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BRCA1 mutations
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BRCA1 is involved in the Fanconi anaemia (FA) pathway, which coordinates repair of

DNA interstrand cross-links. FA is a rare genetic disorder characterised by bone

marrow failure, cancer predisposition and congenital abnormalities, caused by

biallelic mutations affecting proteins in the FA pathway. Germline monoallelic

pathogenic BRCA1 mutations are known to be associated with hereditary breast/

ovarian cancer, however biallelic mutations of BRCA1 were long predicted to be

incompatible with embryonic viability, hence BRCA1 was not considered to be a

canonical FA gene. Despite this, several patients with biallelic pathogenic BRCA1

mutations and FA-like phenotypes have been identified – defining a new FA type

(FA-S) and designating BRCA1 as an FA gene. This report presents a scoping review

of the cases of biallelic BRCA1mutations identified to date, discusses the functional

effects of the mutations identified, and proposes a phenotypic spectrum of BRCA1

mutations based upon available clinical and genetic data. We report that this FA-S

cohort phenotype includes short stature, microcephaly, facial dysmorphisms, hypo/

hyperpigmented lesions, intellectual disability, chromosomal sensitivity to

crosslinking agents and predisposition to breast/ovarian cancer and/or childhood

cancers, with some patients exhibiting sensitivity to chemotherapy. Unlike most

other types of FA, FA-S patients lack bone marrow failure.

KEYWORDS

BRCA1, Fanconi anaemia, DNA damage response, familial cancer syndromes, breast
cancer, ovarian cancer, cancer predisposition
Introduction

Fanconi anaemia (FA) is a rare disorder characterised by progressive bone marrow failure

(BMF), congenital dysmorphisms (including short stature, microcephaly, skin pigmentation

abnormalities, thumb/radial ray malformations), cancer predisposition and hypersensitivity to

DNA crosslinking agents (1, 2). FA presents with significant phenotypic variability, even

between members of the same family with the same FA-associated mutation (3). A diagnosis of

FA is often considered on the basis of BMF alongside congenital dysmorphisms. Diagnosis is

usually confirmed by demonstration of in vitro chromosomal sensitivity to crosslinking agents,
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such as DEB (diepoxybutane) (4) or MMC (mitomycin C) (5).

Following this, genetic testing can identify which FA-associated gene

is mutated (6).

Mutation in twenty-two genes have been identified in FA:

FANCA, FANCB, FANCC, FANCD1/BRCA2, FANCD2, FANCE,

FANCF, FANCG/XRCC9, FANCI, FANCJ/BRIP1, FANCL, FANCM,

FANCN/PALB2, FANCO/RAD51C, FANCP/SLX4, FANCQ/ERCC4/

XPF, FANCR/RAD51, FANCS/BRCA1, FANCT/UBE2T, FANCU/

XRCC2, FANCV/REV7/MAD2L2, and FANCW/RFWD3 (2).

FANCH was identified as an FA gene but later found to be

analogous to FANCA (7). The protein products of these genes

interact to repair interstrand crosslinks (ICL) by regulating/

directing nucleolytic incision, translesion synthesis, and

homologous recombination (8). The FA core complex recognises

ICLs at a stalled replication fork and ubiquitinates the FANCD2-

FANCI (ID2) complex, which recruits downstream effectors of the

FA pathway including FANCS/BRCA1. These mediate repair by

nucleolytic incision, ICL unhooking, generation of double-strand

breaks (DSB), and RAD51-dependent strand invasion and

recombination (2, 8). Biallelic pathogenic mutations in these

genes cause FA, hence inheritance follows an autosomal recessive

pattern, with two exceptions: heterozygous pathogenic variants of

FANCR/RAD51 cause autosomal dominant FA-R (9, 10) and

hemizygous pathogenic variants of FANCB cause X-linked FA-B

(11). FANCA, FANCC and FANCG mutations account for ~85% of

FA cases (2), whereas FANCV and FANCW mutations have only

been identified in one FA patient each (12–14).

Whilst biallelic (homozygous or compound heterozygous)

mutations in FA-associated genes can result in FA, germline

monoallelic mutations in many of these same genes may confer

increased cancer risk. For example, biallelic mutations to BRCA2

underlie FA-D1, whereas monoallelic mutations are frequently

observed in hereditary breast and ovarian cancer (HBOC),

highlighting the link between FA and BRCA DNA repair pathways

(15–17). Further, biallelic mutations in PALB2 and BRIP1 are

associated with FA-N and FA-J respectively (18–20), but are

associated with moderate HBOC risk in a heterozygous setting (21,

22). Despite identification of interaction between BRCA1 and known

FA proteins (23), BRCA1 was not generally considered to be a

canonical FA gene, as viable biallelic mutations affecting BRCA1

were not observed or expected. Mouse models demonstrated that

most combinations of Brca1 biallelic mutations result in embryonic

lethality and that one wild-type allele is required for development (24–

27). However, there have now been a number of individual case reports

of biallelic pathogenic BRCA1 mutations, many of whom have been

identified as having a new form of Fanconi Anaemia – FA-S. This work

conducted a scoping review in order to collate all reported cases of

biallelic BRCA1 mutation and FA-S, to allow assimilation of clinical

and genetic data on this rare condition.
Methods

A scoping review was performed by a standardized method.

Two databases were used for the search, Medline and SCOPUS. In
Frontiers in Oncology 02
addition, a grey literature search was conducted using Google

Scholar. On each, a standardised search string was used to search

for human case reports of germline biallelic BRCA1 mutations:
• MEDLINE: (brca1 AND (homozygous OR biallelic OR

(compound AND heterozygous))).ti.

• SCOPUS: Title((brca1 AND (homozygous OR biallelic OR

(compound AND heterozygous))).

• Google Scholar: allintitle: brca1 homozygous OR biallelic

OR “compound heterozygous”.
The following exclusion criteria were used:
1. Not reporting a human case of germline biallelic BRCA1

mutations due to:
a. No human case reported.

b. Involving a gene other than BRCA1.

c. Not germline biallelic mutations including:

i. Multiple BRCA1mutations in cis rather than in

trans.

ii. Non-germline mutations i.e. one or more

somatic mutation sequenced in tumours.
2. Duplicates or other clear reasons for exclusion.
Data from included articles was collected in a standardised data

collection table to ensure uniformity of data collection.
Results

The search on Medline gave 14 results, of which 3 were

excluded: one was a discussion about tumour histology, one was

an erratum (author name spelling error), and one was regarding a

different gene (BARD1). SCOPUS provided 13 results and 4

secondary documents. All 13 of these were included within the 14

results already found via Medline, and the same 3 papers were

excluded. Within the 4 secondary documents, 1 was the 14th paper

found via Medline, and 3 were the initial case reports of cases later

discussed in more detail within the previously identified papers and

thus represented duplications of cases. The grey literature search

using Google Scholar found no additional case reports. This

resulted in 11 papers included in the detailed review (Figure 1).
Fanconi anaemia type S patient cohort

In total, we have identified 12 cases of biallelic BRCA1mutation,

10 in patients with an FA-S phenotype and 3 seemingly unaffected

individuals (Tables 1, 2). A human with biallelic BRCA1 mutations

was first reported in 1995, in a woman with breast cancer at age 32

and no other clinical features, described as homozygous for a high

penetrance breast/ovarian cancer-associated mutation, but this

report was subsequently found to be inaccurate (39). The case

report suggested that homozygous BRCA1 c.2800delAA mutation

did not increase cancer risk beyond heterozygosity. However, this
frontiersin.org

https://doi.org/10.3389/fonc.2023.1278004
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hughes and Rose 10.3389/fonc.2023.1278004
report was later found to be inaccurate due to experimental error –

there was an amplification bias during genotyping which led to

relative excessive amplification of the mutant allele (40). Subsequent

re-sequencing confirmed that both mutant and wild-type alleles

were present (29).

The first validated case of biallelic BRCA1 mutations was

identified in 2013 by Domchek et al., in a woman with ovarian

carcinoma at age 28 (P1, Table 1) (29). P1 is a BRCA1 compound

heterozygote with a known deleterious mutation (p.D821Ifs*25)

(41), in trans with a hypomorphic allele (p.V1736A). P1 also has a

monoallelic BRCA2 mutation (p.R324T), which is a variant of

unknown significance (VUS). Prior to publication the p.V1736A

allele was classified as a VUS, but once identified in P1 it was

thoroughly investigated genetically and biochemically to ascertain

whether this patient represented a genuine case of biallelic

pathogenic BRCA1 mutations. These investigations convincingly

support the view that p.V1736A is a hypomorphic alteration

affecting DNA repair (Table 3) (29). Interestingly, this patient was

not originally suggested to have a form of FA, likely due to the

absence of BMF. However, a number of clinical features

differentiate P1 from a typical HBOC (BRCA1) phenotype. P1

expe r i enc ed s i gn ifi c an t s en s i t i v i t y to c ro s s l i nk ing

chemotherapeutics (requiring discontinuation), and was reported

to have short stature, microcephaly, facial dysmorphisms and

intellectual disability. It is not known whether she had

chromosome instability, as no breakage testing was undertaken

prior to her death six months following cancer diagnosis.

Sawyer et al. defined the FA-S subtype with the identification of

P2 in 2015 (30). She presented with multiple congenital

abnormalities including short stature, microcephaly, facial
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dysmorphisms, hypo- and hyper-pigmented skin lesions,

proximally inserted thumbs (radial ray anomaly) and intellectual

disability, as well as ductal breast carcinoma aged 23 (P2, Table 1).

She had originally been suggested to have Dubowitz syndrome and

was genotyped as part of an effort to identify Dubowitz-associated

genes, during which she was found to have compound heterozygous

BRCA1 mutations. A p.R1699W missense mutation, previously

identified as pathogenic in HBOC (BRCA1) families (56), as well

as a p.S198Rfs*35 mutation. DEB and MMC testing showed

elevated chromosome breakage within diagnostic parameters for

FA. Despite the chromosomal breakage results, she tolerated

chemotherapy without signs of haematotoxicity. P2 has recently

been discussed in a paper considering alternative genomic

diagnoses for patients clinically diagnosed with Dubowitz

syndrome but re-diagnosed with other disorders following

genomic testing (62).

Freire et al. presented the first patient with homozygous

pathogenic BRCA1 mutations – a girl (P3, Table 1) aged 2.5 years

with similar dysmorphic phenotypic presentation to P1/P2 (31). P3

was found to have a homozygous nonsense BRCA1 mutation

(p.C903*) resulting in premature termination within exon 11 and

loss of key protein functional domains. Although this mutation has

not been identified as an HBOC-associated variant, loss-of-function

truncating mutations distal of this site have been reported as

pathogenic, strongly suggesting pathogenicity (63). Cytogenic

testing showed increased DEB-induced chromosomal breakage.

Upon investigation, P3’s mother (p.C903* heterozygote) was

found to have undifferentiated metastatic adenocarcinoma (31).

P3 was not reported to have any malignancy in the original paper.

Unfortunately, following publication, P3 developed a diffuse
FIGURE 1

PRISMA diagram showing selection of studies for inclusion in scoping review. Template and process from Page et al. (28).
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TABLE 1 FA-S Cohort: clinical characteristics and genetic information.
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(P10)
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p.Y978*

p.W372*/
p.H1673del

X (female) 46 XX (female) 46 XY (male) 46 XX (female)

ish – Romanian –

– degree
reported

No No –

ng of P6 None None None

30y 2y 13m (deceased)
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(−2.1 SD at adult
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SD <3%ile)*

Yes Yes Yes

Triangular face Micrognathia Micrognathia,
laryngotracheo-
malacia

ophthalmia – Upslanting
palpebral
fissures,
epicanthus,
strabismus

Left eye congenital
cataract

– Cupped ears. Low set
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Low set ears, right-
sided hearing loss.

Bitemporal
narrowing.

Sparse hair,
bitemporal
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nasal bridge/tip,
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Patient 1
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Patient 2
(P2)
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p.V1736A
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p.R1699W
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(female)

46 XX (female) 46 XX
(female)

46 XX (female) 46 XX (female) 46 XY (male) 46 X

Ethnicity – Finnish Brazilian Arab Arab Turkish Tur

Consanguinity No No Yes – third
cousins

Yes – degree not
reported

Yes – degree
not reported

Yes – degree
not reported

Yes
not

Relations to other patients None None None Sibling of P5 Sibling of P4 Sibling of P7 Sibl

Age at last follow up 29y (deceased) 25y (deceased) 6y (deceased) 5y (deceased) 6y 15y 7y

Growth At birth – SGA SGA SGA AGA SGA AG

At assessment Short stature
(−2.1 SD at
adult height)

Short stature
(−4.35 SD at
adult height)

Short stature
(−6.1 SD at
2.5y)

Short stature (−3.6
SD at 5y)

Failure to
thrive

Short stature
(Height <3%ile)
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face

Microcephaly Yes Yes Yes Yes Yes Yes Yes
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TABLE 1 Continued

tient 7
7)

Patient 8 (P8) Patient 9
(P9)

Patient 10
(P10)
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s Yes Yes Yes*
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tal defect,
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– Yes No‡

uroblastoma
)

Invasive ductal
breast carcinoma
(30y)

None as of
publication in
2020.

Malignant CNS
tumour NEC,
WHO grade 4
(13m)
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Yes – hyper-
sensitivity to
(epirubicin/
cyclophosph-amide
(haemato-toxicity)
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carboplatin
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astrocytoma and died shortly following decompressive

neurosurgery (64).

Following this, four patients (two pairs of siblings) with

homozygous BRCA1 nonsense mutations were identified by Seo

et al. – one pair with biallelic p.W372* mutations (P4 and P5,

Table 1) and the other pair with biallelic p.L431* mutations (P6 and

P7, Table 1) (32). These patients all presented with microcephaly,

microphthalmia, abnormally pigmented skin lesions, intellectual

disability and growth abnormalities (short stature or failure to

thrive), as well as elevated chromosomal sensitivity to DEB and/

or MMC. Interestingly, siblings P6/P7 presented with endocrine

and neuroanatomical anomalies, which are not observed in any

other FA-S patients to date and are not typical of FA. This may be a

result of their particular BRCA1mutation, or alternately caused by a

separate undiagnosed condition. Endocrine abnormalities are

common in FA, including growth hormone deficiency and

hypothyroidism, but CNS anomalies present in only around 8%

of FA cases (1). P4 and P7 developed childhood cancers, T-cell

acute lymphocytic leukaemia (ALL) and neuroblastoma

respectively. P7 responded normally to chemotherapy. However,

P4 responded poorly to chemotherapy, even with a reduced-dosage

regime. Although a haematotoxic response was not reported, P4

died soon after initiation of chemotherapy as a result of complex

infections (Table 1). This might be suggestive of severe

haematotoxicity and could represent a second patient in the

cohort with sensitivity to crosslinking chemotherapeutics. As of

an early 2020 follow-up, the status of patients P5-7 remains the

same as at the time of publication (personal correspondence, 2021).

Three further patients have since been identified (P8, P9 and

P10, Table 1). P8 was a compound heterozygote with two

pathogenic BRCA1 mutations (33) – one high penetrance

(p.C61G) (45) and one conferring intermediate risk (p. R1699Q)

(59). P8 has congenital abnormalities consistent with previously

identified FA-S patients, an early breast cancer (age 30), and had a

haematotoxic response to crosslinking chemotherapeutics.

Surprisingly, P8 did not exhibit DEB-induced chromosomal

instability, and it is therefore disputable whether she should be

considered a canonical FA-S patient. However, she is included here

due to the burden of FA-S-associated clinical signs and lack of

MMC testing. P8 does appear to have the mildest phenotype of FA-

S patients (and is the oldest surviving FA-S patient to-date), but

should certainly be distinguished from classical HBOC (BRCA1)

patients on account of the congenital abnormalities, sensitivity to

crosslinking chemotherapeutics, and presence of two pathogenic

mutations in trans. P9 is the second male patient to be identified

with FA-S (34), and is a compound heterozygote with two

pathogenic truncating BRCA1 mutations in trans: p.S282Yfs*15

and p.Y978*. He presented with a phenotype similar to previous

FA-S patients (growth restriction, multiple dysmorphic facial

features and skin pigmentation) and exhibits chromosomal

sensitivity to DEB and MMC, but no malignancy has been reported.

The most recently identified FA-S patient, P10, was a female

compound heterozygote with a pathogenic mutation p.W372*, in

trans with a p.H1673del mutation (35); the p.W372* mutation

being the same as P4/5, and also reported as HBOC-associated (46).

Genetic analysis strongly supports the view that p.H1673del is a
T
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pathogenic mutation, with association with an ovarian-

predominant HBOC presentation in heterozygotes, loss of

heterozygosity (LOH) in breast/ovarian cancers, and segregation

with affected individuals in families (55). In silico modelling

predicted an effect on BARD1 binding to the BRCT region, and

multifactorial likelihood calculation gave a very high ratio in favour
Frontiers in Oncology 07
of causality (Table 3). P10 presented with multiple dysmorphic

features including laryngotracheomalacia, abnormally pigmented

skin lesions, distal skeletal abnormalities, and growth abnormalities.

She developed a malignant CNS tumour (not elsewhere classified,

WHO grade 4) at 13 months, and died 6 weeks later following a

palliative approach to treatment because of rapid tumour

progression of the tumour. Although there was no evidence of

increased MMC-induced chromosome breakage in lymphocytes,

stimulation resulted in strongly reduced proliferation. Despite

compound heterozygosity, P10 had a severe phenotype (in terms

of both dysmorphisms and an early childhood cancer) aligning

more closely with the homozygous patients described so far.
Biallelic BRCA1 mutations without FA-like
disorder

At least three individuals (PN1-N3, Table 2) have been reported

with biallelic BRCA1 mutations without an FA phenotype. PN1 has

a homozygous spliceogenic variant predicted to be highly

deleterious, however PN1 has no clinical features consistent with

FA or HBOC (BRCA1), suggesting that this variant is likely benign

(36). PN2 has a homozygous missense mutation (p.R1028C)

predicted to be ‘ l ikely benign ’ and has no congenital

abnormalities – although chronic lymphocytic leukaemia and

breast cancer were reported, suggesting a possible HBOC

(BRCA1) phenotype (37). PN3 is a compound heterozygote with

breast/ovarian cancers before age 50, but no congenital anomalies –

a phenotype more consistent with HBOC (BRCA1) than FA (38).

One allele is a known pathogenic mutation (p.N1355Yfs*10), co-

occurring with a splice site variant with complex interpretation

(p.D1778Gfs*27, Table 3). The sister of PN3 (p.D1778Gfs*27

heterozygote) had breast/ovarian cancers at around 10 years older

than the age PN3 developed cancer, possibly suggesting a worsened

HBOC (BRCA1) phenotype due to compound heterozygosity.
Discussion

The emergence of a cohort of patients with pathogenic biallelic

BRCA1mutations and an FA-like phenotype offers insights into the

developmental role of BRCA1, as well as broadening the definition

of the FA phenotype. There are a number of outstanding questions

regarding the underlying biochemistry and pathophysiology of FA-

S, as well as a lack of guidance for optimal clinical management.

These are likely to be addressed as additional FA-S patients are

identified – FA-S may be underreported currently, as FA panels do

not typically screen for BRCA1.

It is therefore important that patients with very early breast/

ovarian cancer and congenital abnormalities, as well as patients

with an FA-like phenotype (particularly in the absence of BMF), are

screened for biallelic BRCA1 mutations. Prior to genotyping, many

of the FA-S patients described here were investigated for differential

diagnoses to explain observed chromosome instability. These

include Dubowitz syndrome, non-specific FA, Nijmegen breakage

syndrome (NBS), Bloom syndrome and ataxia telangiectasia (AT)
TABLE 2 Individuals reported to have biallelic BRCA1 mutations without
any FA-like phenotype: clinical characteristics and genetic information.

Patient N1
(PN1)

Patient
N2 (PN2)

Patient N3
(PN3)

BRCA1 protein
product

N/A, intronic
mutation
(spliceogenic
variant)
c.4096 + 3A>G
homozygote

p.R1028C
homozygote

p.N1355Yfs*10/
p.D1778Gfs*27

Karyotype &
sex

46 XX (female) 46 XX
(female)

46 XX (female)

Relations to
other patients

None None None

Age at last
follow up

58y 62y 47y (deceased)

Growth Normal height – Normal height

Dysmorphisms/
diagnoses

Single café-au-
lait macule

Large uterine
polyp

Atrophic left kidney,
pelvic stone, possible
renal vein thrombus

Intellectual
disability

No – –

Malignancy None Chronic
lymphocytic
leukaemia
(48y), lobular
carcinoma in
situ (LIN2)
(62y)

Stage IIIA serous
ovarian
adenocarcinoma
(43y), invasive ductal
breast carcinoma
(44y)

Sensitivity to
chemotherapy

– No – tolerated
chemotherapy
normally

No – no
hypersensitivity to
carboplatin was noted,
although response to
chemotherapy was
generally poor and
progression to 4th line
therapy was required

Family
malignancy
history

Breast and
ovarian cancer
in 2nd–4th
degree relatives

Breast cancer
in 1st-3rd
degree
relatives.
Leukaemia in
1st degree
relative

Breast, ovarian and
cervical cancer in 1st
degree relatives

Bone marrow
failure

No No No

Chromosomal
breakage

No (undefined
test)

No (DEB
induced)

–

Reference Byrjalsen et al.,
2017 (36)

Bondavalli
et al., 2017
(37)

Kwong et al., 2021
(38)
DEB, diepoxybutane; –, not reported.
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TABLE 3 Detailed information regarding mutations found in individuals with biallelic BRCA1 mutations.

BRCA1
Protein

BRCA1
Transcript

Patient &
context

ClinVar
ID

Clinvar
analysis

Functional consequence
of mutation

HBOC-
associated?

Proposed
viability
mechanism

p.C61G c.181T>G P8 compound
heterozygous with
c.5096G>A in trans

17661 Pathogenic Missense mutation resulting in loss
of function, alters Zn2+-binding
residue (42, 43), prevents interaction
with BAP1 (BRCA1 associated
protein-1) (44).

Yes (45, 46) Combination of
this deleterious
allele with
hypomorphic
allele.

p.S198R
fs*35

c.594_597del P2 compound
heterozygous with
c.5095C>T in trans

209105 Likely
pathogenic

Frameshift: predicted to result in
premature termination within exon
11 (p.233X). However, this mutation
occurs in an exon that is absent in
the predominant, in-frame, naturally
occurring isoform D9,10 and may be
spliced out to produce a partially
functional protein (47). RT-PCR
analysis suggested increased
nonsense-mediated mRNA decay.
LOH analysis on genomic DNA
from P2’s tumour showed no LOH
at either BRCA1 allele – suggesting
that both mutated alleles are
dysfunctional (30).

Yes (46) but risk
likely to be
reduced
compared with
high penetrance
mutations. High
incidence of
breast/ovarian
cancer in
relatives with
mutation (30).

Combination of
this
hypomorphic
allele with
deleterious
allele, partial
rescue of this
allele by D9,10
isoform.

p.S282Y
fs*15

c.843_846del P9 compound
heterozygous with
c.2933dupA in trans

17683 Pathogenic Frameshift: predicted to result in
premature termination within exon
11 (p.297X), causing loss of protein
function through truncation or
nonsense-mediated mRNA decay
(48). This variant lies 3’ to
alternative donor splice site in exon
11 at c.787 so would be deleted from
the D11q minor transcript, which
should be unaffected (32, 49).

Yes (46, 48, 50) p.Y978* and
p.S282Yfs*15
variants both lie
3’ to the splice
site, hence two
copies of the
D11q minor
transcript would
likely be present
(32, 49).

p.W372* c.1115G>A P4 and P5,
homozygous, P10
compound
heterozygous with
c.5017_5019del in
trans

54134 Pathogenic Nonsense mutation predicted to
cause truncation or total absence of
the protein due to nonsense
mediated decay. This variant lies 3’
to alternative donor splice site in
exon 11 at c.787 so would be deleted
from the D11q minor transcript,
which should be unaffected (32, 49)

Yes (46) In P4/5,
homozygous
truncating
variant lies 3’ to
the splice site,
hence two
copies of the
D11q minor
transcript would
likely be present.
In P10, one
copy of the
D11q minor
transcript would
likely be present,
in trans with
p.H1673del (32,
49).

p.L431* c.1292T>G P6 and P7,
homozygous

54187 Pathogenic Nonsense mutation predicted to
cause truncation or total absence of
the protein due to nonsense
mediated decay. This variant lies 3’
to alternative donor splice site in
exon 11 at c.787 so would be deleted
from the D11q minor transcript,
which should be unaffected (32, 49).

Yes (46) Homozygous
truncating
variant lies 3’ to
the splice site,
hence the D11q
minor transcript
would likely be
present (32, 49).

p.D821I
fs*25

c.2457delC P1 compound
heterozygous with
c.2457delC in trans.
BRCA2 p.R324T
mutation (VUS)

37471 Pathogenic Frameshift: predicted to result in
premature termination (p.846X),
causing loss of protein function
through truncation or nonsense-
mediated mRNA decay.

Yes (46) Combination of
this deleterious
allele with
hypomorphic
allele, partial
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TABLE 3 Continued

BRCA1
Protein

BRCA1
Transcript

Patient &
context

ClinVar
ID

Clinvar
analysis

Functional consequence
of mutation

HBOC-
associated?

Proposed
viability
mechanism

rescue of other
allele by D11q
isoform.

p.C903* c.2709T>A P3 homozygous 495221 Pathogenic Nonsense mutation predicted to
cause truncation or total absence of
the protein due to nonsense
mediated decay. This variant lies 3’
to alternative donor splice site in
exon 11 at c.787 so would be deleted
from the D11q minor transcript,
which should be unaffected (32, 49).

Not reported Homozygous
truncating
variant lies 3’ to
c.787 splice site,
hence the D11q
minor transcript
would likely be
present (32, 49).

p.Y978* c.2933dupA P9 compound
heterozygous with
c.843_846del in trans

236270 Pathogenic Nonsense mutation predicted to
cause truncation or total absence of
the protein due to nonsense
mediated decay. This variant lies 3’
to alternative donor splice site in
exon 11 at c.787 so would be deleted
from the D11q minor transcript,
which should be unaffected (32, 49).

Reported for a
variant resulting
in the same
protein product
(50)

Y978* and
p.S282Yfs*15
variants both lie
3’ to the c.787
splice site, hence
two copies of
the D11q minor
transcript would
likely be present
(32, 49).

p.R1028C c.3082C>T PN2 homozygous 37506 Likely
benign

Missense mutation within exon 11,
in silico models and clinical data
predict this mutation to be benign
(37).

Not reported to
confer
significant risk
(51)

Homozygosity
for a missense
VUS.

p.N1355Y
fs*10

c.4065_4068del PN3 compound
heterozygous with
c.5406 + 7A>G in
trans

17674 Pathogenic Frameshift: predicted to result in
premature termination within exon
11 (p.1365X), causing loss of protein
function through truncation or
nonsense-mediated mRNA decay.

Yes (46) Combination of
this deleterious
allele with VUS,
partial rescue of
this allele by
D11q isoform.

N/A c.4096 + 3A>G PN1 homozygous 37566 Uncertain
significance

Spliceogenic variant located close to
exon 11 donor splice site. In silico
analysis predicts deleterious effect
(destruction of the donor splice site)
(36). In vitro RT-PCR demonstrates
increase in D11 isoform and deletion
of D3309nt 3′ of exon 11, with some
normal residual transcript (52).
Reported to display classical
pathogenic characteristics whilst
allowing homozygous viability (53).

Yes, reported as
a Finnish
founder
pathogenic
variant (54),
pathogenicity is
contested

Homozygosity
for a missense
VUS.

p.H1673del c.5017_5019del
(also known as
5136delCAC)

P10 compound
heterozygous with
c.1115G>A in trans

55355 Likely
pathogenic

In-frame deletion of 3 nucleotides
resulting in deletion of a histidine
residue but preserves reading frame.
In silico analysis shows that H1673 is
in the BRCT domain predicted to
interact with the BRCT domain of
BARD1. Variant is absent in human
variation databases. Loss of BRCA1
WT-allele in 6 ovarian cancers and 2
breast cancers. 2,263,474:1 in favour
of causality using Goldgar
multifactorial likelihood method
(55).

Yes, reported in
ovarian & breast
cancers in 14
Italian families,
segregates with
disease in
related
individuals (55).

Compound
heterozygosity
with p.W372*
variant which
lies 3’ to the
c.787 splice site,
hence one
unaffected copy
of the D11q
minor transcript
would likely be
present (32, 49).

p.R1699W c.5095C>T P2 compound
heterozygous with
c.594_597del in trans

55396 Pathogenic Missense mutation. Disrupts binding
and transcriptional activity of
BRCA1 (56).

Yes (46, 57) Combination of
this deleterious
allele with
hypomorphic
allele, partial
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(34, 65). NBS, Bloom syndrome and AT are chromosome instability

syndromes resulting in cancer predisposition and congenital

anomalies, however immunodeficiency is usually present in these

cases (unlike in FA) (1, 65). Given the phenotypic variability of FA-

S, patients with atypical presentation of these conditions who have

not been genetically diagnosed should be considered for BRCA1

testing. Furthermore, the emergence of FA-S as a clinical syndrome
Frontiers in Oncology 10
may have implications for genetic counselling in families with

HBOC (BRCA1). Currently, there is no clear boundary between

FA-S and BRCA1-associated hereditary breast and ovarian cancer

(HBOC), as exemplified by PN2-3 and P8. These patients are harder

to categorise as they have breast and/or ovarian cancer but no

evidence of increased chromosomal breakage and minimal

dysmorphisms. Present ly , these cases are segregated
TABLE 3 Continued

BRCA1
Protein

BRCA1
Transcript

Patient &
context

ClinVar
ID

Clinvar
analysis

Functional consequence
of mutation

HBOC-
associated?

Proposed
viability
mechanism

rescue of other
allele by D9,10
isoform.

p.R1699Q c.5096G>A P8 compound
heterozygous with
c.181T>G in trans

37636 Pathogenic Missense mutation. Decreases
transactivation compared to WT in
mammalian cells (56). Reduces
embryonic stem cell survival,
upregulates microRNA-155
(upregulated in many human
cancers, WT BRCA1 downregulates
microRNA-155) (58).

Yes, confers
intermediate
breast and
ovarian cancer
risk (59)

Combination of
this
hypomorphic
allele with
deleterious
allele.

p.V1736A c.5207T>C P1 compound
heterozygous with
c.2457delC in trans.
BRCA2 p.R324T
mutation (VUS)

37648 Pathogenic Missense mutation resulting in loss
of function, according to saturation
genome editing assay, predicted to
result in a hypomorphic allele (60).
p.V1736A is within the first BRCT
domain of BRCA1, a phospho-
peptide recognition domain needed
for binding to phosphorylated repair
proteins. p.V1736A BRCT fragments
demonstrated decreased localisation
to DSB and reduced interaction with
BRCA1-interacting protein RAP80
(29). LOH analysis of tumours with
this variant demonstrated persistence
of the mutated allele (in the ovarian
tumour of P1 there was no LOH,
suggesting that no selective pressure
to lose either allele). The p.V1736A
positive side of the family (maternal)
displayed a pedigree consistent with
HBOC (BRCA1), including
individuals with: ovarian cancer age
<60, ovarian and bilateral breast
cancer, peritoneal cancer (all
p.V1736A positive and p.846X
negative)†. Additionally, mouse
studies have demonstrated that
homozygous mutations in the BRCT
regions yield viable animals with
increased cancer risk (61).

Yes, including
multiple family
members, but
risk is likely to
be reduced
compared with
high penetrance
mutations as
allele is
hypomorphic
(29). 11
additional
families with
heterozygous
p.V1736A
mutations have
been identified,
combined odds
ratio for
pathogenicity
found to be
234:1 (29)

Combination of
this
hypomorphic
allele with
deleterious
allele, partial
rescue of this
allele by D11q
isoform.

p.D1778G
fs*27

c.5406 + 7A>G PN3 compound
heterozygous with
c.4065_4068delTCAA
in trans.

55566
(cDNA
variant),
993167
(protein
variant)

Likely
benign
(cDNA
variant).
Pathogenic
(74bp del
resulting in
protein
variant)

Splice site variant in intron 22,
frameshift mutation, allele predicted
to be functional by saturation
genome editing (60). PN3 found to
have deletion of 74 nucleotides
(r.5333_5406del74) resulting in the
pathogenic protein product, which
causes frameshift termination and
deletion of exon 22 (38).

Yes (38),
including sister
of PN3.

Combination of
this VUS with
deleterious
allele, partial
rescue of other
allele by D11q
isoform.
HBOC, hereditary breast and ovarian cancer; LOH, loss of heterozygosity; VUS, variant of unknown significance; RT-PCR, Reverse transcription polymerase chain reaction; UTR, untranslated
region; DSB, double-strand breaks; WT, wild-type; del, deletion; fs, frameshift. ClinVar: https://www.ncbi.nlm.nih.gov/clinvar/.
†The BRCA2 VUS p.R324T appears on this side of the family but does not appear to segregate with disease – the individual with ovarian and bilateral breast cancer is BRCA2 p.R324T negative,
supporting the view that it may not be of clinical significance (29).
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predominantly by their underlying genetics as well as the

pheno typ i c s ev e r i t y ( ag e o f c ance r , s en s i t i v i t y t o

chemotherapeutics and congenital dysmorphisms), however,

future study of the functional consequences of these mutations

may lead to recategorization. P8 and PN3 are the most borderline

cases in terms of both genotype and phenotype and both cases

underline that these conditions lie on a continuous spectrum of

clinical disease.

One controversy regarding FA-S was the expected lethality of

biallelic BRCA1 mutations. The mutations found in this cohort are

described in detail in Table 3, including evidence for functional

consequences of these mutations, associations with disease in the

heterozygous setting (HBOC), and proposed viability mechanisms

in these patients. Within the main cohort P1-10, nine out of ten

have at least one mutation that could be partially rescued by

alternative splicing. One of these (P2) may be rescued by the

presence of the naturally occurring D9,10 isoform. The remaining

eight (P1, P3-7, P9-10) each have at least one mutation that may be

rescued by the D11q isoform, as proposed by Seo et al., in reference

to the homozygous mutations seen in P3-P7 (31, 32). All of the

mutations seen in P3-7 lie within, or 3’ of, an alternatively-spliced

region, hence allowing unaffected translation of a naturally

occurring minor transcript – D11q (Figure 2). D11q is

approximately 40% the length of full-length BRCA1 and consists

of normal 5’ and 3’ untranslated regions with truncated exon 11

(c.788_4096del), retaining the reading frame and yielding a

shortened, but par t ia l ly funct ional , prote in isoform

(p.263_1365del) (32, 49). The D11q isoform has also been shown

to underlie a mechanism of resistance to PARP inhibitors and

cisplatin in the management of BRCA1 mutated cancers (49). D11q
isoforms were significantly enriched in fibroblasts from P5 relative

to full-length transcripts (compared with control fibroblasts), as a

result of nonsense-mediated decay (NMD) of the full-length

transcript (32). PN1 and PN2 also have homozygous BRCA1

mutations within the truncated region of exon 11, that could

therefore be partially rescued by alternative splicing. However,

these may simply be non-pathogenic mutations - the mutation
Frontiers in Oncology 11
found in PN1 is a spliceogenic VUS with contested pathogenicity,

and the mutation in PN2 is not reported to confer significant risk in

a heterozygous setting and predicted to be benign. Hence, PN1 and

PN2 are not included in the main cohort here – although PN2 could

be considered to have an HBOC-like phenotype.

With regards to compound heterozygous BRCA1 mutations in

FA-S patients, most appear to be compatible to life because a

hypomorphic missense allele co-occurs with a highly deleterious

allele (P1, P2 and P8) hence enough function is retained to enable

embryonic survival (29, 30). Previously, it has been considered that

the co-occurrence of a VUS in trans with a known pathogenic

BRCA1 mutation suggests that the VUS must be benign (68),

however the existence of these FA-S patients with viable biallelic

mutations challenges this view and has significant implications for

how BRCA1 VUS are interpreted. The hypomorphic variants found

in trans with highly deleterious mutations in FA-S compound

heterozygotes likely confer reduced HBOC risk in a heterozygous

setting, as has been suggested for p.V1736A and p.S198Rfs*35 (30)

(Table 3). However, alternative splicing may also allow for viability

in these cases, as the hypomorphic alleles found in both P1 and P2

can be partially rescued by alternative splicing (D11q and D9,10
respectively). PN3 is a compound heterozygote with a known

deleterious allele in trans with a VUS, whereby the deleterious

allele is within the truncated region of exon 11 allowing for a normal

D11q isoform. PN3 can be confidently considered to have an

HBOC-like phenotype, however is not included in the FA-S

cohort due to the second mutation being a VUS with unclear

pathogenicity, and an overall lower burden of disease compared

with P1-10.

P8 is the only case where neither mutation is rescuable by

alternative splicing. Despite this, the phenotype of P8 is

unexpectedly mild, especially given the known deleterious

mutations present in both the RING domain and BRCT domain.

It is possible that an alternative rescue mechanism such as

interallelic complementation may provide the explanation for this

reduced severity phenotype. P8 is tentatively included in the main

cohort due to the presence of in trans pathogenic mutations
FIGURE 2

Schematic of full-length (1863 amino acid) BRCA1 protein, with c.787 alternative donor splice site and 11q region (66, 67). Alternative splicing at c.787
resulting in p.263_1365del from protein, D11q isoform. Mutations found in FA-S patients shown as red circles, mutations found in patients PN1-3
shown as yellow circles: x̂; missense, ⊘; frameshifts, ⊗; nonsense, ⊕; deletion. Associated proteins shown in blue at approximate points of
interaction with BRCA1. RING, zinc finger; NES, nuclear export signal; NLS, nuclear localization sequence; SCD, serine cluster domain; BRCT, BRCA1
C-terminal; P, phosphate.
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independently associated with HBOC when present in

heterozygotes, as well as mild congenital dysmorphisms,

sensitivity to chemotherapeutics and having a younger cancer and

overall higher severity phenotype compared with PN2-3.

In the case of P9, both variants result in premature termination,

however both are 3’ to the alternative donor splice site in exon 11,

likely preserving the D11q minor transcript. Follow-up with P9 will

ascertain whether his phenotype tends towards more severe (as in

homozygotes) or less severe (as in most other compound

heterozygotes). P10 is an interesting case, as one variant is a

truncating mutation 3’ to the splice site (allowing unaffected

translation of the D11q minor transcript as described above).

However, the other variant is downstream of exon 11 (exon 15)

so would be included in the D11q isoform, likely resulting in NMD

of the protein product of this allele. This might explain the severe

phenotype seen in P10, which is similar to the most severe

homozygotes, as only one allele can produce the partial rescue

provided by the D11q minor transcript. This is in contrast to

homozygotes, where both alleles are able to yield an unaffected

D11q isoform. Hence, a D11q gene dosage effect might underlie the

arguably more severe phenotypic presentation in P10 compared to

the patients with homozygous mutations.

An interesting observation from the FA-S cases is the presence

of breast and ovarian cancers within the cohort. Typically, females

with FA do not get breast/ovarian cancers – malignancies are

usually haematological (particularly acute myeloid leukaemia and

myelodysplastic syndrome) (13), with a smaller proportion of solid

(often embryonal) tumours (69), and a high incidence of squamous

cell carcinomas in FA patients who reach their third-fourth decade

of life (65). There are a number of suggested explanations; females

with typical FA tend to be hypogonadal with low serum estrogen

and reduced breast/ovarian tissue mass which may be protective

against breast/ovarian tumours (70, 71). Additionally, many

patients with FA die at a young age, before an age at which

breast/ovarian tumours are likely to develop (45% of individuals

with FA die from haematological complications before the age of

20) (71, 72). FA-S females may not be hypogonadal, as this was not

reported in any of the seven female cases. However, hypogonadism

in females is often not reported until teenage years with late

puberty, or in milder cases not until presentation of fertility issues.

However, it should be noted that only the female compound

heterozygous FA-S patients have presented with breast/ovarian

tumours. The female homozygous FA-S patients are all younger,

but 3/4 have presented with childhood cancers that align with a

more typical FA presentation (astrocytoma, acute lymphoblastic

leukaemia and neuroblastoma). P8, the patient with the mildest FA

phenotype, is the only FA-S patient reported to have given birth

(twin boys). It is unknown whether any fertility treatment was

required. All female homozygous FA-S patients are still too young

to have been expected to start puberty, and two have died as a result

of malignancies. It would be valuable to ascertain whether the

surviving female homozygotes (P5 and P7) present with symptoms

of hypogonadism. Further to this, given that the homozygous FA-S
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patients seem to present with a more severe phenotype and ‘FA-like’

cancers, it would be of interest to follow-up with P5 and P7 to

investigate whether they are later predisposed to breast/ovarian

cancers [as in HBOC (BRCA1)] or not (as in other FA types).

Male hypogonadism does appear to be a feature of FA-S: both

males in the cohort presented with cryptorchidism, P9 also with

micropenis and low anti-Müllerian hormone. Only 2/10 FA-S

patients identified thus far are male (and 0/3 of the non-FA-

patients PN1-PN3). With only 10 patients in total this is likely to

be coincidental, however possible explanations should be

considered in case this observation continues as further FA-S

cases are identified. One possibility is that FA-S males with

compound heterozygous mutations are at a lower cancer risk

than females (as compound heterozygous females seem to

develop breast/ovarian cancer) so therefore are not identified. It

can be expected that they would also have congenital abnormalities,

but in the absence of BMF or malignancy this could easily be

misdiagnosed. It is of note that the only male with a homozygous

BRCA1mutation (P6) remains cancer-free despite reaching his late-

teens – the oldest homozygous FA-S patient to do so. Another

plausible explanation for the relative lack of male FA-S patients

could relate to relative viability of male versus female embryos with

BRCA1 mutations. Sex ratio distortions (reduced proportion of

males) have been reported in the offspring of BRCA1 heterozygous

females (73, 74), although the presence/extent of this distortion is

disputed (75).

Another striking difference between FA-S patients and classical

FA is the absence of BMF, as well as the relative rarity of radial

anomalies (only seen in P2 and P6). Although BMF has been

considered a hallmark of Fanconi Anaemia, FA-S is not the only

type which does not exhibit it - case reports often refer to patients

with these presentations as having an ‘FA-like disorder’. Another

recently identified rare subtype, FA-O, appears to present similarly

to FA-S – including congenital dysmorphisms, sensitivity to

crosslinking agents, and without BMF, although only one

consanguineous family and one additional individual have been

identified (76, 77). In additional, with biallelic FANCM mutations

present with an HBOC-phenotype, alongside sensitivity to

chemotherapy and possible chromosomal sensitivity but without

BMF or congenital abnormalities leading to significant dispute

regarding the status of FANCM as a canonical FA protein, as

patients (78). Even among more common types of FA, the

presentation of BMF is variable – with estimated cumulative

incidence of BMF at 10 years ranging from 12.6%-84% depending

on predicted risk group (79).

Given that many combinations of deleterious BRCA1 mutations

are likely to be embryonically lethal (26), the FA-S phenotype appears

to be an intermediate between classical HBOC (BRCA1) and non-

viability. The phenotypic spectrum of BRCA1 mutations stretches

from subclinical benign monoallelic mutations through to pathogenic

homozygous mutations resulting in nonviability of embryos, with

some patients blurring the lines between FA-S and HBOC (BRCA1)

(Figure 3). From the patient data available, it appears that
frontiersin.or
g

https://doi.org/10.3389/fonc.2023.1278004
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hughes and Rose 10.3389/fonc.2023.1278004
homozygous mutations tend to result in a more severe FA-like

phenotype, whereas compound heterozygosity results in a severe

HBOC-like cancer phenotype along with congenital abnormalities.

The D11q isoform appears to be a key mechanism for survival of

biallelic BRCA1 mutations particularly in a homozygous setting, and

it is plausible that other splice variants may be subsequently found to

provide alternative survival mechanisms.
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FIGURE 3

Proposed phenotypic spectrum of BRCA1 mutations (67). ‘Sensitivity to cross-linking chemotherapeutics’ is a non-ubiquitous presentation among
FA-S patients. *; ALL, neuroblastoma and astrocytoma are the three most frequent cancers in children (80). ^; short stature, microcephaly, head/
facial dysmorphisms, pigmented skin lesions and intellectual disability. †; two highly deleterious alleles likely result in non-viability, for viability it
appears that at least one partially functioning allele is required (or functioning splice variants of at least one allele). ‡; many homozygous pathogenic
variants are likely to be non-viable, splice variants may account for viability.
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