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Elastography Ultrasound provides elasticity information of the tissues, which is

crucial for understanding the density and texture, allowing for the diagnosis of

different medical conditions such as fibrosis and cancer. In the current medical

imaging scenario, elastograms for B-mode Ultrasound are restricted to well-

equipped hospitals, making the modality unavailable for pocket ultrasound. To

highlight the recent progress in elastogram synthesis, this article performs a

critical review of generative adversarial network (GAN) methodology for

elastogram generation from B-mode Ultrasound images. Along with a brief

overview of cutting-edge medical image synthesis, the article highlights the

contribution of the GAN framework in light of its impact and thoroughly analyzes

the results to validate whether the existing challenges have been effectively

addressed. Specifically, This article highlights that GANs can successfully

generate accurate elastograms for deep-seated breast tumors (without having

artifacts) and improve diagnostic effectiveness for pocket US. Furthermore, the

results of the GAN framework are thoroughly analyzed by considering the

quantitative metrics, visual evaluations, and cancer diagnostic accuracy. Finally,

essential unaddressed challenges that lie at the intersection of elastography and

GANs are presented, and a few future directions are shared for the elastogram

synthesis research.

KEYWORDS

generative adversarial networks, elastography ultrasound, breast cancer diagnosis,
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GRAPHICAL ABSTRACT

Overview of the GAN framework employed by Yao et al. (20) and Yu et al. (40) for accurate breast lesion elastogram synthesis, aiding in accurate di-
agnosis of detected lesions in US image.
1 Introduction

Ultrasound (US) imaging is commonly applied across diverse

clinical environments for visualizing various anatomical regions

within the human body. US modality operates on the principles of

reflection and scattering of highfrequency ultrasound waves from

different types of soft tissues (of varying echogenicity) within the

human body. US imaging presents numerous advantages that make

it a favorable alternative to other medical imaging modalities (e.g., X-

ray (1), magnetic resonance imaging (MRI) (2), computed tomography

(CT) (3), and histopathology images (4, 5)). These advantages include

its cost-effectiveness, patient safety, widespread availability, exceptional

diagnostic efficacy, user-friendliness, portability, and, notably, its

radiation-free nature (6).

Elastography Ultrasound (EUS) adds additional information

regarding tissue elasticity to the conventional gray scale Ultrasound

(also known as the B-mode US) (7). In a typical EUS, a tissue

compression mechanism is used along with the transducer to assess

tissue stiffness or elasticity. The response of tissue to mechanical

deformation or vibration is processed and visualized as a color-

coded map to quantify tissue stiffness. The type of algorithm used to

generate the elasticity color map depends on the elastography

technique utilized in EUS. For instance, strain-based elastography

(8) (i.e., mechanical deformation) utilizes correlation-based

methods, which calculate the displacement or strain by

comparing pre-compression and post-compression US images.

Shear wave elastography (9) employs time-of-flight methods,

measuring the time shear waves (generated by the transducer)

take to propagate through the tissue. Acoustic radiation force

impulse (10) applies a localized acoustic radiation force to the

tissue and measures the resulting tissue displacement using cross-

correlation or speckle tracking algorithm. Model-based

elastography techniques (11, 12), employ mathematical models to

estimate tissue stiffness based on the data acquired from the US

images. Subsequently, the strain information in the generated
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elastogram about the region of interest (ROI) is studied by

radiologists to diagnose diseases such as liver fibrosis (13), breast

lesions (14, 15), prostate cancer (16), thyroid nodules (17), and

musculoskeletal disorders (18, 19). Specifically in the case of breast

cancer, the elastogram allows the radiologists to accurately identify

stiffer ROI (i.e., malignant lesions), minimizing the removal of

benign lesions and damage to healthy tissues in biopsies. Moreover,

the lesion shape, infiltration pattern, and elasticity analysis of

surrounding tissue may provide important information regarding

the extent and aggressiveness of the carcinoma, thereby guiding

treatment decisions. Altogether, B-mode ultrasound provides

anatomical information, and elastography adds the perspective of

tissue stiffness or elasticity, increasing the clinical utility of US.

The integration of elastogram into the US enhances its clinical

applicability and utility but introduces several new challenges. B-

mode US is subjective to the radiologist’s experience and expertise.

The sensitivity to human subjectivity and expertise increases

significantly for EUS because of additional factors during US

capture, such as probe position, applied pressure, and frequency

of mechanical compression (20). Furthermore, radiologists require

additional training to accurately interpret the elasticity information

and differentiate pathologies (i.e., types of tissue) in the color-coded

heatmaps. The elastograms are also influenced by signal

attenuations, which degrades the quality of EUS for deep-body

tissues. Therefore, radiologists need to be familiar with the artifacts

in EUS to provide accurate diagnoses while correlating their

findings with the patient’s clinical history.

Deep learning algorithms have revolutionized the analysis of US

images because of their automatic nature, ability to extract task-

relevant features (i.e., reduced dependence on domain knowledge),

state-of-the-art performance, and end-to-end nature (21). However,

the well-known neural network-based methodologies face

challenges due to the composition and noise in US images, which

are typically absent in real-world natural images (22, 23). To

elaborate, the typical grainy texture of US images is due to the
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salt-pepper or speckle noise arising from the interference of

reflected sound waves (24). In addition, US images may also

contain reverberation artifacts due to the sound waves echoing

from two strong anatomical structures, resulting in duplicate

structures (25). Furthermore, a bone or calcification can prevent

the passage of sound waves, leading to incomplete visualization of

the underlying tissues (26). Apart from the noise and artifacts in US

images, two different anatomical structures (e.g., pancreas and liver)

may appear to be the same depending on the probe position and

view of the US, making US analysis challenging for radiologists and

deep learning models without probe location metadata.

Recently, Yao et al. (20) have proposed a scheme to generate

EUS images (i.e., elastograms) from the conventional B-mode US

using a GAN to improve breast cancer diagnosis and the utility of

pocket US. In this critical review, we thoroughly examine the work

carried out by Yao et al. (20) in the field of EUS image synthesis.

The review incorporates various crucial aspects, including a

thorough comparison with relevant prior studies in medical

image synthesis, a concise overview of the GAN methodology for

EUS synthesis, an extensive analysis of the results, and a

comprehensive discussion of the unaddressed challenges and

potential future directions in EUS generation. By critically

evaluating this methodology, our aim is to provide an insightful

analysis of the current state-of-the-art in the synthesis of EUS

images while also shedding light on the areas that require further

investigation and improvement.

The remainder of this critical review is structured as follows:

Section II specifies the contributions of Yao et al. (20) and

the impact of synthesized EUS. Section III provides an overview

of the state-of-the-art medical image synthesis and compares it with

the methodology proposed by Yao et al. (20). Section IV

describes the GAN methodology, loss functions, and metrics for

evaluating the generated V-EUS. Section V presents an analysis of

the vital results that support the claims of Yao et al. (20). Section VI

discusses un-addressed challenges and essential future directions.

Finally, section VII concludes the critical review.
2 Contributions and impact

The key contributions of the methodology proposed by Yao

et al. (20) are next summarized. First, the manuscript proposes a

GAN for synthesizing virtual EUS (V-EUS or synthesized EUS)

from B-mode US. Notably, the authors provide an alternative to

conventional EUS generation which could improve the clinical

impact of portable US (27, 28). Second, the methodology

enhances the GAN network with a tumor discriminator module

and a color balancing module, allowing the network to differentiate

between the tumor and healthy tissue while ensuring the V-EUS

possesses a color distribution that aligns with the actual EUS image.

Third, the proposed GAN model is meticulously trained and

evaluated using an extensive patient cohort from fifteen medical

centers. The dataset comprises 4580 cases, with 2001 images utilized

for training, 500 images for internal validation, and 1730 cases from

14 centers for external validation. Furthermore, 349 extra cases of

pocket US are employed to evaluate the generalizability in pocket
Frontiers in Oncology 03
US setups. Fourth, the generated V-EUS images undergo

comprehensive testing using quantitative metrics (e.g., image

similarity) and qualitative analysis (i.e., visual evaluation). The

applicability of the V-EUS is also demonstrated in real-world

scenarios, such as improving breast cancer diagnosis, generating

elastograms for deep tissues, and improving the diagnostic

effectiveness of pocket US.

The impactful contributions of Yao et al. (20) advance academic

knowledge, influence existing usage and protocols of the US for

breast cancer diagnosis, improve the standard of healthcare in

society, and inspire new research frontiers. Also, the authors

propose an additional tumor discriminator, which takes the

tumor area as the input and determines the authenticity of the

tumor region. Additionally, the L1 loss between the V-EUS and real

EUS is reweighed using a computed color coefficient to account for

color rarity in elastograms. These innovations allow the GAN

framework to render color-accurate elastogram of tumor and

neighboring tissue, which can also be extended to synthesize EUS

of tumors in abdominal organs (e.g., hepatocellular carcinoma) with

appropriate training data. The successful reconstruction of V-EUS

by the GAN framework, despite the prevalent noise and artifacts in

breast US images, significantly impacts the existing protocols of the

US breast cancer diagnosis. Particularly, the generation of accurate

elastograms for deep-seated tumors, where conventional

elastography setups yield suboptimal results due to signal

attenuation, signifies a breakthrough. Moreover, the integration of

the GAN with pocket US devices can make elastography accessible

on portable US platforms, which was not possible earlier due to

limited hardware and computational power. Subsequently, the

availability of V-EUS for pocket US holds profound societal

implications as it can improve the diagnostic accuracy of breast

cancer in small clinics and mobile mammography units while

providing malignancy information of the detected tumors,

thereby shrinking the time duration of the diagnostic protocols

and allowing for early and effective treatment. Lastly, a noteworthy

impact of this research lies in its potential to inspire innovative

GAN variants tailored for elastography generation of other

anatomical structures to improve the diagnosis of other

carcinomas and fibrosis in a prompt, cost-effective, and

timely manner.
3 Literature comparison

Deep learning models have achieved notable success in

classifying, segmenting, and detecting relevant ROI in medical

images and other modalities of data (2, 29–33). Recently, neural

networks have been employed to upscale low-resolution medical

images, transform medical imaging modalities, enhance

visualization, and improve diagnostic accuracy. Muckley et al.

(34) present key learnings from the 2020 fastMRI challenge,

which aimed at accelerating the development of neural network

architectures for MR image reconstruction while providing a fair

open-access comparison to the research community. The

manuscript highlights that error characterization and AI-

generated hallucinations are critical challenges in evaluating MR
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images generated by neural networks. Qu et al. (35) propose the

WATNet architecture to generate 7T MRI (i.e., improved

anatomical details) from 3T MR images by combining

information in spatial and wavelet domains. Notably, the WAT

modules learn the scaling and translational parameters for each

pixel in the feature map based on the wavelet coefficients, allowing

the network to scale different regions of the feature map based on

the contrast and edge information in the frequency domain. The

WAT module can also serve as a prior for other image synthesis

tasks such as CT to MRI conversion. Similarly, Li et al. (36) propose

a two-stage deep learning framework, employing 3D-UNet and

convolutional LSTM, to accurately reconstruct thin-section MR

images from thick-slice MR images, specifically targeting brain MRI

super-resolution. High-level methodology analysis reveals that

these works employ conventional fully convolutional network

(FCN) designs for image reconstruction and superresolution

tasks. However, compared to FCN architectures, GAN-based

approaches offer several advantages. GANs facilitate sophisticated

implicit feature learning within the generator, enabling the network

to capture complex patterns from medical images. Moreover, the

adversarial training paradigm further enhances the network’s ability

to learn and generate realistic and high-fidelity medical images.

Recently, GANs have been employed to add an extra dimension

to histopathological images. Rivenson et al. (37) employed GANs to

transform wide-field autofluorescence images into their

corresponding stained versions. An exhaustive evaluation of the

GAN on the salivary gland, thyroid, kidney, liver, and lung,

involving different stains, shows that virtual staining can

circumvent labor-intensive and costly histological staining

procedures without any significant differences from the real

stained images. Inspired by this application to enhance

histopathology, researchers have employed GANs to generate

EUS without requiring conventional US setup. Zhang et al. (38)

propose a GAN framework, termed AUE-Net, with a U-Net

generator equipped with attention mechanism and residual

connections for a compelling depiction of elastograms for thyroid

nodules. The spatial attention module is utilized at the beginning of

the U-Net to identify the nodule regions, and a color attention

module is used at the end to create a color attention map for EUS.

Moreover, the loss function of the network is augmented to account

for the color difference between the real and generated elastograms,

forcing the generator to produce images with a color distribution

that overlaps real elastograms. Despite the significant contributions

of AUE-Net, Yao et al. (20) present essential improvements to the

methodology design, evaluation, and application of GANs for

elastogram generation. Specifically, the use of a tumor

discriminator enables the network to identify tumor areas with

higher precision relative to the spatial attention module, which is

reflected in the qualitative analysis of the generated elastograms.

Additionally, Yao et al. (20) enhance the color loss by using the lab

color space with a mathematically derived color coefficient to

account for color rarity. Moreover, the authors evaluate the

quality of generated elastograms based on improved breast cancer

diagnostic accuracy, elastography of deep-seated tumors, and

improvement in diagnostic effectiveness of pocket US, which were
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omitted in the evaluation of AUE-Net for the elastography of

thyroid nodule. In a complementary study, He et al. (39)

investigate the suitability of using a GAN-based approach (i.e.,

SRRFNN) to improve lateral resolution in the radiofrequency (RF)

data (i.e., up-sample RF data perpendicular to acoustic beam),

consequently improving the elastogram quality in ultrasound

strain elastography. However, the V-EUS (20) generation

approach is a preferable end-to-end solution because it generates

elastograms directly from conventional B-mode US rather than

upsampling the lateral resolution to improve quality. As an

extension to the contributions of Yao et al. (20), Yu et al. (40)

utilize the same GAN framework and dataset to show the feasibility

of V-EUS in augmented reality (AR-EUS) for improved diagnosis of

breast cancer with pocket US. The quantitative and blind evaluation

of elastograms in augmented reality shows no significant

discrepancies between the AR-EUS and real EUS, establishing the

authencity of AR-EUS. Table 1 summarizes the state-of-the-art

methods in medical image synthesis that laid the pathway for GAN

framework proposed by Yao et al. (20).
4 Methodology overview

GANs are a new class of neural network architectures that excel

at generating high-fidelity new data (e.g., elastograms from US

images). In terms of architecture, GANs differ significantly from the

conventional FCNs because they contain two subnetworks, which

are trained adversarially to enhance the capability of the system to

generate realistic data instances. To elaborate, a brief description of

the components of GANs is next presented. Graphical Abstract

describes the neural network architectures of the generator and

discriminator within the GAN framework proposed for

elastogram synthesis.
4.1 Generator

In EUS synthesis, the generator is an encoderdecoder

architecture that generates realistic synthetic elastograms (i.e., V-

EUS. Specifically, U-Net architecture (45) is a popular choice for a

generator because of its capability to capture multi-scale features

and low-level features (through skip connections) to generate

elastograms. The encoderdecoder design of the U-Net allows for

parameter savings due to shrinking spatial dimensions of the feature

maps in the deeper layers of the encoder, thereby providing

computational savings. Yao et al. (20) employ the vanilla U-Net

architecture with tuned channel count in the encoder and decoder

for the generation of elastograms.
4.2 Discriminator

The discriminator of the GAN framework is an FCN that

receives the output of the generator (i.e., elastogram) or real EUS

as input and performs binary classification. Yao et al. (20) employ a
frontiersin.org

https://doi.org/10.3389/fonc.2023.1282536
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ansari et al. 10.3389/fonc.2023.1282536
sophisticated discriminator paradigm derived from conditional

GAN, which adds the B-mode US image as an additional input

(i.e., prior knowledge) to the discriminator network, enhancing its

ability to differentiate between real or V-EUS. The authors also add

a local tumor discriminator to the framework to further enhance the

capability of the system to distinguish between real or fake tumor

areas and their elastograms, thereby improving the estimation of

elasticity for the tumor region.
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4.3 Adversarial training

GANs are trained in an iterative adversarial fashion to allow the

generator to produce high-quality synthetic samples. In the

initialization phase, the generator produces synthetic samples

with a distribution similar to the training data using random

noise or B-mode US images. In the first step, the discriminator is

trained on real and V-EUS samples with the goal of learning to
TABLE 1 Literature overview of the state-of-the-art methods for medical image synthesis.

Reference
(Year)

Task Dataset
Information

Core Methodology Remarks

Rivenson et al.
(2019) (37)

Virtual
staining

Whole slides of 211,475
and

59,344 of Liver and
Kidney tissues

GAN framework, U-Net generator
combined with an FCN discriminator

Pros: GAN-generated virtual staining can provide
similar results as conventional staining, providing time

and cost-saving
Cons: The GAN framework is not

validated for other contrast-generating methods
multiple excitation and emission wavelengths

Muckley et al.
(2020) (34)

MR image
reconstruction

7,299 clinical brain scans
subsampled k-space data

Comparative analysis of networks for MR
image reconstruction for fastMRI

challenge 2020

Pros: Deep learning methodologies decrease the
minimum requirement for MR image
reconstruction set by parallel imaging
and compressed sensing methods

Cons: Pseudo-regular sampling of the MR data lacks
realism and is not equivalent to the perfectly equidistant

sampling pattern used on MRI systems

Qu et al. (2020)
(35)

Image
enhancement
(Image super-
resolution)

15 pairs of 3T and 7T
brain images

WATNet, an encdoer decoder network
with

wavelet priors and conditional
normalization

Pros: Wavelet coefficient can allow learning feature map
normalization weights

Cons: Other tasks, such as MRI to CT and T2 images from
T1 translation have not been explored in the work

He et al. (2020)
(39)

RF super
resolution

50 human subjects,
50-90 frames per patient

Super-resolution radio-frequency neural
network (SRRFNN) inspired by a super-

resolution GAN

Pros: Laterally upsampled RF data processed by
SRRFNN performs better than conventional bi-cubic

interpolation approach
Cons: The method does not utilize the actual high-

frequency US data using novel beam-forming
technology for training

Li et al. (2021)
(36)

MR image
reconstruction

305 paired brain MRI
samples with a thickness
of 1.0 mm and 6.5 mm

3D U-Net followed by a convolutional
LSTM network for MRI slice refinement

Pros: Practical and clinical value of generated thin
MRI is higher than other voxel-based morphometry

Cons: The quality of reconstruction is directly
dependent on the accuracy of statistical parametric

mapping (SPM)

Dalmaz et al.
(2022) (41)

MRI to CT
translation,
MRI missing

slices
generation

IXI dataset (53 subjects),
BRATS dataset (55
subjects) (42), multi-

modalpelvic
MRI-CT dataset (15

subjects) (43)

ResViT architecture with vision
transformers’ block at the bottleneck and

convolution operators in the
encoder and decoder of the GAN

generator.

Pros: Convolutional and transformer branches within a
residual bottleneck of the generator preserves both local

precision and contextual sensitivity
Cons: Architecture needs further validation with

unpaired sets of medical images using cycle consistency
loss.

Ozbey et al.
(2022) (44)

MRI to CT
translation

IXI dataset (40 subjects),
BRATS dataset (55
subjects) (42), multi-

modal pelvic
MRI-CT dataset (15

subjects) (43)

Adversarial diffusion modeling using
conditional diffusion for capturing and
correlating the image distributions.

Pros: Cycle-consistent architecture is used with coupled
diffusive and non-diffusive components to bilaterally

translate between imaging modalities.
Cons: Adversarial loss in diffusion models introduce
training instability and suboptimal convergence

Zhang et al.
(2022) (38)

Elastogram
generation

726 thyroid US
elastography images of 397

patients

AUE-Net GAN framework,
U-Net generator with spatial and color

attention.

Pros: L1 loss can be added to the generator loss for
improving the color distributions of generated

elastograms
Cons: The method does not perform qualitative

evaluation of the generated elastograms

Yu et al. (2023)
(40)

Elastogram
generation

4580 breast cancer cases
from 15 medical centers

GAN with a U-Net generator, global and
local tumor discriminator, with L1 loss

and color coefficient

Pros: AR-EUS improves the diagnosis accuracy of pocket
US

Cons: The GAN framework has been only validated for the
Chinese population
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differentiate the two classes accurately. In the second step, the

generator is trained to create realistic synthetic samples which the

discriminator can classify as real. The adversarial training process

allows the generator to perform implicit feature learning, enabling it

to detect complex patterns and structures. In the context of EUS

generation, the generator does not have information regarding the

tissue elasticity explicitly available in the US images; rather, it

implicitly learns the complex patterns and correlations between

the US images and the desired V-EUS.
4.4 Loss function

In the methodology details outlined by Yao et al. (20), the

discriminator loss function is the average of tumor and global cross-

entropy losses for accurately classifying real or V-EUS. The

generator loss function is formulated to maximize the probability

of the discriminator classifying generated samples as real.

Furthermore, color loss (i.e., L1 loss) between the VEUS and

ground truth weighed by color rarity coefficient is added to

generator loss for accurate color distribution of the elastograms.
4.5 Evaluation metrics

Yao et al. (20) perform a thorough quantitative analysis of V-

EUS to validate the GAN framework. Particularly the Structural

Similarity Index (SSIM), Mean Absolute Percentage Error (MAPE),

and Contrast-to-Histogram Correlation (CHC) are used for

quantifying the difference between V-EUS and real EUS. An

elaborate explanation of these metrics is provided in the

Supplementary Materials.

A comprehensive qualitative analysis is conducted subsequent

to the quantitative analysis, employing a blind evaluation with the

Tsukuba scoring system. This evaluation involves radiologists with

diverse levels of experience, ensuring a thorough and unbiased

assessment of the V-EUS relative to real EUS. The qualitative

analysis validates that the generated EUS has a matching visual

appearance to real EUS and gathers feedback from radiologists

regarding their preferences. This is crucial for the success of V-EUS

because radiologists should be able to incorporate it into their

diagnostic workflows and make accurate diagnoses without

additional training. Thus, the positive outcomes of the qualitative

analysis add to the clinical credibility of the methodology proposed

by Yao et al. (20).
5 Analysis of results

This section analyzes whether the results presented by Yao et al.

(20) support the claims made by the authors. First, the authors

highlight that the proposed GAN framework results in SSIM,

MAPE, and CHC scores of 0.903, 0.304, and 0.849, respectively,

indicating that numerical metrics show a high overlap in

distributions between the real and V-EUS. The preferable SSIM

and CHC values are due to the use of the color coefficient and color
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loss, augmented with the tumor discriminator loss, allowing the

GAN to put additional emphasis on the elasticity of the tumor

region and overall color distribution. The choice of these

quantitative metrics is in line with the literature for the synthesis

of CT, MRI, and retinal color fundus images (46). However, SSIM

evaluates the V-EUS by comparing local patterns of pixel intensities

and does not account for global variations in quality. Similarly,

MAPE may lead to misinterpretation of errors because the absolute

percentage difference does not provide insights regarding the

overestimation or underestimation of elasticity. The quantitative

analysis would be more meaningful if Yao et al. (20) incorporated

metrics such as multi-scale SSIM, which compares both local and

global aspects of the image. Furthermore, Yao et al. (20) omit

Frechet Inception Distance (FID) from their quantitative analysis,

which is a key metric to evaluate the quality of the GAN-generated

images as shown by Zhang et al. (38) for elastogram synthesis of the

Thyroid. Nevertheless, the results show that the strain ratio (SR)

computed from real and V-EUS leads to statistically similar AUC

for diagnosing breast tumors, suggesting that V-EUS can replace

real EUS in diagnostic scenarios. Additional stratified analysis of

breast cancer diagnosis for tumors of varying sizes and at different

locations results in similar performance between real and V-EUS,

suggesting that V-EUS can overcome the human subjectivity in

capturing the EUS by eliminating the variables such as probe

position, applied pressure, and frequency of mechanical

compression. The stratified analysis also successfully conveys to

the readers that the GAN framework generalizes across tumor sizes

and locations, which is critical for real-world deployment.

Second, the results validate the GAN’s generalizability with

1730 breast cancer cases across fourteen other medical centers with

varying imaging and clinical settings, showing that the GAN

framework is independent of perturbations in imaging and

clinical settings. Particularly, the authors evaluated the SSIM,

MAPE, CHC, and diagnostic AUC for each of the fourteen

centers and compared them with the inter-validation

performance to assess model generalizability. This thorough

analysis of the GAN framework across different medical centers is

unique to the study conducted by Yao et al. (20) and is missing from

other studies for elastogram synthesis (38). However, the validation

sets are completely based on the Chinese population, requiring

further validation for other ethnic groups. In line with these results,

the authors also show that the GAN can generate V-EUS from low-

resolution pocket US images. Adding the V-EUS to the pocket US

allows radiologists to improve breast cancer diagnosis by up to 5%,

indicating that V-EUS improves the clinical utility of pocket US.

Altogether, the outcomes indicate that V-EUS can improve the

accessibility and diagnostic accuracy of low-resolution pocket US.

Third, the results incorporate human feedback and evaluation

to bridge the gap between computational metrics and human

perception. Yao et al. (20) are the first in the literature to perform

a novel qualitative analysis to support the quantitative results and

usage of V-EUS in radiological workflows. This form of exhaustive

qualitative analysis is missing from previous studies for elastogram

synthesis (38) and medical image modality translation (34, 35, 41,

44). Specifically, the authors perform a blind evaluation test to

compare the preference of junior and senior radiologists between
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real and V-EUS. Involving radiologists with different experiences

allows authors to gather insights into their contrastive preferences

in diagnostic workflows. For instance, the study showed that junior

radiologists preferred V-EUS over the real EUS for breast cancer

diagnosis using the BI-RADS score, thereby validating the feasibility

of V-EUS in day-to-day usage for radiologists. The authors also

show that V-EUS can be generated for deep-seated tumors (i.e.,

depth greater than 20 mm) without artifacts. In contrast, 25.9% (62

of 239) of real EUS display artifacts due to signal degradation at

greater anatomical depths. This is a significant breakthrough as real

EUS with elasticity artifacts could not be used in practice for

diagnosing diseases in deep-seated tissues and tumors.

Subsequently, V-EUS opens the possibility of carcinoma diagnosis

in deep body tissues, which are currently diagnosed by high-

definition 3D imaging modalities (i.e., CT or MRI).

Exhaustive analysis of the results and methodology also reveals

that Yao et al. (20) provide sufficient details for the reproducibility

and validity of the work. Notably, the methodology clearly explains

and details the different components of the GAN framework,

including network hyperparameters, training hyperparameters, loss

function, metrics, etc. Additionally, open-source implementation of

the GAN framework is available on GitHub for verifying the results.

Furthermore, the dataset used for training the networks is available

upon request after agreeing to terms and conditions. However, the

lack of clear documentation and comments in the code makes it

challenging for the users to decipher the details in the training and

evaluation of the network. Overall, the manuscript makes the

methodology and results transparent to the scientific community.
5 Challenges and future directions

This section highlights the unaddressed challenges and gaps in

the literature for synthesizing EUS from B-mode US images. Yao

et al. (20) evaluate the malignancy of tumors based on SR. The SR is

defined as the ratio of average tumor elasticity and a reference region.

The generated EUS is decoded by quantizing the image into 256

pseudo-color levels, representing varying elasticity. However, the

authors do not justify whether 256 elasticity values are sufficient for

representing the underlying elasticity distribution of breast tissues

through experiments or evidence from the literature. Furthermore,

the SR is computed without providing any specific guidelines for

selecting the reference region. These oversights in generating the SR

raise concerns about whether the generated V-EUS can effectively

model the physical independent information of the underlying breast

tissue. Even though the authors show that the effectiveness of SR

extracted from V-EUS in diagnosing breast cancer is similar to real

EUS, further validation is necessary to clarify whether the other

physical properties of the tissue, such as viscoelasticity, anisotropy,

homogeneity, or heterogeneity are correctly modeled. Thus, as the

first step, we recommend a comprehensive phantom study for the

quantitative validation of V-EUS. By gathering feedback from

medical experts regarding the biomechanical properties of the V-

EUS, the research community can better understand the utility and

potential clinical applications of V-EUS.
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One critical pitfall of the GANs is class leakage. The

groundbreaking work by Salimans et al. (47) demonstrates that

GAN-generated images, initially intended to represent a specific

class, exhibit the inclusion of properties and attributes from

unrelated classes. This blending of features across distinct modes

within the training distribution poses a significant concern, as it

may lead to the generation of V-EUS images that display

interpolations between malignant and benign tumors. The

presence of these intermediate or outlier V-EUS images has the

potential to misguide radiologists, resulting in erroneous diagnoses

and suboptimal outcomes during biopsies. Such outcomes include

harm to healthy tissues or the recurrence of carcinoma. To tackle

this challenge, we encourage researchers to draw inspiration from

techniques developed for feature disentanglement. Notably, prior

studies have successfully enforced disentangled learning from noise

vectors by incorporating a regularization term that penalizes the

network when modifying a single element leads to changes in

multiple features within the generated image. Similarly, we

propose adopting regularization strategies to penalize the network

for the intermixing of attributes originating from different modes of

the training distribution in the generated V-EUS.

Accurate quantitative evaluation of GAN-generated medical

images represents a significant challenge within image synthesis

literature. This challenge arises due to the limitations of

conventional metrics, SSIM, which primarily provides a high-level

comparison of images based on luminance and contrast. However,

pixel-wise metrics like MAPE may assign low values to blurry

generated images, failing to adequately capture the visual quality of

synthesized V-EUS images. Consequently, researchers like Yao et al.

(20) are compelled to undertake comprehensive qualitative studies

to assess image fidelity. In a pioneering study, Zhang et al. (48) have

shown that the deep features of neural networks can serve as a

foundation for developing perceptual metrics. To elaborate, the

authors introduce learned perceptual image path similarity (LPIPS),

which achieves better agreement with human perception than

conventional metrics like SSIM. Given these advancements, we

recommend that researchers embrace the state-of-the-art

perceptual metrics for conducting quantitative evaluations of

GAN methodologies applied in elastogram generation.

Another critical limitation of deep learning methodologies in

medical practice is the black-box nature of neural networks. The

network explainability information is critical for radiologists to

trust the synthesized output, address any biases, and account for

significant errors in the elastograms. To ensure the reliability and

interpretability of the generated V-EUS, medical practitioners need

to understand the underlying components of the B-mode US that

contribute to the network’s decision-making process. GANs learn

the mapping between the B-mode US and the V-EUS by implicit

feature learning through an adversarial training process, elevating

the need to understand the mapping between the US and the

synthesized EUS. Recent advancements have demonstrated the

integration of explainability techniques into neural network

architectures for the fusion of MRI and CT scans (49). Building

upon this progress, it is feasible to develop explainable GAN

frameworks as an extension to the work conducted by Yao et al.
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(20). The enhanced transparency will enable medical professionals

to foster trust and improve the clinical utility of V-EUS.

One of the strengths of the Yao et al. (20) methodology is the

inclusion of a dataset that spans multiple medical centers, thus

ensuring the evaluation of their GAN across diverse imaging and

clinical parameters. However, the population demographic in these

hospitals is limited to Chinese patients, thereby restricting the

evaluation of the GAN’s performance to this demographic.

Consequently, the generalizability of the proposed GAN network

to other populations with potentially distinct lesion characteristics,

such as those with deeper lesions compared to the Asian

demographic, remains unexplored. Yao et al. (20) have conducted

validation experiments specifically focusing on tumors located at

several depths up to 20 mm. While these findings provide valuable

insights into the performance of the GAN framework at varying

depths, it is crucial to conduct further evaluations across different

racial populations. Such evaluations would shed light on the ability

of the GAN to generate V-EUS images of breast lesions with varying

spread and depth distributions in populations beyond the Chinese

demographic, contributing to a more comprehensive understanding

of the GAN’s capabilities and limitations.
6 Conclusion

To summarize, we perform a comprehensive critical review of the

GAN-based methodology equipped with color loss for the generation

of realistic EUS images for breast lesion diagnosis. Specifically, we

briefly review the methods in image reconstruction and medical image

super-resolution to understand the progress in deep learning, which

has led to the GAN-based methodologies for elastogram generation

from B-mode US. Moreover, we analyze whether the claims are well-

supported by quantitative and qualitative evaluations. Finally, we

highlight the unaddressed challenges and the future directions in

elastogram synthesis. As a whole, the critical review provides a clear

understanding of the current cutting-edge deep learning framework for

the V-EUS generation while paving the pathway for the upcoming

research in elastography synthesis.
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