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Background: Liver cancer, especially hepatocellular carcinoma (HCC), remains a

significant global health challenge. Traditional prognostic indicators for HCC

often fall short in providing comprehensive insights for individualized treatment.

The integration of genomics and radiomics offers a promising avenue for

enhancing the precision of HCC diagnosis and prognosis.

Methods: From the Cancer Genome Atlas (TCGA) database, we categorized

mRNA of HCC patients by Forkhead Box M1 (FOXM1) expression and performed

univariate and multivariate studies to pinpoint autonomous HCC risk factors. We

deployed subgroup, correlation, and interaction analyses to probe FOXM1’s link

with clinicopathological elements. The connection between FOXM1 and

immune cells was evaluated using the CIBERSORTx database. The functions of

FOXM1 were investigated through analyses of Gene Ontology (GO) and the

Kyoto Encyclopedia of Genes and Genomes (KEGG). After filtering through TCGA

and the Cancer Imaging Archive (TCIA) database, we employed dual-region

computed tomography (CT) radiomics technology to noninvasively predict the

mRNA expression of FOXM1 in HCC tissues. Radiomic features were extracted

from both tumoral and peritumoral regions, and a radiomics score (RS) was

derived. The performance and robustness of the constructed models were

evaluated using 10-fold cross-validation. A radiomics nomogram was

developed by incorporating RS and clinical variables from the TCGA database.

The models’ discriminative abilities were assessed using metrics such as the area

under the curve (AUC) of the receiver operating characteristic curves (ROC) and

precision-recall (PR) curves.

Results:Our findings emphasized the overexpression of FOXM1 as a determinant

of poor prognosis in HCC and illustrated its impact on immune cell infiltration.

After selecting arterial phase CT, we chose 7 whole-tumor features and 3

features covering both the tumor and its surroundings to create WT and WP
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models for FOXM1 prediction. The WT model showed strong predictive

capabilities for FOXM1 expression by PR curve. Conversely, the WP model did

not demonstrate the good predictive ability. In our study, the radiomics score

(RS) was derived from whole-tumor regions on CT images. The RS was

significantly associated with FOXM1 expression, with an AUC of 0.918 in the

training cohort and 0.837 in the validation cohort. Furthermore, the RS was

correlated with oxidative stress genes andwas integrated with clinical variables to

develop a nomogram, which demonstrated good calibration and discrimination

in predicting 12-, 36-, and 60-month survival probabilities. Additionally,

bioinformatics analysis revealed FOXM1’s potential role in shaping the immune

microenvironment, with its expression linked to immune cell infiltration.

Conclusion: This study highlights the potential of integrating FOXM1 expression

and radiomics in understanding HCC’s complexity. Our approach offers a new

perspective in utilizing radiomics for non-invasive tumor characterization and

suggests its potential in providing insights into molecular profiles. Further

research is needed to validate these findings and explore their clinical

implications in HCC management.
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1 Introduction

Liver cancer stands as a formidable global health challenge,

being the sixth most prevalent tumor and the third leading cause of

cancer-related mortality worldwide (1). Hepatocellular carcinoma

(HCC), which constitutes 75%-85% of primary liver cancer cases, is

particularly concerning (2). Despite the availability of diverse

treatment modalities for HCC, including hepatic resection, liver

transplantation, ablation, targeted therapy, and combination

therapies, postoperative recurrence remains a daunting obstacle,

largely attributed to HCC’s intricate pathological underpinnings

(3). Traditional prognostic markers for HCC encompass

clinicopathological traits, diagnostic laboratory markers like

alpha-fetoprotein (AFP), and imaging techniques such as

computed tomography (CT), magnetic resonance imaging (MRI),

and ultrasound (4, 5). However, these markers often fall short in

guiding individualized precision treatment. Consequently, there’s a

pressing clinical need to unearth novel prognostic indicators,

leveraging cutting-edge technologies like genomics, proteomics,

and radiomics.

Genetic research plays a pivotal role in deciphering the

architecture and functionality of living organisms and has been

widely utilized across diverse medical domains. It has been applied

in diverse clinical areas, encompassing clinical diagnostics,

pharmaceutical advancement, and disease prediction (6–9). The

Forkhead Box M1 (FOXM1) gene, pivotal in orchestrating cell cycle

gene expression, is indispensable for DNA replication and mitosis

(10). It’s intricately involved in cell proliferation, DNA damage
02
repair, checkpoint responses, liver regeneration, and oxidative stress

management (11–13). Analyses of gene expression profiles in HCC

patients have pinpointed an overexpression of FOXM1 as a

harbinger of poor HCC prognosis (14). Gadolinium ethoxybenzyl

diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) serves as a

liver-specific MRI contrast agent, and its hepatic uptake offers

insights into the functional status of hepatocytes. According to

research, decreased uptake of Gd-EOB-DTPA and elevated serum

AFP levels have been linked to activation of the oncogene FOXM1

and poorer prognosis (15). Therefore, FOXM1 has emerged as a

pivotal gene garnering our attention.

Radiomics, a burgeoning non-invasive diagnostic modality,

facilitates dynamic tumor monitoring by mining high-

dimensional, quantitative metric features from medical images

(16–18). Its potential shines especially bright in oncology, given

the unique hemodynamic and metabolic signatures tumors exhibit

(19). Recent studies underscore the diagnostic and predictive

prowess of radiomics, especially when analyzing both tumoral

and peritumoral regions in HCC, offering insights into the tumor

microenvironment (18, 20, 21). Moreover, radiomics holds promise

in pre-surgically forecasting gene expression, a capability that could

revolutionize preoperative prognostic evaluations and therapeutic

decision-making in cancer patients (22).

In light of the above, our study pioneers a novel strategy to non-

invasively forecast FOXM1 mRNA expression in HCC tissues via

dual-region CT radiomics. We aim to discern the relationship

between our radiomics model and patient prognosis, and harness

bioinformatics to shed light on the molecular mechanisms tethering
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FOXM1 expression to the immune microenvironment. A PubMed

search with the keywords ‘radiomics ’ , ‘liver cancer ’ or

‘hepatocellular carcinoma’, and ‘FOXM1’ yielded no pertinent

studies, underscoring the groundbreaking nature of our

research endeavor.
2 Methods

2.1 Data acquisition and preprocessing

The study’s workflow is depicted in Figure 1. Initially, a cohort

of 377 HCC patients was sourced from the Cancer Genome Atlas

Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset (https://

portal.gdc.cancer.gov/). To ensure the reliability and relevance of

the data, we applied several exclusion criteria:
Fron
(1) Absence of survival status information (n = 1).

(2) Unavailability of overall survival (OS) time or an OS time of

less than 30 days (n = 28).

(3) Missing crucial variables such as stage, grade, and tumor

residue status (n = 41).

(4) Primary medical diagnosis not being HCC (n = 13).
tiers in Oncology 03
After applying these criteria, the cohort was narrowed down to

294 patients. Out of these, 286 patients with overlapping clinical

and genetic data in the TCGA-LIHC database were earmarked for

bioinformatics analysis.

For the radiomics analysis, 75 sets of medical imaging data were

obtained from the Cancer Imaging Archive (TCIA: https://

www.cancerimagingarchive.net/). The primary selection criterion

was the availability of arterial phase enhanced CT data. Patients

with either poor-quality images or postoperative images were

excluded (n = 34). After cross-referencing with the TCGA-LIHC

dataset, a total of 35 patients were retained for the radiomics

analysis. To ensure consistency in the radiomic analysis, the

selected CT images underwent normalization to achieve uniform

intensity values. Regions of interest (ROIs) were delineated to

encompass both the whole-tumor and the peritumoral regions.

Experienced radiologists reviewed the segmented images to

ensure accuracy.
2.2 FOXM1 expression analysis

To investigate the differential mRNA expression levels of

FOXM1 between tumor tissues and their adjacent counterparts,

we sourced the gene expression data in the HTSeq-FPKM
frontiersin.org
FIGURE 1

Study Design and Workflow. The flowchart outlined the research process, starting with the initial cohort of 286 TCGA-LIHC patients subjected to
bioinformatics analysis. An intersection with the TCIA database yielded a subset of 35 patients, who were then analyzed using radiomics techniques.
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(Fragments Per Kilobase of transcript per Million mapped reads)

format from the TCGA-LIHC dataset. This data was then converted

from HTSeq-FPKM format to TPM (transcripts per million reads)

format to ensure a more accurate representation of gene expression.

Following this, a log2 transformation was applied to the TPM data

to stabilize the variance and make the data more amenable to

statistical analysis. Utilizing the “ggplot2” package in R, we visually

represented the disparities in FOXM1 expression between tumor

and adjacent tissues, aiming to elucidate the potential role of

FOXM1 in hepatocellular carcinoma progression.
2.3 Survival analysis

To discern the influence of FOXM1 expression on the OS

outcomes of HCC patients, we employed the Kaplan–Meier

method. The log-rank test was applied to determine the statistical

significance of the differences in survival curves. Both of these

analyses were conducted using the “survival” package in R. The

median survival time, representing the time point at which 50% of

the patient population remains alive, was computed, and the

corresponding point survival rates were derived. To provide a

comprehensive and visually interpretable representation of

these results, we utilized the “survminer” package in R, which

facilitated the summarization and visualization of the survival

analysis outcomes.
2.4 Univariate and multivariate Cox
regression analysis

To elucidate the relationship between FOXM1 expression,

clinicopathological factors, and survival outcomes in HCC

patients, both univariate and multivariate Cox regression analyses

were conducted. In the univariate analysis, each clinicopathological

factor, including age, gender, pathologic stage, tumor grade,

vascular invasion, residual tumor status, hepatic inflammation,

AFP levels, along with FOXM1 expression levels, was individually

assessed for its association with survival outcomes. Following the

univariate analysis, variables that demonstrated a p-value less than

0.05 were incorporated into the multivariate Cox regression analysis

to determine their independent prognostic significance. In this

context, a hazard ratio (HR) value greater than 1 indicated that

the variable was a risk factor for poor survival, while an HR value

less than 1 suggested its role as a protective factor. All statistical

analyses related to the Cox regression were executed using the

“survival” package in R, and the results were visualized using the

“forestplot” package.
2.5 Subgroup stratification and
interaction analysis

To delve deeper into the nuanced effects of FOXM1 on patient

prognosis across various clinical subgroups, an exploratory

subgroup analysis was undertaken. This stratification aimed to
Frontiers in Oncology 04
discern whether the prognostic significance of FOXM1 expression

varied across different patient categories, such as those defined by

age, gender, pathologic stage, tumor grade, vascular invasion, and

other pertinent clinicopathological factors. The univariate Cox

regression model was employed for each subgroup to evaluate the

association between FOXM1 expression and survival outcomes.

Furthermore, to ascertain potential interactions between FOXM1

and other covariates, a likelihood ratio test was conducted. This

interaction analysis provided insights into whether the effect of

FOXM1 on prognosis was modified by the presence of other

variables. All statistical computations for the subgroup and

interaction analyses were executed using the “cmprsk”, “survival”,

and “forestplot” packages in R.
2.6 Immune cell infiltration analysis in
relation to FOXM1 expression

To gain a comprehensive understanding of the tumor

microenvironment in relation to FOXM1 expression, we employed

the CIBERSORTx database (https://cibersortx.stanford.edu/). This

tool facilitated the estimation of the abundance of various immune

cell types within the tumor samples based on their gene expression

profiles. Specifically, we assessed the infiltration levels of a myriad of

immune cells, encompassing B cells, CD4+ T cells, naive CD4+ T

cells CD8+ T cells, naive CD8 cells, Tfh cells, Th1 cells, Th2 cells,

Th17 cells, Tregs, Tr1 cells, exhausted T cells, cytotoxic T cells,

macrophages, monocytes, NKT cells, NK cells, neutrophils, MAIT

cells, central memory T cells, effector memory T cells and dendritic

cells. Subsequently, we stratified the samples into high and low

FOXM1 expression groups to compare the immune cell infiltration

levels between them. This comparison was executed using the

“limma” package in R. For statistical significance, notations “***”,

“**”, and “*” were used to represent p-values of<0.001,<0.01, and

<0.05, respectively.
2.7 Differential gene expression and
enrichment analysis

To elucidate the biological implications of FOXM1 expression

in hepatocellular carcinoma, we embarked on a comprehensive

functional annotation of genes associated with differential FOXM1

expression. Leveraging the Gene Ontology (GO) analysis, we were

able to categorize these genes based on their functional attributes,

spanning across three main domains: biological process (BP),

molecular function (MF), and cellular component (CC). This

categorization aids in deciphering the broader biological context

and significance of these genes. Furthermore, to gain insights into

the potential pathways influenced by FOXM1, we turned to the

Kyoto Encyclopedia of Genes and Genomes (KEGG). For our study,

patients were stratified based on their FOXM1 expression levels,

and a subsequent functional enrichment analysis was conducted.

Utilizing the R package “clusterProfiler”, we identified the top 10

significantly enriched pathways for each of the GO domain (BP, CC,

and MF) and the top 30 for KEGG. Any GO term or KEGG
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pathway with a q-va lue less than 0 .05 was deemed

statistically significant.
2.8 Radiomic feature extraction
and analysis

For the radiomic analysis, ROIs were meticulously delineated

around the tumor lesions of 35 patients using the ITK-SNAP

software (3.6.0 version). This task was undertaken by two

seasoned radiologists, and they operated under a double-blind

protocol to ensure unbiased results. For a comprehensive feature

extraction, both whole-tumor (WT) radiomics features and whole-

tumor and peritumoral (WP) radiomics features were extracted.

The latter involved outlining an additional 3-mm peritumoral area

surrounding the tumor (Figure 2A). All images were recorded in the

Digital Medical Imaging and Communication (DICOM) format.

Prior to feature extraction, a crucial pre-processing step was

executed to harmonize the intensity levels across all CT images,

ensuring consistency. Subsequently, the DICOM images were fed

into the A.K. software (Artificial Intelligence Kit, Version 3.3.0, GE

Life Science, Institute of Precision Medicine) to extract the

radiomics features.

To ensure the reproducibility and reliability of the extracted

features, a Z-score normalization was applied: (z) = (x - m)/s, where
x is the given value, m is the mean, and s is the standard deviation.

This method aids in standardizing the intensity values of the

features. The R “caret” package was employed to standardize the

datasets from TCIA and TCGA.
Frontiers in Oncology 05
2.9 Feature selection and
predictive modeling

To predict FOXM1 expression using radiomics features, we

employed the maximum relevance minimum redundancy (mRMR)

algorithm. This method identifies pivotal features by assessing their

correlation with FOXM1 and inter-feature correlations. This

rigorous process ensured that only the most pertinent and

reproducible radiomics features were retained for subsequent

analyses. Post preliminary screening, a subset of significant

radiomics features was selected. Using these, a logistic regression

model was constructed, with feature selection further refined based

on the Akaike Information Criterion (AIC). Two models were

derived: WT Model from selected whole-tumor features and WP

Model from both whole-tumor and peritumoral features. Inter-

observer agreement of the extracted features was gauged using

inter-class correlation coefficients (ICCs). An ICC value ≥ 0.75

indicated good agreement, 0.51 to 0.74 signified moderate

agreement, and<0.50 represented poor agreement. The R

packages “mRMRe” and “stats” facilitated feature selection and

model construction and R packages “irr”.
2.10 Radiomics score derivation and
nomogram development

To delve deeper into the prognostic potential of radiomics, we

derived a radiomics score (RS) from the probability values predicted

by the WT model. A threshold of 0.550 was set as the cutoff to
A

B C

FIGURE 2

HCC CT Imaging Selection and Models Construction Based on the TCIA-LIHC Databases. (A) Selection of enhanced CT images in the arterial phase,
showcasing the whole-tumor and peritumoral Regions of Interest (ROIs). The peritumoral ROIs were derived from a 3 mm area beyond the lesion.
(B) Determination of FOXM1 expression using the minimum AIC rule, based on 7 imaging characteristics from the whole-tumor group. (C) FOXM1
expression determination using 3 imaging characteristics from both the whole-tumor and peritumoral groups.
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categorize patients. Spearman correlation analysis was employed to

discern the relationship between RS and oxidative stress genes. We

spotlighted the top 50 genes based on the absolute value of their

correlation coefficients, ensuring they also had a p-value below 0.05.

To enhance the prognostic precision, a nomogram was crafted. This

was achieved by amalgamating the RS with pertinent clinical

variables from the TCGA dataset, namely age, pathologic stage,

and hepatic inflammation. Leveraging the Cox regression model, we

formulated nomogram that could predict survival probabilities at

12, 36, and 60 months. For computational purposes, the R package

“survminer” facilitated the derivation of the RS. The “stats” package

aided in analyzing the association with oxidative stress genes, while

the “survival” package was instrumental in the survival analysis

related to RS.
2.11 Model performance and validation

The performance of the WT model, WP model, and the

nomogram was assessed across both training and validation

datasets using 10-fold cross-validation to minimize overfitting

and enhance the models’ generalizability. We evaluated the

models using key metrics such as accuracy (ACC), specificity

(SPE), sensitivity (SEN), positive predictive value (PPV), and

negative predictive value (NPV). Furthermore, the discriminative

abilities of the models were determined by computing the area

under the curve (AUC) of the receiver operating characteristic

(ROC) and precision-recall (PR) curves. The Brier score, which

quantifies the accuracy of probabilistic predictions, was also

determined for each model. To validate the calibration of the

models, we applied the Hosmer-Lemeshow goodness-of-fit test,

assessing the agreement between the predicted probabilities of

high FOXM1 expression and the observed outcomes. The clinical

utility of the models was further evaluated using decision curve

analysis (DCA), which quantified the net benefits at various

threshold probabilities. For computational procedures, we utilized

the R “pROC” package for ROC analysis and the “rms” package for

calibration curve plotting and the Hosmer-Lemeshow test. The

decision curve analysis was executed using the “dca.R” function.
2.12 Statistical analysis

To discern differences in FOXM1 expression between tumor

and adjacent tissues, the Wilcoxon rank sum test was employed.

The association between FOXM1 expression and clinical

pathological characteristics was probed using the Wilcoxon

signed-rank test, Kruskal-Wallis test, and logistic regression.

The relationship between FOXM1 and both RS and oxidative

stress genes was assessed via Spearman correlation analysis. The

Kaplan-Meier method was utilized to determine the prognostic

significance of FOXM1 expression and the constructed models.

The Cohen kappa coefficient was employed to gauge the

interobserver agreement in the assessment of imaging features.

AUC values were furnished with 95% confidence intervals (CIs)

and juxtaposed using Delong’s test. All statistical evaluations were
Frontiers in Oncology 06
executed using SPSS (version 28, IBM, Armonk, NY, USA) and R

software (version 4.3.0). For model evaluation, R packages

“pROC”, “measures”, “ResourceSelection”, and “modEvA” were

harnessed, while the “Irr” package facilitated the computation of

the ICC. A two-sided p-value less than 0.05 was deemed

statistically significant.
3 Results

3.1 Baseline characteristics and FOXM1
expression in HCC patients

To evaluate the differential expression of FOXM1 between

HCC and adjacent non-tumorous tissues, we sourced FOXM1

mRNA levels from the TCGA database. Our analysis revealed a

pronounced upregulation of FOXM1 mRNA in tumor samples

compared to the i r non- tumorous counte rpa r t s (P<

0.001) (Figure 3A).

We extracted clinicopathological data of LIHC patients from

the TCGA database, encompassing variables such as age, gender,

tumor stage, grade, vascular invasion, residual tumor status,

hepatic inflammation, and AFP levels. The distribution of

these clinical characteristics across low and high FOXM1

expression groups is detailed in Table 1. Notably, FOXM1

expression exhibited significant associations with age (P =

0.016), tumor stage (P = 0.009), grade (P = 0.008), vascular

invasion (P = 0.012), and hepatic inflammation (P = 0.001).

However, gender, residual tumor status, and AFP levels did not

show any significant variance between the FOXM1 expression

groups (P > 0.05). Kaplan-Meier survival curves underscored the

adverse prognostic implications of elevated FOXM1 expression,

with the high-expression group manifesting a notably

diminished survival trajectory (Figure 3B). Specifically, the

median survival duration was markedly shorter in the high

FOXM1 expression cohort (25.6 months) compared to their

low-expression counterparts (81.9 months).

Univariate Cox regression pinpointed FOXM1 as a potent risk

determinant for overall survival (OS) with an HR of 1.863 (95%

CI: 1.401-2.477, p<0.001). Other clinical parameters, including tumor

stage and residual tumor presence, also emerged as significant

predictors of OS. Subsequent multivariate analysis reaffirmed the

independent prognostic relevance of FOXM1 (HR=1.843, 95%

CI: 1.342-2.532, p<0.001), tumor stage, and residual tumor status

(Figure 3C). Subgroup evaluations revealed that high FOXM1

expression consistently portended poorer OS across various clinical

stratum, including age, gender, pathological stage, and tumor grade

(Figure 3D). Interaction assessments further corroborated that these

factors did not modulate the relationship between FOXM1

expression and patient survival outcomes (Figure 3E).

Subsequently, a correlation analysis was performed to investigate

the associations between FOXM1 expression and various

clinicopathological factors in HCC. FOXM1 expression

demonstrated significant correlations with age, tumor stage, tumor

grade, vascular invasion, hepatic inflammation, and AFP

levels (Figure 3F).
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Further correlation analyses were conducted to elucidate the

relationships between FOXM1 expression and a spectrum of

clinicopathological attributes in HCC. Significant correlations

emerged between FOXM1 expression and variables such as age,
Frontiers in Oncology 07
pathologic stage, tumor grade, vascular invasion, hepatic

inflammation, and AFP levels. In summation, our findings robustly

establish FOXM1 as a pivotal molecular marker, intricately linked

with the adverse clinical trajectory of HCC patients.
A B

D E

F

C

FIGURE 3

The Correlation Between FOXM1 and Clinicopathological Characteristics and Prognosis in the TCGA-LIHC Databases. (A) Elevated FOXM1 expression
in HCC compared to adjacent tissues. (B) Kaplan-Meier curve illustrating the association between high FOXM1 expression and poor prognosis.
(C) Univariate and multivariate Cox analyses identifying risk factors for prognosis. (D) Univariate Cox analysis assessing the impact of FOXM1 expression
levels on prognosis across different clinicopathological subgroups. (E) Cox analysis evaluating the influence of clinicopathological characteristics on the
relationship between FOXM1 expression and overall survival (OS). (F) Correlation matrix showcasing the relationship between FOXM1 expression and
various clinicopathological characteristics. Red indicates a positive correlation, while light green indicates a negative correlation.
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3.2 Immunological implications and
functional roles of FOXM1 in HCC

Changes in FOXM1 expression can influence the functionality

of the immune system, potentially driving the onset and progression

of liver cancer. To delve into the interplay between FOXM1

expression and immunity in HCC, we utilized the Immune Cell

Abundance Identifier (ImmuCellAI) algorithms and the

CIBERSORTx database to assess the relative proportions of

various immune cells in relation to FOXM1 expression levels.

Our findings highlighted a pronounced increase in monocyte cell

infiltration and a marked decrease in exhausted cells in the cohort

with diminished FOXM1 expression (P<0.01) (Figure 4A). This

suggests that elevated FOXM1 expression provides an
Frontiers in Oncology 08
immunosuppressive microenvironment for HCC. Notably, the

effector memory T cells were not included in Figure 4A due to

their negligible expression levels.

A profound understanding of gene functions is pivotal for

deciphering the tumor immunological microenvironment and the

intricate processes governing tumor cell growth, invasion, and

metastasis. To further elucidate the biological significance of the

FOXM1 gene in HCC, we embarked on a functional enrichment

analysis, encompassing both GO and KEGG enrichment, based on

TCGA data (Figures 4B, C). Our GO analysis, visualizing the top

10 significantly enriched pathways, revealed that the differentially

expressed genes (DEGs) in the FOXM1 high expression groups

were predominantly associated with molecular functions such as

cell adhesion molecule binding, protein serine kinase activity, and
TABLE 1 Comparing the clinicopathological characteristics of HCC patients in different FOXM1 expression groups.

Variables
Total
(n = 286)

Low
(n = 187)

High
(n = 99)

p

Age, n (%) 0.016

~59 138 (48) 80 (43) 58 (59)

60~ 148 (52) 107 (57) 41 (41)

Gender, n (%) 0.37

Female 90 (31) 55 (29) 35 (35)

Male 196 (69) 132 (71) 64 (65)

Pathologic_stage, n (%) 0.009

Stage I/II 213 (74) 149 (80) 64 (65)

Stage III/IV 73 (26) 38 (20) 35 (35)

Tumor_grade, n (%) 0.008

G1/G2 176 (62) 126 (67) 50 (51)

G3/G4 110 (38) 61 (33) 49 (49)

Vascular_invasion, n (%) 0.012

None 160 (56) 112 (60) 48 (48)

Micro/Macro 86 (30) 57 (30) 29 (29)

Unknown 40 (14) 18 (10) 22 (22)

Residual_tumor, n (%) 0.68

R0 264 (92) 174 (93) 90 (91)

R1/R2/RX 22 (8) 13 (7) 9 (9)

Hepatic_inflammation, n(%) 0.001

None 97 (34) 73 (39) 24 (24)

Mild/Severe 97 (34) 67 (36) 30 (30)

Unknown 92 (32) 47 (25) 45 (45)

AFP, n (%) 0.117

~399 153 (53) 107 (57) 46 (46)

400~ 73 (26) 47 (25) 26 (26)
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ATPase activity. Concurrently, the KEGG analysis spotlighted the

DEGs’ inclination towards pathways like the MAPK signaling

pathway, endocytosis, and other pivotal signaling cascades. In

essence, the combined GO and KEGG analyses underscored the
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potential of FOXM1 in modulat ing cellular adhesion

processes and metabolic activities. This sheds light on novel

avenues for research into tumor cell migration and the intricate

tumor microenvironment.
A

B

C

FIGURE 4

Immunological and Functional Analysis of FOXM1 in the TCGA-LIHC Cohort. (A) Box plot representation of the variations in 24 immune cells among
patients with different FOXM1 expression levels, as determined by the Immune Cell Abundance Identifier. Notations: ns indicates no significance; *P<
0.05; **P< 0.01; ***P< 0.001. (B) Top 10 results from the Gene Ontology (GO) analysis based on differentially expressed genes associated with
FOXM1, categorized into Biological Process (BP), Cell Component (CC), and Molecular Function (MF). (C) Top 30 results from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis based on FOXM1 differentially expressed genes.
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3.3 Radiomics analysis: from image
selection to model evaluation
and comparison

Utilizing the combined resources of the TCIA and TCGA

databases, we embarked on a comprehensive analysis to discern

specific radiological features that could predict FOXM1 expression

status. From the entirety of the ROIs, we extracted a pool of 107

imaging features. The mRMR algorithm, renowned for its capability

to consider both the relevance between features and the predicted

variable and the redundancy between features, was employed for

feature selection. This process distilled the features down to two

distinct models: the WT model and the WP model.

In line with the AIC criteria, the WT model retained 7 pivotal

features, whereas the WPmodel harnessed 3 features. Figures 2B, C,

through a histogram, graphically showcased the coefficients of these

rigorously selected features. The radiomics signatures, formulated

from these features, can be articulated mathematically as:
WT model:

RSWT = 3:030603145 − 1:943492788

�Whole _ ngtdm _ Strength − 17:91038915

�Whole _ glszm _ ZoneVariance − 3:789451111

�Whole _ ngtdm_Contrast + 8:449892409

�Whole _ glrlm _ LowGrayLevelRunEmphasis − 2:642860539

�Whole _ glcm _ClusterShade + 1:683785937

�Whole _ glrlm _ RunLengthNonUniformity + 2:627375082

�Whole _ firstorder _ 90Percentile

WP Model:

RSWP = −1:730305966 − 10:06574986

�Whole _ Peri _ gldm _DependenceNonUniformity + 7:905895664

�Whole _ Peri _ glrlm _ RunLengthNonUniformity + 0:765734038

�Whole _ Peri _ shape _ Flatness

The performance of the radiomics models was rigorously

evaluated in both training and validation sets using a 10-fold cross-

validation approach. The metrics employed for this evaluation

encompassed ACC, SPE, SEN, PPV, and NPV, as detailed in Table 2.

In the WT model, we observed commendable performance

across both the training and testing datasets for all metrics.
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Conversely, the WP model showcased favorable performance only

in ACC, SPE, and NPV. Notably, the two radiomics models

demonstrated impressive predictive performance with Brier scores

of 0.111 (WT model) and 0.184 (WP model) in the training sets.

The WT model achieved high AUC values in both the training

(AUC = 0.918) and testing sets (AUC = 0.837). In comparison, the

WP model exhibited slightly lower AUC values in the training

(AUC = 0.841) and testing sets (AUC = 0.821), as visualized in

Figure 5A. Intriguingly, the Delong test revealed no significant

difference between the ROC curves of the WT and WP models. The

AUC values of the PR curve for the WT and WP models stood at

0.836 and 0.646, respectively, as depicted in Figure 5B, reinforcing

the superior predictive value of the WT model.

The calibration curves, illustrated in Figure 5C, underscored the

strong consistency between the predicted probability of high

FOXM1 expression and the actual observed values for both WT

and WP models, as validated by the Hosmer-Lemeshow goodness-

of-fit test across training and validation cohorts. The clinical utility

of these models was further emphasized through a decision curve

analysis conducted for each model in their respective training

datasets (Figure 5D). As the high-risk threshold range expanded,

both radiomics models exhibited an uptick in the standard net

benefit, translating to enhanced clinical effectiveness.

To ensure the robustness and reproducibility of our radiomics

features, a consistency evaluation was conducted. A subset of 10

samples was randomly selected and delineated by an alternate

radiologist. The ICC was employed to assess the consistency of the

radiomics features extracted from the ROIs delineated by the two

radiologists. In our study, all the selected radiomics features

showcased an ICC value of ≥ 0.75, underscoring the high

reliability and reproducibility of our feature extraction process.

This consistency assessment ensures that the radiomics features

utilized in our models are not only predictive but also

reproducible across different delineations, enhancing the clinical

applicability of our findings. These results are shown in

the Table 3.

In summation, our radiomics analysis, rooted in a robust

methodology and comprehensive feature selection, offers

promising models for predicting FOXM1 expression in liver

cancer. The high ICC values further bolster the reliability of these

models, paving the way for their potential clinical applications.
TABLE 2 Estimating the effectiveness of the prediction models.

Model AUC [95%CI] ACC SPE SEN PPV NPV

WT
model

Train set 0.918
[0.828-1]

0.857 0.857 0.857 0.8 0.9

Testing set 0.837
[0.681-0.992]

0.829 0.786 0.857 0.786 0.857

WP
model

Train set 0.803
[0.654-0.951]

0.8 1 0.667 0.667 1

Testing set 0.789
[0.637-0.942]

0.771 0.929 0.667 0.65 0.933
frontie
WT model, whole-tumor model; WP model, whole-tumor and peritumoral model; ACC, accuracy; SPE, specificity; SEN, sensitivity; PPV, positive predictive value; NPV, negative
predictive value.
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3.4 Prognostic nomogram and
clinical implications

In our pursuit to further delineate the prognostic implications

of radiomics in HCC, we focused on RS, derived from the
Frontiers in Oncology 11
probability values predicted by the WT model. Employing a

cutoff value of 0.550, we stratified our cohort into high-score and

low-score groups.

Recognizing the profound influence of oxidative stress in

amplifying the production of reactive oxygen species, which
A

B

D

C

FIGURE 5

Assessments of the Whole-Tumor (WT) and Whole-Tumor and Peritumoral (WP) Models for FOXM1 Expression Prediction. (A) Receiver Operating
Characteristic (ROC) curve illustrating the predictive performance of the WT and WP models in both Training and Testing sets. (B) Precision-Recall
(PR) curve highlighting the WT and WP models’ precision in predicting FOXM1 expression. (C) Calibration plot comparing the predicted probability of
FOXM1 expression to the actual observed values in the WT and WP models. (D) Decision Curve Analysis (DCA) evaluating the clinical applicability of
the WT and WP models in forecasting FOXM1 expression.
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culminates in cellular damage, we incorporated oxidative stress

genes into our investigative framework. Furthermore, extant

literature has underscored a nexus between FOXM1 and oxidative

stress (23). Given FOXM1’s pivotal role as a quintessential

transcription factor in myriad cancers, its interplay with oxidative

stress potentially elucidates a mechanistic pathway through which

FOXM1 might modulate tumor progression. This premise steered

us to probe the relationship between RS and the expression profiles

of oxidative stress genes. Intriguingly, we discerned a marked

positive correlation between RS and genes such as CCNA2,

MAPK7 and CDK1. Conversely, genes like CSF1, IL18 and

ABCB1 exhibited a significant negative correlation with RS. The

top 25 genes with positive and negative correlation respectively,

delineated by their absolute correlation coefficient, are showcased

in Figure 6A.

The prognostic prowess of RS was further appraised using

Kaplan-Meier curves. The low-score group manifested a median

survival time of 65.61 months, whereas the high-score group

clocked a median survival time of 34.16 months. As illustrated in

Figure 6B, the high-score group bore a conspicuously diminished

OS rate in juxtaposition with the low-score group (p=0.009).

To augment the clinical applicability of our insights, we crafted

a radiomics nomogram to prognosticate the 12-, 36-, and 60-month

OS rates of HCC patients. This nomogram amalgamated RS with

salient clinicopathological determinants, encompassing age,

pathologic stage, and hepatic inflammation. The coefficients of

these variables are portrayed in Figure 6C.

The veracity of our nomogram was scrutinized using ROC

curves, which unveiled AUC values of 0.892, 0.929, and 0.94 for the

12-, 36-, and 60-month forecasts, respectively (Figure 6D).

Calibration curves further endorsed the fidelity of our nomogram,

evincing a robust concordance between the prognosticated and

actual 12-, 36-, and 60-month OS rates (Figure 6E). The decision

curve analysis, encapsulated in Figure 6F, accentuated the clinical

utility of our nomogram, underscoring substantial net benefits
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across diverse threshold probabilities at 12, 36, and 60 months.

The validation cohort was harnessed to fortify the resilience of our

model, safeguarding against potential overfitting and corroborating

its precision, calibration, and clinical pertinence.
4 Discussion

In this comprehensive study, we embarked on an innovative

exploration into the realm of hepatocellular carcinoma (HCC),

focusing on the potential prognostic implications of FOXM1 gene

expression and its non-invasive prediction using dual-region CT

radiomics technology. Our findings underscored the significant

differential expression of FOXM1 between tumor and adjacent

tissues, reinforcing its potential role in HCC pathogenesis.

Furthermore, the RS, derived from the probability values

predicted by the WT model, provided a novel avenue for

stratifying patients based on their FOXM1 expression levels.

Notably, the RS demonstrated a significant correlation with

oxidative stress genes, shedding light on the intricate molecular

interplay underpinning HCC progression.

The integration of radiomics and genomics in our study

unveiled a promising approach for individualized precision

treatment in HCC. By harnessing the power of advanced imaging

and bioinformatics tools, we were able to bridge the gap between

macroscopic imaging features and microscopic genetic alterations,

offering a holistic perspective on HCC’s complex landscape.

The role of FOXM1 in various cancers has been a focal point in

oncological research. Liu et al. found that FOXM1 promotes cell

proliferation in hepatocellular carcinoma, gastric cancer, and

colorectal cancer by upregulating STMN1, emphasizing its

significance in cell proliferation and tumor genesis (24). Similarly,

Zhang et al. further elucidated the inhibitory potential of miR-370

on acute myeloid leukemia progression via FOXM1 targeting (25).

In the context of pancreatic cancer, FOXM1 has been implicated in

stem cell renewal and proliferation, further promoting pancreatic

intraepithelial neoplasia, as reviewed by Quan et al. (26).

Furthermore, in glioblastoma, FOXM1 has been shown to

promote tumorigenesis by mediating the nuclear translocation of

b-catenin in the absence of conventional Wnt/b-catenin pathway

activation (27).

Zooming into HCC, Kopanja et al. spotlighted FOXM1’s

instrumental role in Ras-driven HCC progression, particularly

emphasizing its role in the survival of HCC cells with stem cell

characteristics via regulation of reactive oxygen species (28). Xia

et al. identified FOXM1 expression as a pivotal independent

determinant affecting postoperative recurrence and survival in

HCC patients. Their insights into the mechanism revealed

FOXM1’s role in promoting liver cancer cell invasion and

metastasis by upregulating MMP-7, RhoC, and ROCK1, with

HBx further amplifying FOXM1 expression through the ERK/

CREB pathway (29). Weiler et al. provided insights into the

synergistic action of YAP and FOXM1, leading to chromosomal

instability in HCC (30). Hu et al. expanded on this intricate
TABLE 3 Investigating the ICC values of radiomic features in both the
WT and WP models.

Radiomics feature ICC value

Whole_ngtdm_Strength 0.779457303

Whole_glszm_ZoneVariance 0.998512609

Whole_ngtdm_Contrast 0.986828133

Whole_glrlm_LowGrayLevelRunEmphasis 0.970547479

Whole_glcm_ClusterShade 0.958116068

Whole_glrlm_RunLengthNonUniformity 0.995672962

Whole_firstorder_90Percentile 0.999657409

Whole_Peri_gldm_DependenceNonUniformity 0.996035776

Whole_Peri_glrlm_RunLengthNonUniformity 0.996697895

Whole_Peri_shape_Flatness 0.91228024
WT model, whole-tumor model; WP model, whole-tumor and peritumoral model.
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relationship, suggesting a mechanism where interferon-a inhibits

HIF1a signaling in liver cancer cells by suppressing FosB

transcription. This established a high glucose microenvironment

promoting CD27 transcription in T cells via the mTOR-FOXM1

signaling pathway, thereby amplifying the therapeutic efficacy of

PD-1 on HCC (31). Our findings, which accentuate FOXM1’s

overexpression as a harbinger of poor prognosis in HCC, align
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with these studies, further solidifying FOXM1’s detrimental

contribution to HCC progression.

The influence of FOXM1 on oxidative stress has been

documented, with studies suggesting that FOXM1 can regulate

oxidative stress and is involved in the expression of antioxidant

genes. This role has been observed across six cancers, including

pancreatic cancer, colorectal cancer, head and neck squamous cell
A B

D E F

C

FIGURE 6

Construction and Validation of the Prognostic Nomogram. (A) Correlation analysis between the radiomics score (RS) and the top 25 positively
correlated and 25 negatively correlated oxidative stress genes. Genes with positive correlations are depicted in dark green, and genes with negative
correlations are shown in fuchsia. (B) Kaplan-Meier curve illustrating the association between a high-RS group and shorter median survival time, as
well as a worse survival rate. (C) Nomogram developed to estimate the probability of survival for HCC patients at 12, 36, and 60 months,
incorporating factors such as age, pathologic stage, hepatic inflammation, and RS. (D) Receiver Operating Characteristic (ROC) curve assessing the
nomogram’s predictive capability for patient prognosis and overall survival (OS) at 12, 36, and 60 months. (E) Calibration curves adjusting for
discrepancies between the nomogram’s predicted and actual survival rates at 12, 36, and 60 months. (F) Decision Curve Analysis (DCA) evaluating
the clinical utility of the nomogram for predicting patient survival at 12, 36, and 60 months.
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carcinoma, lung cancer, prostate cancer, and breast cancer,

promoting their progression (32). Our research adds a new

dimension to this narrative in HCC, suggesting FOXM1’s

potential modulation of oxidative stress levels through genes like

CCNA2, MAPK7 and CDK1.

Radiomics has emerged as a powerful tool in oncology, offering

insights into tumor characteristics and potential therapeutic targets.

Song et al. demonstrated the added diagnostic value of combining

imaging parameters with clinical features in identifying the

presence of a micropapillary component in lung adenocarcinomas

(33). Li et al. constructed a predictive model using preoperative T2-

weighted MRI images, RNA-seq, and clinical data from 652 glioma

patients across three independent cohorts. Their model reliably

predicted patient survival times and aided in the preoperative

assessment of macrophage infiltration in brain gliomas (34).

In the specific context of HCC radiomics, Feng et al. constructed

a model comprising 11 radiomic features from preoperative liver-

enhanced CT results of 365 adult HCC patients from three medical

centers. Their model showed promising predictive capabilities for the

macrotrabecular-massive subtype of HCC (35). Xia et al. developed a

radiomics model using preoperative registration or subtraction CT

images, demonstrating significant value in predicting microvascular

invasion in HCC patients (36). Our study innovatively bridges

radiomic features with FOXM1 gene expression, aiming to predict

HCC patients FOXM1 expression and OS from preoperative

enhanced CT images.

In essence, while our study aligns with several established

findings in the literature, it also introduces novel insights,

particularly in the integration of radiomics and molecular

profiling in HCC. The comprehensive approach adopted in our

research, combining FOXM1 expression, oxidative stress, and

radiomics, sets a precedent for future endeavors in this direction.

The integration of radiomics with molecular profiling, as

demonstrated in our study, holds transformative potential for the

clinical management of HCC. By non-invasively predicting FOXM1

mRNA expression in HCC tissues using dual-region CT radiomics

technology, clinicians can gain invaluable insights into the tumor’s

molecular landscape even before surgical intervention. This

predictive capability can guide therapeutic decisions, allowing for

more personalized treatment strategies tailored to the individual

patient’s molecular profile. Moreover, the correlation we established

between FOXM1 expression and prognosis can serve as a valuable

prognostic marker. By identifying patients with high FOXM1

expression, clinicians can anticipate a potentially aggressive tumor

behavior and adjust treatment regimens accordingly. This could

lead to more aggressive therapeutic interventions for high-risk

patients, while sparing low-risk patients from unnecessary

treatments. Furthermore, our findings on the association between

FOXM1 expression and the immune microenvironment can have

profound implications for immunotherapy. As FOXM1 potentially

shapes the tumor immune landscape, understanding its expression

can provide insights into a patient’s likely response to immune

checkpoint inhibitors and other immunotherapeutic agents. This
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could pave the way for more effective combination therapies, where

FOXM1-targeted treatments are combined with immunotherapies

to enhance therapeutic outcomes.

Our study, while offering valuable insights into the role of

FOXM1 in HCC, has certain limitations. The primary constraint is

the sample size, as our research on radiomics and genomics was

predominantly based on retrospective data sourced from the TCGA

and TCIA databases. This retrospective nature necessitates the

validation of our findings in larger, multi-center cohorts to ensure

broader applicability. Additionally, our imaging-based predictive

nomogram model did not incorporate certain clinical parameters

and biochemical markers, such as surgical approaches, albumin,

and transaminases. This omission might have restricted our

analysis’s depth, potentially overlooking intricate relationships

between these factors and patient outcomes. Furthermore, while

we delved into the influence of FOXM1 on prognosis and

immunity, our study did not explore the specific mechanisms

underpinning its effects in detail. The absence of experimental

validation further underscores this limitation.

Given these limitations, future research should prioritize

expanding the patient cohort, incorporating a wider range of

clinical and biochemical parameters, and delving deeper into the

mechanistic pathways of FOXM1 in HCC. Experimental studies

could provide a more granular understanding and validation of our

findings. In conclusion, our study, despite its constraints, sheds light

on the potential of integrating radiomics with molecular profiling in

HCC, paving the way for more personalized and effective

therapeutic strategies.
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Glossary

HCC Hepatocellular carcinoma

FOXM1 Forkhead Box M1

Gd-EOB-
DTPA

Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid

ROC Receiver operating characteristic

CT Computed tomography

MRI Magnetic resonance imaging

AFP Alpha-fetoprotein

mRNA Messenger ribonucleic acid

TCGA-LIHC The Cancer Genome Atlas Liver Hepatocellular Carcinoma

OS Overall survival

TCIA The Cancer Imaging Archive

FPKM Fragments Per Kilobase of transcript per Million mapped
reads

TPM Transcripts per million reads

ImmuCellAI Immune Cell Abundance Identifier

GO Gene Ontology

BP Biological process

MF Molecular function

CC Cellular component

KEGG Kyoto Encyclopedia of Genes and Genomes

ROI Regions of interest

DEGs differentially expressed genes

DICOM Digital Medical Imaging and Communication

A.K Artificial Intelligence Kit

mRMR Maximum relative minimum redundancy

AIC Akaike information criterion

ICCs Interclass correlation coefficients

RS Radiomics Score

ACC Accuracy

SPE Specificity

SEN Sensitivity

PPV Positive predictive value

NPV Negative predictive value

AUC Area under the curve

PR Precision-recall

DCA Decision curve analysis

CIs Confidence intervals

HR Hazard ratio.
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