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Purpose: To evaluate the ability of texture features for distinguishing between

benign and malignant testicular masses, and furthermore, for identifying primary

testicular lymphoma in malignant tumors and identifying seminoma in testicular

germ cell tumors, respectively.

Methods: We retrospectively collected 77 patients with an abdominal and pelvic

enhanced computed tomography (CT) examination and a histopathologically

confirmed testicular mass from a single center. The ROI of each mass was split

into two parts by the largest cross-sectional slice and deemed to be two samples.

After all processing steps, three-dimensional texture features were extracted

from unenhanced and contrast-enhanced CT images. Excellent reproducibility

of texture features was defined as intra-class correlation coefficient ≥0.8 (ICC

≥0.8). All the groups were balanced via the synthetic minority over-sampling

technique (SMOTE) method. Dimension reduction was based on pearson

correlation coefficient (PCC). Before model building, minimum-redundancy

maximum-relevance (mRMR) selection and recursive feature elimination (RFE)

were used for further feature selection. At last, three ML classifiers with the

highest cross validation with 5-fold were selected: autoencoder (AE), support

vector machine(SVM), linear discriminant analysis (LAD). Logistics regression (LR)

and LR-LASSO were also constructed to compare with the ML classifiers.

Results: 985 texture features with ICC ≥0.8 were extracted for further feature

selection process. With the highest AUC of 0.946 (P <0.01), logistics regression

was proved to be the best model for the identification of benign or malignant

testicular masses. Besides, LR also had the best performance in identifying

primary testicular lymphoma in malignant testicular tumors and in identifying

seminoma in testicular germ cell tumors, with the AUC of 0.982 (P <0.01) and

0.928 (P <0.01), respectively.
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Conclusion: Until now, this is the first study that applied CT texture analysis

(CTTA) to assess the heterogeneity of testicular tumors. LRmodel based on CTTA

might be a promising non-invasive tool for the diagnosis and differentiation of

testicular masses. The accurate diagnosis of testicular masses would assist

urologists in correct preoperative and perioperative decision making.
KEYWORDS

contrast enhanced computerized tomography, CT texture analysis, testicular masses,
machine learning, urology and radiology
Introduction

Testicular tumor is one of the most common malignancy in

men aged 14-44 years worldwide, accounting for approximately 1%

of all male tumors and 5% of genitourinary neoplasms. In recent

years, the morbidity and mortality of testicular cancer has risen

continuously, especially in Western countries (1–3). Testicular

tumor is a heterogeneous group of diseases with various

pathological subtypes and clinical behavior. Among them, 90%-

95% are testicular germ cell tumors (TGCTs), including seminoma,

embryoma, teratoma and choriocarcinoma, of which about 55% are

seminoma of the testis. The other part of testicular tumor subtypes

includes hematological neoplasm, sex cord stromal tumors, and

other exceedingly rare types of tumors. As the different

pathophysiology and molecular mechanisms, diverse biological

behaviors were observed in these testicular masses, which leads to

different management and clinical decision (4, 5). Of course,

different treatment strategies are applied in benign or malignant

testicular tumors and primary testicular lymphoma (6).

Furthermore, as to these local or systemic progressed TGCTs, the

main treatment is radiotherapy or chemotherapy instead of surgery

(radical orchiectomy) (7). Under this circumstance, we cannot

reach exact pathological results from the surgical specimens.

Thus, a pre-operative diagnostic tool that allows histological

subtype classification of testicular masses will be of great

importance to precise treatment and clinical prognosis

judgement. Although ultrasound examination is the preferred

examination for testicular masses, the widespread use of

ultrasound has led to more and more impalpable or ambiguous

results (8). As mentioned by the EAU Guidelines 2022(http://

uroweb.org/guidelines/compilations-of-all-guidelines/) (7),

although magnetic resonance imaging (MRI) provides higher

sensitivity and specificity than ultrasound in the diagnosis of

testicular tumor, MRI is not superior to contrast enhanced

computerized tomography (CECT) in detecting retroperitoneal

lymph node metastasis in general and is more expensive, which

does not justify its routine use in the diagnosis of testicular tumor

(8, 9). Besides, it should only be considered when ultrasound is

inconclusive, as local staging for testis-sparing surgery. However,
02
CECT is recommended in all patients for staging before

orchidectomy (7, 10). Therefore, CT has become an indispensable

imaging method for patients with testicular masses. In addition,

testicular biopsy is used in few centers and has not gained

widespread acceptance because of narrow indication and possible

increased local recurrence rate, with which it is difficult to assess

intratumoral heterogeneity for its limitation (7, 11). In recent years,

CT texture analysis (CTTA) has become a promising technique for

evaluating tumor heterogeneity in a quantitative manner. CTTA

could provide a measure of heterogeneity of testicular masses with

various mathematical methods that can be used to evaluate the

gray-level intensity and position of the pixels within contrast-

enhanced CT images (12).

Up to now, no study has paid attention on the utility of CTTA

in histological subtyping of testicular masses. This is the first study

that explores the value of texture features in testicular masses.
Materials and methods

Patients

This study was approved by the Institutional Review Board in

the First Affiliated Hospital of Soochow University with a waiver of

informed consent. We retrospectively collected the imaging data

and clinical data of consecutive 94 patients diagnosed with testicular

masses from January 2015 to April 2022. Inclusion criteria were as

follows: (a) patients with available three-phase CT scan prior to any

treatment and operation; (b) pathologically proven testicular

masses after surgery treatment; (c) the interval between CT and

surgery was less than three months and no treatment received.

Exclusion criteria included: (a) lack of pretreatment contrast-

enhanced CT; (b) the absence of a certain phase of CT; (c) poor

image quality. After conducting the criteria, 77 men were identified

to constitute our study cohort and divided into a benign group

(n=21) and a malignant group (n=56) according to their

histological results. And then, in the malignant group, we divided

them into primary testicular lymphomas group (n=10) and non-

lymphomas group (n=46). Finally, we screened out all the testicular
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germ cell tumors from malignancy (n=43) and divided them into

seminoma group (n=30) and non-seminoma group (n=13) for

the differentiation.
Study design

To make this article clear, a flow chart including specific

technical steps was provided to the readers (Figure 1).
Image acquisition

All patients underwent contrast-enhanced CT (GE Healthcare

and Siemens Healthcare), including three phases: unenhanced phase

(UP), arterial phase (AP, 9s delay after contrast injection) and portal

venous phase (PP, 30s delay after contrast injection). Similar

protocols were applied when scanning: tube voltage of 120 kVp,

tube current of 180–450 mA, matrix of 512, field of view of 380–500

mm, and 5 mm reconstructed section thickness. Contrast medium

(iopromide) was injected intravenously at a rate of 3.0 mL/s.
Frontiers in Oncology 03
ROIs delineation and data augmentation

For the mass without a distinct border or with invasion of the

whole testicle, the region of interest (ROI) was defined as the whole

testicular tissue on the diseased side. Meanwhile, for the mass with a

distinct border, ROI was presumed to be the whole mass (Figure 2).

One radiologist (with 5 years of experience) and one urologist (with

3 years of experience) blinded to the histopathology results first

identified the border of each mass in consensus and then manually

delineated the ROIs around the margin of the testicular masses with

the ITK-SNAP (v 3.6.0) software (Can Hu and Xiaomeng Qiao).

The ROIs were carefully drawn with an approximate distance of 1–3

mm from the margin of tumors to prevent the effect of fat and air

(13). Due to the low morbidity of testicular tumors, sample size was

inevitably limited in our study. Hence, as a scheme of data

augmentation, the ROI of each patient was split into the upper

and lower part by the largest slice and counted as two samples (for

bilateral tumors, we counted one patient as four samples) (14). The

histopathology results of augmented samples were in line with the

original patients. After 2 weeks, the same task was repeated by the

radiologist for the evaluation of intra-observer variation.
FIGURE 1

Simplified flow chart of the overall conceive of this study and the important steps in feature extraction, feature selection, and model optimization.
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CT texture feature evaluation and selection

Texture features were extracted from three-phases CT images. All

CT images were anonymous before they were uploaded to the

commercial texture analysis software (TexRAD, version 3.9,

Feedback Medical Ltd) stored in DICOM format. A total of 572

features were extracted from each of the CT phases, including 18 first

order features, 14 shape-based features, 24 features of grey level co-

occurrence matrix (GLCM), 14 of grey level dependence matrix

(GLDM), 16 of grey level run length matrix (GLRLM), 16 of grey

level size zone matrix (GLSZM) and 5 of neighborhood grey tone

difference matrix (NGTDM). The first order features and second

order features were extracted from the original images and derived

images via filtering based on the Laplacian of Gaussian. The spatial

scale factor (SSF) at 6 levels (0 mm: no filtration; 2 mm: fine texture

scale; 3 mm, 4 mm and 5 mm: medium texture scales; and 6 mm:

coarse texture scale) were used. These features have been used in

previous quantitative analysis studies and mathematical formula been

described in the website in detail (https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC7581467/) (15–18).

Inter- and intra-observer intra-class correlation coefficient (ICC)

was firstly utilized to assess reproducibility and repeatability for each

texture feature. We retained features with ICCs greater than 0.8. A total

of 985 texture features with ICCs ≥ 0.8 were included in the further

feature selection process. In order to avoid the classifiers overtrained

owing to highly-correlated features, feature selection dimension

reduction was conducted to identify candidate and optimal features

for model building (19). A synthetic minority oversampling technique

(SMOTE) was adopted to deal with the adverse impact of the

imbalanced data in this study. In addition, we also standardized the

data by the method of Z-score and mean to compare the AUC of the

model established by these two standardization methods for better

model selecting. Dimension reduction was based on pearson
Frontiers in Oncology 04
correlation coefficient (PCC). Features demonstrating a strong

correlation (PCC ≥0.8) were removed one by one to achieve better

performance. Moreover, after the application of minimum-redundancy

maximum-relevance (mRMR), each of the three groups for intra-group

comparisons were reduced to 20 features. Before build the model, we

also used recursive feature elimination (RFE) to further select optimal

features with excellent discrimination ability from the above 20 texture

features (20). Finally, with the highest 5-fold cross validation, five

models were built by machine learning (ML) algorithms including auto

encoder (AE), support vector machine (SVM), linear discriminant

analysis (LAD), logistics regression (LR) and logistics regression-least

absolute shrinkage and selection operator (LR-LASSO).
Statistical analysis

Statistical analysis was performed using IBM SPSS v.23.0, Python

software v2.7.13(https://www.python.org) and R software v.4.1.1. Non-

normal distribution continuous variables were expressed as medians

(interquartile range). The group differences were assessed using a

Mann–Whitney U test. Receiver operating characteristic (ROC)

curve analysis, accuracy, sensitivity, specificity, PPV and NPV were

calculated to comprehensively assess the models. Significance between

the AUC of models were compared using the Delong test. A two-sided

p value <0.05 indicated statistical significance.
Results

Demographics

Specific pathological subtypes of all these testicular masses were

provided in Table 1. Patient characteristics between the three
FIGURE 2

ROIs delineation in arterial phase (A, B), portal venous phase (C, D) and unenhanced phase (E, F) CT for the mass without a distinct border. ROIs
delineation in arterial phase (G, H) for mass with a distinct border.
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groups were summarized in Table 2. Among them, 36 patients with

lesions on the left side while 41 patients on the right side. Only one

patient with granulosa cell tumor was bilateral. Thus, a total of 77

patients with 156 masses (76*2 + 1*4) were enrolled in the study

according to our special method of data augmentation. For group 1,

21 benign cases and 56 malignant cases were counted. Statistical
Frontiers in Oncology 05
significance could be observed in age and all the serum tumor

markers. For group 2, there were 10 primary testicular lymphomas

(8 diffuse large B-cell lymphomas and 2 NK/T-cell lymphomas) and

46 non-lymphomas. The mean age of the lymphomas subgroup was

statistically significantly higher than the non-lymphoma subgroup

(33 (29, 39) vs 68 (58, 76), P <0.001). In the three serum tumor

markers, LDH between the two subgroups had no significant

difference. For group 3, there were 30 seminomas and 13 non-

seminomas (9 mixed TGCTs, 2 embryonal carcinomas and 2 yolk

sac tumors). Statistical significance could be observed in age, HCG

and AFP. The average time interval between CT and serum tumor

markers was 5 days.
Reproducibility and Feature selection

572 features were extracted from each of the CT phases. A total

of 985 texture features with an ICC ≥0.8 were included in the

further feature selection process. After mRMR, each of the three

groups for intra-group comparisons were reduced to 20 features.

Before model building, RFE was applied in all models to further

select optimal features with excellent discrimination ability from the

above 20 texture features (range from 9 to 15) (Supplementary 1).
ML-based classifications

The predictive performance and ROC curves of all ML and the

two LR-based models using two data standardization methods for

the three groups were summarized in Tables 3A–C, respectively. As

a whole, z-score had a better performance than mean in the three

groups. For group 1 (Table 3A), the LR and LR-LASSO were the two

best-performing classifiers that achieved similar AUC values (AUC

=0.946, P =1.000). However, considering the AUC of LR was

slightly higher than LR-LASSO by the method of z-score, LR was

selected for the best model. The overall accuracy, sensitivity,

specificity, PPV, NPV and AUC of the best model were 87.3%,

86.1%, 90.5%, 95.6%, 73.1% and 0.946 (95% CI 0.896-0.995),

respectively. For group 2 (Table 3B), although SVM and LR-

LASSO had high AUC of 0.986 and 0.985, respectively, LR was

chosen as the most appropriate model, achieved an accuracy of

90.4% (sensitivity 100%, specificity 88.3%, PPV 64.5% and NPV

100%) with an AUC of 0.982 (95% CI 0.963-1.000). For group 3
TABLE 1 Specific pathological subtypes of testicular masses.

Pathological
subtypes

Specific
subtypes

n

Malignant,
n=56

TGCTs 43

seminoma 30

mixed TGCTs 9

embryonal
carcinomas

2

yolk sac tumors 2

Sex cord-
stromal tumor

2

granulosa
cell tumor

1

Sertoli-Leydig
cell tumor

1

Primary
testicular
lymphoma

10

diffuse large B-
cell lymphoma

8

NK/T-
cell lymphoma

2

embryonal
rhabdomyosarcoma

1

Benign,
n=21

inflammation
or abscess

5

adenomatoid
tumor

3

angiomas
or leiomyoma

8

others 5
TGCTs, testicular germ cell tumors.
TABLE 2 Patients’ demographics between the three groups.

Variables,
(M, IQR)

Benign
vs Malignant

P non-lymphomas
vs lymphomas

P non-seminoma
vs seminoma

P

Age 47(35, 68) vs 35(29, 48) 0.041 33(29, 39) vs 68(58, 76) <0.001 29(37, 34) vs 36(31, 43) 0.007

HCG 0(0, 0.2) vs 1.8(0.3, 38.8) <0.001 3.8(1.0, 92.3) vs 0.18(0, 0.5) <0.001 49.8(2.8, 246) vs 3.6(0.9, 38.8) 0.023

AFP 2.5(1.8, 3.1) vs 3.3
(2.1, 18.3)

0.011 3.4(2.5, 112.2) vs 2.1(1.1, 5.0) 0.02 273(44, 381) vs 3.1(2.2, 4.2) <0.001

LDH 173(151, 184) vs 219
(172, 278)

<0.001 224(176, 290) vs 193(160, 270) 0.404 288(196, 327) vs 218(180, 251) 0.054
frontie
HCG, human chorionic gonadotropin; AFP, alpha fetoprotein; LDH, lactic dehydrogenase; IQR, interquartile range.
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(Table 3C), LR also outperformed other models, achieving an

accuracy of 90.7% (sensitivity 90.0%, specificity 92.3%, PPV

96.4% and NPV 80.0%) with a high AUC of 0.928 (95% CI 0.858-

0.996). Overall, LR was the best choice for the histological

classification of testicular masses. The ROC curves of LR among

the three groups were demonstrated in Figure 3.
Discussion

This is the first study that applied CT texture analysis (CTTA) to

assess the pathological subtypes of testicular tumors. All the patients

were divided into three groups to evaluate the ability of texture features

for identifying benign and malignant testicular masses, identifying

primary testicular lymphoma in malignant tumors and identifying

seminoma in testicular germ cell tumors, respectively. For all three

groups, the most appropriate model was LR rather than ML-based

classifiers by the data standardization of z-score.

Testicular tumor is a heterogeneous group of diseases with

various pathological subtypes and clinical behavior, which leads to

different response to treatment (21). Firstly, the treatment of benign

and malignant mass is different. Radical orchiectomy was the

standard operation of TGCTs while symptomatic treatment is

often used in benign masses. As to clinical stage I non-

seminomas without vascular and lymphatic infiltration,

retroperitoneal lymph node dissection (RPLND) is the standard

treatment for patients without follow-up conditions. CTTA

facilitates clinical evaluation and psychological development of

patients, and to some extent RPLND could even be performed

immediately after orchiectomy, avoiding the need for a second

operation. As to clinical stage II TGCTs, seminomas tend to have

sensitive response to radiotherapy while non-seminomas tend to

benefit more from RPLND or neo-adjuvant chemotherapy. As to

metastatic testicular tumors, urologists could only apply different

chemotherapy regimens according to the prognosis (7, 22). Under

the circumstance, exact pathological results cannot be reached from
Frontiers in Oncology 06
the surgical specimens. Conventionally, ultrasound examination is

the preferred choice for testicular masses. Despite its high sensitivity

in the mass detection, it shows low specificity in distinguishing

between benign and malignant masses, let alone other pathological

subtypes (23, 24). Furthermore, testicular biopsy is used in some

centers but has not gained widespread acceptance because of

narrow indications and concerns for tumor seeding along the

biopsy tract. Germ cell neoplasia in situ (GCNIS) could be

diagnosed by testicular biopsy using immunohistochemistry with

high sensitivity and specificity. However, a certain amount of false-

negative biopsy was brought inevitably (25). Thus, non-invasive test

for the evaluation of testicular masses may open the possibility of

allowing histological subtype classification.

CT is recommended for the pre-surgical assessment of testicular

masses, and at the same time, could evaluate retroperitoneal lymph

node metastases. However, the heterogeneity of tumors is not

particularly obvious on imaging and the diagnostic accuracy

depends on the experience of radiologists. In the present study,

we found that quantitative CTTA potentially allowed for detection

of subtle differences and was able to differentiate various histological

subtype classifications beyond visual assessment. To date, as far as

we know, there have been no CTTA related studies on testicular

tumors. Previous research has focused on tumors such as epithelial

ovarian carcinoma, renal cell carcinoma or lung carcinoma (26–29).

In the study of An et al. (26), they demonstrated that CTTA was

instrumental in the identification of high-grade serous carcinoma

(HGSC) or non-HGSC in 205 patients. Erdim et al. (28)

investigated that renal masses with unclear pathological diagnosis

could be distinguished through ML-based CTTA in 79 patients.

Furthermore, Ceyda et al. (27) has confirmed the ability of different

ML-based classifiers in the prediction of Fuhrman nuclear grade of

clear cell renal cell carcinomas in 53 patients. Yang et al. (29)

evaluated the value of 2D and 3D CTTA in predicting lymphatic

vascular invasion in lung adenocarcinoma.

Our study is not only focused on the differentiation of benign

and malignant lesions but also on identifying primary testicular
TABLE 3A Performance of ML classifiers, LR and LR-LASSO in differentiating benign masses from malignant masses with the method of Z-score
and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 77.5% 74.0% 85.7% 92.5% 58.1% 0.59 0.833 (0.711-0.954)

z-score 87.3% 92.3% 76.2% 90.2% 80.0% 0.68 0.866 (0.758-0.972)

SVM mean 86.0% 84.1% 90.1% 95.4% 70.4% 0.74 0.922 (0.852-0.990)

z-score 91.6% 94.2% 85.7% 94.0% 85.7% 0.80 0.900 (0.804-0.995)

LDA mean 88.7% 87.9% 90.5% 95.7% 76.0% 0.78 0.910 (0.825-0.996)

z-score 88.7% 88.3% 90.5% 95.7% 76.0% 0.79 0.910 (0.825-0.996)

LR mean 87.3% 85.8% 90.5% 95.6% 73.1% 0.76 0.944 (0.892-0.995)

z-score 87.3% 86.1% 90.5% 95.6% 73.1% 0.77 0.946 (0.896-0.995)

LR-LASSO mean 88.7% 89.9% 85.7% 93.8% 78.2% 0.76 0.912 (0.836-0.988)

z-score 88.7% 88.4% 90.5% 95.7% 75.0% 0.78 0.946 (0.894-0.996)
ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
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lymphoma in malignant tumors and identifying seminoma in

TGCTs. The differential diagnosis of TGCTs or non-TGCTs was

not included in our study for the reason that most testicular tumors

were germ cell neoplasms (accounting for 95%), and the remaining

few were of no great discriminative value and had a low incidence.

To avoid confounding bias, we also did not identify lymphoma and

seminoma across all tumor types. We think the above process may

be more appropriate and in line with the clinical practice. The

performance of most classifiers in all three groups are satisfactory.

Despite the ACC of SVM is slightly higher than LR in group 1, we

chose LR as the best classifier for the better stability of the model

(the AUC of LR was higher than SVM) (30). For group 2, SVM and

LR-LASSO seem to outperform LR (P >0.05). Nevertheless,

compared to LR, the AUC of the two classifiers had a relatively

large reduction when using the data standardization of mean. For

group 3, LR was obviously superior than other models (P <0.05).

Therefore, in view of the fact that the diagnostic performance of
Frontiers in Oncology 07
each model was not significantly different, we still tend to choose LR

as the last model for uniformity. In general, CTTA could be

potentially valuable in guiding treatment and provide a reliable

reference for clinicians.

The result of optimal features indicated that the entropy of the

gray-level cooccurrence matrix (GLCM) for AP, energy of the first-

order texture feature for PP and 90th percentile of the first-order

texture feature for UP were features with the largest coefficient for

the three groups, respectively. For group 1, malignant testicular

tumors were characterized by a greater entropy for AP (P =0.028).

Entropy represents the randomness or complexity of the texture in

the image and a greater entropy tends to reflect heterogeneity,

which exactly demonstrated the invasive growth pattern with

poorly defined boundaries in malignant tumors (31–33). In

addition, malignant testicular tumors appear to be more irregular

on cells for the different degree of the disturbed formation of the

germ cells (22, 34). Energy is the sum of the squares of voxel values
TABLE 3B Performance of ML classifiers, LR and LR-LASSO in differentiating primary testicular lymphoma from non-lymphoma in malignant tumors
with the method of Z-score and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 93.7% 90.0% 94.7% 78.3% 97.8% 0.85 0.965 (0.930-1.000)

z-score 87.6% 89.8% 86.2% 58.1% 97.6% 0.76 0.921 (0.847-0.995)

SVM mean 93.7% 90.0% 94.7% 78.3% 97.8% 0.85 0.973 (0.947-0.998)

z-score 93.0% 100% 91.5% 71.4% 100% 0.91 0.986 (0.970-1.000)

LDA mean 87.7% 100% 85.1% 58.8% 100% 0.85 0.979 (0.957-1.000)

z-score 87.7% 100% 85.1% 58.8% 100% 0.85 0.979 (0.957-1.000)

LR mean 90.4% 100% 88.3% 64.5% 100% 0.88 0.982 (0.963-1.000)

z-score 90.4% 100% 88.3% 64.5% 100% 0.88 0.982 (0.963-1.000)

LR-LASSO mean 96.5% 85.0% 98.9% 94.4% 96.7% 0.84 0.978 (0.959-1.000)

z-score 91.2% 100% 89.4% 66.7% 100% 0.89 0.985 (0.967-1.000)
ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
TABLE 3C Performance of ML classifiers, LR and LR-LASSO in differentiating seminoma from non-seminoma in TGCTs with the method of Z-score
and mean.

Model Standardization ACC SEN SPE PPV NPV Youden AUC (95 % CI)

AE mean 79.1% 85.0% 65.4% 85.0% 65.4% 0.50 0.765 (0.639-0.891)

z-score 72.1% 75.0% 65.4% 83.3% 53.1% 0.40 0.673 (0.528-0.819)

SVM mean 84.9% 83.3% 88.5% 94.3% 69.7% 0.72 0.890 (0.805-0.974)

z-score 87.2% 83.3% 96.1% 98.0% 71.4% 0.79 0.919 (0.847-0.989)

LDA mean 88.4% 91.7% 80.8% 91.7% 80.8% 0.72 0.912 (0.839-0.984)

z-score 88.4% 91.7% 80.8% 91.7% 80.8% 0.72 0.912 (0.839-0.984)

LR mean 90.7% 90.0% 92.3% 96.4% 80.0% 0.82 0.925 (0.858-0.996)

z-score 90.7% 90.0% 92.3% 96.4% 80.0% 0.82 0.928 (0.855-0.994)

LR-LASSO mean 86.1% 83.3% 92.3% 96.1% 70.6% 0.76 0.894 (0.808-0.978)

z-score 86.2% 81.7% 96.2% 98.0% 69.4% 0.78 0.919 (0.848-0.988)
ML, machine learning; LR, logistics regression; LR-LASSO, logistics regression-least absolute shrinkage and selection operator; AE, autoencoder; SVM, support vector machine; LDA, linear
discriminant analysis; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; CI, confidence interval.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1284040
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hu et al. 10.3389/fonc.2023.1284040
and reflects the uniformity of image gray distribution and texture

thickness (35, 36). Primary testicular lymphoma displayed a lower

energy (P <0.001) and it may be associated with a worse overall

survival and more aggressive tumors (36, 37). We also found that

higher 90th percentile was correlated with seminomas (P =0.020),

demonstrating a phenomenon of hyper-attenuation in UP (38).

Possible explanation for this is that seminomas typically have

homogenous internal attenuation while non-seminomas show

inhomogeneous soft-tissue density (39). Moreover, as the

representation of low attenuation, hemorrhage and necrosis of

seminomas may present but are usually limited (40, 41).

There are several limitations in our study. First, owing to the low

morbidity, the sample size of the study is small inevitably. We had to

apply the method of data augmentation to expand the sample size,

which may aggravate selection bias. Secondly, no comparison was

made with MRI and ultrasound in terms of diagnostic efficacy because

not all patients had complete imageological examinations. Besides, as a

comparative analysis with CTTAwith other experimental methods like

flow cytometry, H&E, IHC that would help to accurately diagnose the

tumors based on CTTA. We look forward to further research on MRI

and detecting techniques in the identification of testicular tumors.

Thirdly, the potential impact of this methodical difference on clinical

findings is largely unexplored. the reproducibility of texture analysis

has yet to be established widely. Some issues like image acquisition and

image quality, and their effect on texture analysis need to be regulated

and resolved. Fourthly, our study was retrospective and lack of external

validation. Although 5-fold cross validation was used, the risk of

overfitting could not be avoided. Fifthly, a three- dimensional CTTA

may be time-consuming, but this exactly the advantage of our study.

Lastly, we chose only a few representative ML classifiers. Lastly,

different devices and software may have different consequences.

Thus, large-scale and well-designed studies are warranted to validate

the performance of the models.
Conclusion

In conclusion, LR model based on CTTA might be a promising

non-invasive tool for the diagnosis and differentiation of testicular

masses. The accurate diagnosis of testicular masses would
Frontiers in Oncology 08
assist urologists in correct preoperative and perioperative

decision making.
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