approximation and Projection.
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Construction and verification of the
prediction model

We utilized normalized RNA-seq data and clinical information

from The Cancer Genome Atlas (TCGA) training cohort, which

included overall survival time and status, for constructing and

verifying our prediction model. Initially, we conducted univariate

Cox regression analysis to identify candidate DEGs with significant

prognostic value (P < 0.05). To prevent model overfitting, we

employed the “glmnet” package to perform least absolute

shrinkage operator (LASSO) analyses regression analysis, further

refining the selection of prognostic genes (TRAM1, DNM2, TRAF5,

NPDC1, PTPN6, VEGFA, TBX2, SPINK4, PSMB2, RPS24,

CXCL14, CNKSR3, CXCL13, KRTCAP3, SPINK1, RHOBTB3,

CA4, TPM4, PCCA, EIF3F, ZFAND2A, UGT2B17, HSPA1B,

CD177, CEBPD, and CD24) (33, 34). Cox proportional hazard

regression was then utilized to finalize the optimal prognostic genes

for the model. The formula for the gene signature was formulated as

follows: risk score = S (bi * Exp.i) (where i denotes the number of

prognostic genes, bi represents the coefficient of gene i, and Exp.i

represents the expression level of gene i). Subsequently, we

categorized colon cancer (CC) patients into high- and low-risk

groups based on the median risk score within each dataset.

To assess the predictive performance of the established

prognostic signature, Kaplan-Meier survival curve analysis was

employed. This analysis aimed to determine whether a significant

disparity existed in overall survival time between the high- and low-

risk groups. The “survival” and “survminer” R packages were

utilized for this purpose, and the log-rank test (P < 0.05) was

applied to ascertain statistical significance. Additionally, the

predictive capability of the prognostic signature was evaluated

through time-dependent receiver-operating characteristic (ROC)

curve analysis, facilitated by the “timeROC” and “survival” R

packages. Furthermore, we validated the prediction model’s

performance using the independent validation cohort.
Development and validation of nomogram

Following the multivariate Cox proportional hazard regression

analysis, we employed the “rms” R package to construct a

nomogram. This nomogram was designed to predict the survival

outcomes of patients with colon adenocarcinoma (COAD) at 3-, 5-,

and 10-year intervals. The nomogram was created by integrating

the risk model associated with the four-gene signature and the

clinical variable of age. Subsequently, we utilized calibration curves

and time-dependent receiver-operating characteristic (ROC)

analysis to assess the predictive accuracy and performance of the

developed nomogram.
Drug sensitivity analysis

To identify potential drug susceptibility patterns in the GDSC2

database and predict drug responses in the context of COAD, we
Frontiers in Oncology 04
employed the “oncoPredict” R package (35). Visualization of the

scatterplot was achieved using the “ggplot2” package, facilitating a

comprehensive understanding of the relationship between drug

response and risk outcomes.
Statistical analysis

R software (R: version 4.1.2.; RStudio: 2022.02.3 Build 492) was

employed for data processing (https://www.r-project.org/). The

“FindlMarkers” function was utilized to identify DEGs of each

cell type with the filter value of absolute log2 fold change (FC) ≥ 0.5

and the minimum cell population fraction in both of the

populations was 0.1. “MAST” was used for statistical analysis.

Kaplan-Meier analysis was performed to assess survival

differences between high- and low-risk groups, and the log-rank

test (P < 0.05) was applied to ascertain statistical significance. In

drug sensitivity analysis, we employed the Wilcox test as the

statistical measure, considering P < 0.05 as significant.
Results

scRNA-seq data analysis and cell
type annotation

The figures in Supplementary Figures 1A, B present the

distribution of total gene numbers, total count numbers, and

percentages of mitochondria genes for single cells from each

individual sample. The “Seurat” pipeline (28) identified 26

distinct clusters across the normal, adenoma, and carcinoma

samples from the four patients (Figures 1A–C, Methods). We

utilized a combination of automated and manual annotation

methods to categorize the 26 clusters into eight major cell types

(see Methods), comprising epithelial cells, T cells, natural killer cells

(NK cells), follicular B cells, plasma B cells, macrophages,

fibroblasts, and endothelial cells (Figures 1C, D, and S1C, D)

Subsequently, we quantified the composition of each cell type

within different sample groups. Our observations revealed a

noticeable increase in the proportion of epithelial cells in both

adenoma and carcinoma samples, whereas the presence of T cells

exhibited a decrease (Figure 1E).
Enrichment analysis of DEGs for major
cell types

Next, to gain deeper insights into the differences in each cell type

between cancerous and normal samples, we initially identified DEGs

(Figures 2A, B) and then conducted GO analysis on the DEGs specific

to each cell type. Notably, in the case of epithelial DEGs, enrichment

was observed in the realm of cytoplasmic transition, protein-RNA

complex organization, extracellular matrix, and angiogenesis

(Figure 2C). For both T cells and NK cells, gene enrichment

predominantly revolved around cell activation processes, cell
frontiersin.org
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chemotaxis, and MHC protein complex binding (Figures 2D, E).

Furthermore, the DEGs identified in macrophages exhibited

enrichment in terms of inflammatory responses and genes linked to

phagocytosis activity (Figure 2F). B cells displayed enrichment of genes

associated with ribosomal activity and cell killing (Figure 2G), whereas

fibroblasts demonstrated enrichment in genes related to collagen-

related extracellular matrix organization and function (Figure 2H).

Corresponding networks of major GO terms for each cell type are

shown in Figure S2 (Figures S2A–F).
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Prognostic genes identification

In our pursuit of a comprehensive assessment of the prognostic

implications of all DEGs across distinct cell types identified in the

scRNA-seq data for CC, we leveraged TCGA-COAD as our training

cohort. Initially, we executed univariate Cox regression analysis to

explore their prognostic relevance. This analysis revealed a subset of

55 DEGs that displayed a statistically significant correlation with the

prognosis of CC patients, evidenced by P values < 0.05 (Figure 3A).
A B

D

E F

G H

C

FIGURE 2

GO Enrichment analysis of DEGs. (A, B) Stacked bar plots illustrating the count of DEGs for each cell type. (C-H) Bubble plots showcasing the most
prominent enriched GO terms for DEGs within epithelial cells (C), T cells (D), NK cells (E), macrophages (F), B cells (G), and fibroblasts (H). GO, Gene
Ontology; DEGs, Differentially Expressed Genes.
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We next employed LASSO regression to circumvent potential

model overfitting (See Methods, Figures 3B, C). Subsequently, we

undertook multivariate Cox regression analysis on the identified 24

candidate genes, aiming to ascertain their roles as independent

prognostic factors. Ultimately, our analysis revealed four genes -

NPDC1, PTPN6, SPINK4, and CXCL13 - as potentially constituting

a prognostic signature (Figure 3D). The subsequent step involved

the calculation of a risk score for each CC patient, which was

derived from the following formula: Risk Score = 0.56448 *

Expression of NPDC1 + 1.33652 * Expression of PTPN6+

(-0.21203) * Expression of SPINK4+ (-0.37809) * Expression

of CXCL13.
Expression pattern of identified genes in
scRNA-seq dataset and ST-seq dataset

To gain a more comprehensive insight into the expression

patterns of the four prognostic genes we identified, we meticulously

checked their expression patterns in the scRNA-seq data first. Our

analysis unveiled that the expression of PTPN6 was a pervasive

presence across the various cell types. Notably, it exhibited a

distinctive prominence within immune cell populations, including
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T cells, NK cells, macrophages, and B cells (Figure 4A). Intriguingly,

its expression was downregulated in these cell types within tumor

samples (Figure 4B). Fascinatingly, CXCL13’s primary expression

was observed in NK cells (Figure 4A), and this expression was

elevated in NK cells within tumor tissues, particularly in

carcinomas (Figure 4B). Furthermore, both NPDC1 and SPINK4

were significantly enriched in epithelial cells, although NPDC1

demonstrated a more extensive expression profile (Figure 4A).

Remarkably, both genes exhibited increased expression in epithelial

cells within tumor tissues (Figure 4B).

Expanding our investigation, we also harnessed the power of

ST-seq. Initially, we performed cell type annotation in the ST-seq

data using a combination of previously published research and the

expression patterns of marker genes (Figures 4C, D, and S3A, B).

Remarkably, there was a noteworthy degree of overlap in the

expression profiles of PTPN6 and CXCL13, particularly evident in

patient 1 (Figures 4C, D). However, PTPN6 exhibited a broader and

more widespread distribution across the studied context. Our

findings aligned with the scRNA-seq data, revealing that those

dots exhibiting high CXCL13 expression also co-expressed T cell

markers such as CD3D and IL7R (Figures S3A, B). Interestingly,

SPINK4’s expression landscape predominantly corresponded to a

cell type annotated as normal epithelia (Figures 4C, D). Conversely,
A B

D

C

FIGURE 3

Identification of independent prognostic genes. (A) A forest plot showing 55 prognostic genes identified by univariate Cox regression. (B, C) LASSO
regression analysis on 55 prognostic genes. (D) A forest plot showing the 4 independent prognostic genes identified by multivariate Cox regression.
LASSO, least absolute shrinkage operator.
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NPDC1 demonstrated a more universal presence across various

tissue components (Figures 4C, D). To a certain extent, the

expression patterns of these four genes were consistently observed

across both datasets. This intricate exploration encompassing

diverse datasets collectively enhances our comprehension of the

expression patterns and plausible functional roles of these

prognostic genes.
Verification of accuracy of four-gene
signature in CC

Subsequently, we validated the accuracy and efficacy of our

four-gene signature model across multiple cohorts, encompassing

the training cohort (COAD) and two independent validation

cohorts (GSE33882 and GSE39582). For each CC patient, an

individual risk score was calculated using the established four-

gene signature model. By leveraging these risk scores, we segregated

all CC patients into high- and low-risk groups, dichotomized at the

median risk score value within each cohort (also shown in upper
Frontiers in Oncology 07
panels in Figures 5A–C). A compelling visual representation

emerged as we ranked patients from low to high based on their

risk scores. Scatter plots indicated a distinct survival pattern, with

low-risk patients exhibiting considerably improved survival rates

compared to their high-risk counterparts (as illustrated in the

middle panels in Figures 5A–C). Notably, red dots within the

scatter plots symbolized patients who were deceased, while blue

dots represented those who remained alive. Furthermore, heat maps

were deployed to illustrate the differential expression profiles of the

four signature genes between the high- and low-risk groups (as

shown in the lower panels in Figures 5A–C).

To deepen our understanding, we engaged in Kaplan-Meier

survival curve analyses. The outcomes strikingly underscored that

those patients allocated to the high-risk group experienced

significantly poorer overall survival outcomes compared to those

in the low-risk group, a trend consistent across both the training

cohort (log-rank P < 0.001; Figure 5D) and validation cohorts

(GSE33882: P = 0.00086; GSE39582: P = 0.03, Figures 5E, F).

Intriguingly, the predictive prowess of our signature model was

reinforced by the AUC calculated from ROC curves. For the
A

B

D

C

FIGURE 4

Expression profiling of four genes in scrna-seq and ST-seq datasets. (A, B) Feature plots (A) and dot plot (B) offering a visual representation of the
expression profiles of the four identified genes within the scRNA-seq dataset. (C, D) Spatial feature plots showing the distinct expression patterns of
the same four genes within two ST-seq datasets. scRNA-seq, single-cell transcriptome sequencing; ST-seq, spatial transcriptome sequencing.
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prediction of 3-, 5-, and 10-year overall survival in the training

cohort, the AUCs were 0.805, 0.785, and 0.777, respectively

(Figure 5G). Correspondingly, the GSE33882 cohort exhibited

AUCs of 0.634, 0.63, and 0.581 for the 3-, 5-, and 10-year overall

survival predictions (Figure 5H). The GSE39582 cohort presented

AUCs of 0.56, 0.552, and 0.614 for the 3-, 5-, and 10-year overall

survival predictions, respectively (Figure 5I). Collectively, these

compelling findings underline the robustness of our four-gene

signature in distinguishing the prognostic trajectories of CC

patients across multiple cohorts.
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Association between the risk score and
clinical features of CC patients

Examining the relationship between the four-gene risk score

and various clinical attributes of colon cancer (CC) patients

constituted our subsequent exploration. Firstly, the relationships

of all clinicopathological classifications of all samples were depicted

in Figure 6A, unraveling a multi-layered perspective. Subsequently,

leveraging the risk score, as well as patient age, gender, AJCC stage,

T stage, N stage, and M stage, facilitated the stratification of
A B

D E F

G IH

C

FIGURE 5

Validation of four-gene signature in training and validation cohorts. (A–C) Upper Panels: Visualization of risk score distribution derived from the four-
gene prognostic signature in both COAD and validation cohorts. Middle Panels: Illustration of survival status of colon cancer patients categorized by
high- or low-risk scores in both COAD and validation cohorts. Lower Panels: Heatmaps displaying expression patterns of the four genes constituting
the prognostic signature in COAD and validation cohorts. (D–F) Kaplan-Meier survival curves exhibit markedly shorter survival times in high-risk
groups compared to low-risk score groups, evident in both COAD and validation cohorts. (G–I) Time-dependent ROC curves assess the prognostic
performance of the four-gene signature in COAD and validation cohorts. COAD, colon adenocarcinoma; ROC, receiver-operating characteristic.
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individuals into high- and low-risk groups (Figures 6B–O). The

ensuing Kaplan-Meier analyses vividly portrayed significant

prognostic disparities across these groups, underscoring their

clinical relevance. Particularly, notable disparities were evident

across the majority of clinical features. However, it is important
Frontiers in Oncology 09
to highlight that for the T1-T2 stage and CMS4, while the

distinction did not reach statistical significance, a discernible

trend was still observable. This trend could potentially be

attributed to the limited sample size in these categories (P > 0.05;

as illustrated in Figures 6H–N). Together, these findings collectively
A
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FIGURE 6

Relationship between established four-gene signature and clinical features. (A) Tile plot visually displaying the correlation between risk scores and
various clinical features among CC patients in the COAD cohort. These features include age, gender, AJCC stage, T stage, N stage, and M stage.
(B–O) Subgroup Kaplan-Meier curve analysis presenting the overall survival probabilities of high- and low-risk CC patients in the COAD cohort. The
analysis is stratified based on different factors: age (<60, ≥60), gender (female, male), AJCC stage (stage I/II, stage III/IV), T stage (T1-T2, T3-T4), N
stage (N0, N1-T2), M stage (M0, M1-MX) and CMS subtype (CMS4 and Non-CMS4). The log-rank test was used to calculate statistical significance.
CC, colon cancer; COAD, colon adenocarcinoma; AJCC, American Joint Committee on Cancer; T stage, Tumor stage; N stage, Nodal Involvement
stage; M stage, Metastasis stage; CMS subtype, consensus molecular subtype.
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reinforce the predictive potential of the four-gene-based risk score

model, which exhibited promising prognostic utility across various

clinical features in CC patients.
Four-gene prognostic signature is an
independent prognostic factor

Next, we examined whether the four-gene prognostic signature

serves as an independent predictor for the survival outcomes of CC

patients. To this end, both univariate and multivariate Cox regression

analyses were executed, encompassing pertinent clinical features -

age, gender, AJCC stage, T stage, N stage, and M stage - alongside the

risk scores of patients within the training cohort. The univariate
Frontiers in Oncology 10
analysis shed light on the influence of various factors on overall

survival (OS). The findings indicated that age (P = 0.003), AJCC stage

III-IV (P = 0.011), T3-T4 stage (P = 0.037), N1-N2 stage (P = 0.027),

M1-MX stage (P = 0.015), and risk score (P < 0.0001) exhibited

significant correlations with OS within the training set (Figure 7A).

Subsequently, the multivariate analysis delved deeper into the

interplay of these factors. Remarkably, age (P = 0.004) and the risk

score (P < 0.0001) retained their significant correlations with overall

survival in CC patients, even when considered in the presence of

other clinical attributes (Figure 7B). Collectively, these findings

substantiate the conclusion that the four-gene prognostic signature

stands as a pivotal independent factor significantly influencing the

prognosis of CC patients, emphasizing its clinical relevance and

potential utility as a prognostic predictor.
A B

D E

C

FIGURE 7

Construction and validation of prognostic nomogram. (A) Analysis of individual feature contribution through Univariate Cox regression in the training
cohort. (B) Examination of gene significance after adjusting for other factors in the training cohort using Multivariate Cox regression. (C) Development of a
prognostic nomogram utilizing the risk score from the four-gene signature and clinical factors. This nomogram predicts the overall survival rates of COAD
patients at 3-, 5-, and 10-year intervals. (D) Assessment of the prognostic capability of the nomogram through time-dependent ROC curves in the COAD
cohort. (E) Presentation of time-dependent calibration curves illustrating the alignment between predicted and observed 3-, 5-, and 10-year survival rates.
COAD, colon adenocarcinoma; ROC, receiver-operating characteristic; HR, hazard ratio; 95% CI, 95% confidence interval; AJCC, American Joint Committee
on Cancer; T stage, Tumor stage; N stage, Nodal Involvement stage; M stage, Metastasis stage; AUC, area under the curve.
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Construction and validation of
a nomogram

Subsequently, we proceeded to formulate a nomogram that

amalgamates multiple prognostic predictors including age and risk

score to comprehensively evaluate the probabilities of 3-, 5-, and 10-

year overall survival in CC patients within the training cohort

(Figure 7C). Notably, our findings highlighted the pivotal influence

of the risk score on the prediction of overall survival. In Figure 7D,

our analysis of ROC curves revealed a compelling outcome.

Specifically, the 3-year Area AUC value for the four-gene risk

score model was an impressive 0.805, surpassing the predictive

potential of individual clinical factors, including the AJCC TNM

stage (AUC = 0.688), patient’s age (AUC = 0.643), T stage (AUC =

0.653), N stage (AUC = 0.656), and M stage (AUC = 0.561)

(Figure 7D). Furthermore, when we conducted a comprehensive

ROC analysis, integrating the risk score with age, the resultant ROC

curve exhibited a notably enhanced performance (AUC = 0.821)

compared to each parameter in isolation. Moreover, the calibration

curve provided additional validation, showcasing a satisfactory

agreement between the predictions and actual observations across

the probabilities of 3-, 5- and 10-year OS (Figure 7E). Collectively,

these compelling findings highlight the potential of the nomogram,

enriched by the risk score, to accurately predict the 3-, 5- and 10-

year overall survival rates of CC patients. This integrated approach

offers valuable insights for tailoring individualized clinical

treatment strategies for CC patients.
Drug sensitivity prediction in CC patients in
the high- and low-risk groups

To evaluate our four-gene signature’s clinical application and

identify relevant drugs for high-risk patients, we analyzed

chemotherapeutic sensitivity. The IC50 values for 5-fluorouracil

and oxaliplatin showed no risk group difference (Figures 8A–C).
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However, Camptothecin_1003, Cisplatin_1005, Docetaxel_1819,

and Irinotecan_1088 had significantly lower IC50 values in the

low-risk group, implying heightened sensitivity (Figures 8D–G).

Compounds such as Cediranib_1922, Foretinib_2040,

PD173074_1049, Savolitinib_1936, and Sorafenib_1085, targeting

the receptor tyrosine kinase (RTK) pathway, were projected to be

more effective in the low-risk group as well (Figures 8H–L).
Discussion

CC has emerged as a significant public health concern in recent

decades, marked by increasing morbidity and mortality rates (1). To

enhance personalized treatment strategies, the development of

robust prognostic models is imperative. Extensive efforts have

been dedicated to identifying CC biomarkers, often accomplished

by scrutinizing differential gene expression between tumor and

normal tissues through bulkRNA-seq analysis (13–16).

Nonetheless, the cellular diversity intricacies of normal and tumor

tissues were overlooked by bulkRNA-seq methods. scRNA-seq, an

innovative methodology, allows us to precisely distinguish different

cell types within tissues, providing a powerful tool to understand the

complex mix of cell populations when comparing, for instance,

tumor and normal tissues (18, 20). Additionally, scRNA-seq has the

potential to uncover crucial hub genes related to tumor initiation

and cancer advancement, which could be instrumental in shaping

personalized therapies for CC patients (21–26, 36).

In this study, we conducted a comprehensive analysis of scRNA-seq

data derived from 33,213 high-quality cells, sourced from the dataset

GSE161277 (18). Our analysis highlighted the presence of significant

heterogeneity within cells present in normal tissues, as well as tumor

tissues. Employing the widely used “Seurat” pipeline, we successfully

identified 26 distinct clusters. Leveraging a dual approach involving

“singleR”-based auto-annotation and marker expression-guided manual

annotation, we annotated these clusters into eight major cell types:

epithelial cells, T cells, NK cells, macrophages, plasma B cells, follicular B
A B D E F

G IH J K L

C

FIGURE 8

Association between the four-gene signature and drug sensitivity, including chemotherapeutics (A–G) and small molecular drugs targeting RTK
pathway (H–L). IC50: half-maximal inhibitory concentration. RTK, receptor tyrosine kinase.
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cells, fibroblasts, and endothelial cells. Remarkably, our analysis unveiled

notable alterations in the proportion of these cell types between

cancerous and normal tissues. Specifically, we noted a significant

increase in the proportion of epithelial cells within both adenoma and

carcinoma samples, while the proportion of T cells decreased, consistent

with a previous study (19). Subsequently, we investigated the gene

alteration across the primary cell types in CC and normal tissues.

Notably, the most pronounced changes were observed in epithelial

cells, displaying the largest number of DEGs, followed by

macrophages. Through GO enrichment analysis, we unveiled the

distinct pathways enriched among these eight cell types. For instance,

the DEGs in epithelial cells were predominantly associated with

cytoplasmic translation processes. In T cells and NK cells, the DEGs

pointed to heightened activity in leukocyte activation and immune

responses. Macrophages showed enrichment in inflammatory

response-related terms, while altered genes in fibroblasts were linked to

pathways involving extracellular matrix organization, as expected. This

comprehensive analysis provides insights into the functional shifts

occurring in diverse cell populations during CC development.

Integrating COAD bulkRNA-seq data with clinicopathological

data, we identified 55 prognostic genes from all DEGs, refining them

to four (PTPN6, CXCL13, SPINK4, and NPDC1) through LASSO

regression and multivariate analysis. The expression pattern of these

four identified prognostic genes was then verified by scRNA-seq and

ST-seq data, which revealed their distinct enrichments: PTPN6 and

CXCL13 in immune cells, NPDC1 and SPINK4 in epithelial cells. We

established and rigorously validated a four-gene prognostic signature

using a risk score based on gene expression. Stratifying patients into

high- and low-risk groups revealed significant survival differences,

affirming our model’s clinical relevance.

Our investigation revealed a notable pattern: protein tyrosine

phosphatase, non-receptor type 6 (PTPN6, also known as SHP-1),

displayed prominent expression in immune cells, encompassing T cells,

NK cells, and macrophages, aligning with prior findings (37).

Intriguingly, its expression levels within these cell types were

diminished in both adenoma and carcinoma samples in comparison

to normal samples. T cells, specifically CD8+ T cells and CD4+ T cells,

hold pivotal roles in adaptive immune responses.With a 95% homology

shared between human and mouse PTPN6 (38), its absence in T cells

has been linked to the establishment of more stable and enduring

synapses with antigen-presenting cells in CD8+ T cells (38). This, in

turn, yields lowered activation thresholds and heightened T cell

proliferation. The exploration of strategies capitalizing on PTPN6

abrogation has yielded promising results. Noteworthy pre-clinical

studies showcased the benefits of transferring PTPN6 knockout T

cells in leukemia models (39). Meanwhile, two phase I clinical trials

have evaluated the safety and potential of systemic treatment with

sodium stibogluconate (SSG), a licensed leishmaniasis treatment that

also acts as an active-site inhibitor of both PTPN6 and the related SHP-

2 (40, 41). These trials aimed to harness this property as a plausible

cancer therapy. In contrast, a significant increase of chemokine C-X-C

motif ligand 13 (CXCL13) was observed solely in CD8+ NK cells in

both adenoma and carcinoma samples in our analyses. This finding

aligns with a recent study that integrated single-cell and spatial

transcriptome analyses, unveiling an enrichment of CD8+/CXCL13+

T cells in CC and liver metastatic tumors (19). This suggests their
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potential role as a tumor-activating subset. Stratifying CC patients from

the GEO cohort GSE39582 into CXCL13-high and CXCL13-low

groups, the aforementioned study unveiled a favorable overall

survival prediction in those with higher CXCL13 expression in CC

(19), consistent with our findings in a previous study and this study

(16). It is worth noting that our analysis of COAD bulkRNA-seq data in

a previous study indicated downregulated CXCL13 in tumor samples

(16). This discrepancy may be attributed to the intricate nature of

tissue-level bulk-seq analyses, wherein scRNA-seq offers a more lucid

understanding. However, rigorous experimental exploration is

imperative to delve deeper into the role of CXCL13 in CC.

Contrasting with PTPN6 and CXCL13, our investigation revealed

SPINK4 and NPDC1 to be predominantly enriched in epithelial cells

rather than immune cells. Both genes exhibited upregulation in epithelial

cells from cancerous tissues. Interestingly, a previous study has also

found that the expression of serum SPINK4, the serine peptidase

inhibitor Kazal type 4 gene, in patients with CC is elevated, and this

increased expression has a high diagnostic value (42). Research byWang

et al. further showed that the downregulation of SPINK4 is associated

with poor survival in CC patients and a high TNM stage, which is

consistent with our data (43). In contrast, Chen and colleagues showed

that high expression of SPINK4 is related to the advanced

clinicopathological characteristics and poor treatment response of

rectal cancer patients receiving chemotherapy (44). NPDC1, the neural

proliferation, differentiation, and control 1 gene, encodes a 34-kDa

protein predominantly expressed in neural tissues. Notably, in 1995,

Galiana and colleagues observed that NPDC1 overexpression led to a

notable inhibition of cell proliferation (45). Despite being relatively less

explored, NPDC1 has garnered attention due to its significant

upregulation during acute myeloid leukemia (AML) relapse.

Intriguingly, a recent investigation has established a direct link between

elevatedNPDC1 expression and an adverse prognosis in AML cases (46).

Furthermore, we constructed a nomogram that integrated age

and the risk score, enabling the prediction of 3, 5, and 10-year

overall survival probabilities for CC patients. Notably, the predictive

efficacy of this combined nomogram surpassed that of individual

factors alone, such as age and AJCC TNM stage. By stratifying

patients based on the final risk score, we observed significant

disparities in drug sensitivity between low- and high-risk patients,

particularly in response to certain chemotherapeutic agents and

molecular-targeted drugs. These findings suggest that the risk

signature holds the potential to guide the selection of

chemotherapy and targeted therapy. Ultimately, leveraging this

innovative four-gene signature, an approach combining

immunotherapy, chemotherapy, and targeted therapy could be

optimized for the tailored treatment of CC patients.

Notwithstanding the promising findings, this study does have certain

limitations. Firstly, our examination of gene prognostic performance was

confined to the RNA level; exploring protein-level implications demands

further inquiry. Secondly, the use of a limited number of marker genes

could introduce noise into practical applications; substituting them with

more extensive sets of markers could enhance score reliability without

substantial accuracy compromise. Thirdly, some more advanced

techniques, such as machine learning, can be used to improve the

accuracy of the prediction (47–49). Lastly, our analysis relied on

bioinformatics approaches; additional cell or animal experiments are
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requisite to unveil the prospective roles of the identified genes in the

progression of colon cancer.
Conclusions

In conclusion, our integration of scRNA-seq data with validated

cohorts highlights the robust prognostic and drug sensitivity

predictive capabilities of the identified four DEGs in CC patients.

This four-gene model holds promise as a valuable prognostic tool,

aiding clinical decision-making by identifying patients who could

potentially benefit from targeted anticancer drug therapies.
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SUPPLEMENTARY FIGURE 1

Automated annotation using “singleR”. (A) Overview of Gene Count and

Mitochondrial Gene Proportion in All Samples. (B) Detailed information on
each scRNA-seq sample downloaded in this study. (C) UAMP plot based on

“singleR” annotation. (D) Dot plot illustrating expression levels and
percentages of marker genes for each of the clusters. UMAP, Uniform

Manifold Approximation and Projection; scRNA-seq, single-cell

RNA sequencing.

SUPPLEMENTARY FIGURE 2

Enriched term networks by cluster ID. (A-F) Networks illustrating enriched

terms for specific cell clusters: (A) Epithelial Cells, (B) T Cells, (C) NK Cells, (D)
Macrophages, (E) B Cells, (F) Fibroblasts. The networks are color-coded

based on the respective cluster IDs.

SUPPLEMENTARY FIGURE 3

Expression profiling of marker genes in ST-seq datasets. (A, B) Spatial feature
plots of marker genes in two ST-seq datasets.
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