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Immune Checkpoint Inhibitors (ICI) have revolutionised cancer care in recent

years. Despite a global improvement in the efficacy and tolerability of systemic

anticancer treatments, a sizeable proportion of patients still do not benefit

maximally from ICI. Extensive research has been undertaken to reveal the

immune- and cancer-related mechanisms underlying resistance and response

to ICI, yet more limited investigations have explored potentially modifiable

lifestyle host factors and their impact on ICI efficacy and tolerability. Moreover,

multiple trials have reported a marked and coherent effect of time-of-day ICI

administration and patients’ outcomes. The biological circadian clock indeed

temporally controls multiple aspects of the immune system, both directly and

through mediation of timing of lifestyle actions, including food intake, physical

exercise, exposure to bright light and sleep. These factors potentially modulate

the immune response also through the microbiome, emerging as an important

mediator of a patient’s immune system. Thus, this review will look at critically

amalgamating the existing clinical and experimental evidence to postulate how

modifiable lifestyle factors could be used to improve the outcomes of cancer

patients on immunotherapy through appropriate and individualised entrainment

of the circadian timing system and temporal orchestration of the immune

system functions.
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Introduction

Discoveries in immunotherapy have revolutionised cancer treatment. In 2018, James

Allison and Tasuku Honjo won the Nobel Prize in Medicine for their work investigating

the proteins CTLA-4 and PD-1 (1). Found on T cells, these proteins acted as checkpoint
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molecules, moderating T cell activation and preventing over-

activation. As T cells are also involved in immunosurveillance of

cancer cells (2), tumours can exploit CTLA-4 and PD-1 expression

to evade host immune response. Inhibiting these checkpoint

molecules can therefore enhance the antitumour immune

response (3).

The antibodies subsequently developed to target checkpoint

molecules and block their function are referred to as immune

checkpoint inhibitors (ICI) and are the most widely used form of

immunotherapy in cancer clinics. Currently, ICI are licensed to

treat a wide array of cancers, including melanoma, lung, head and

neck, renal, mesothelioma, breast, oesophageal, gastric, colorectal,

biliary tract and urothelial carcinomas (4).

However, primary or acquired resistance remains a problem

even with ICI (5). In addition, over activation of T cells can

endanger self-tolerance, with the unavoidable risk of developing

potentially life-threatening autoimmune adverse effects even years

following initial treatment (6, 7).

In patients unlikely to respond to ICI therapy, accurate prediction

of efficacy and tolerability would allow clinicians to minimise adverse

effects and delays to these inherently time-pressured treatment plans.

For many reasons, including difficulties developing appropriate in-

vitro assays, the determinants of ICI efficacy, tolerability, and

deleterious interactions are not fully understood, but are generally

appreciated to be multifactorial and likely involve both modifiable

and non-modifiable factors.

Many biomarkers both from the original tumour and

circulating cells have emerged as areas of research interest into

the impact of ICI efficacy and/or tolerability (8, 9). Alongside these

factors, recent reports have highlighted the relevance of the

circadian timing system (10). In turn, the CTS function is

influenced by a host of lifestyle factors (11, 12). Lifestyle factors

are of particular interest to clinicians, as they allow outcomes to not

only be predicted, but to be potentially manipulated as well. This

aspect of non-pharmacological interventions in oncology is indeed

rising growing interest recently (13, 14). In this review, we critically

summarise existing evidence on key lifestyle factors of interest –

diet, physical exercise, and bright light exposure – with regards to

ICI efficacy, through CTS manipulation, and impact on the immune

system and the microbiome. We then discuss how these factors all

interact to form a complex web which, with further understanding,

may be manipulated by the empowered patient in conjunction with

clinicians and various specialised healthcare professionals to

optimise response to cancer immunotherapy (15, 16).
The circadian timing system

The human body has an inherent timekeeping ability. Its

internal ‘clock’ is thought to have evolved thanks to the survival

advantage conferred by the ability to predict bodily requirements

and adapt accordingly (17, 18). Circadian (i.e., with a period of

about 24 hours) rhythms reflect the nature of the world humans

have evolved in – being that environmental properties change with

time in a predictable pattern based on the Earth’s rotation. In
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humans, the CTS hierarchically involves a central pacemaker, the

suprachiasmatic nucleus in the ventral hypothalamus, and

peripheral oscillators, temporally coordinated by hormonal,

neural and physiological cues (19). Timing within cells themselves

involve transcription-translation feedback loops and post-

translation modifications involving a set of core clock genes,

which encode proteins with limited half-lives (17). The rhythmic

oscillations in core clock genes coordinate, in a tissue specific

function and directly and indirectly, circadian transcription of

selected genes, which ultimately engender variation in cellular

functions over the 24-hour period, including cancer- and

immunity-related hallmarks (20–22).

Although the CTS does not require external input, it can be

entrained using external stimuli, such as light exposure. Other

stimuli which can entrain the CTS include feeding times, exercise,

and social schedules (11, 12, 23–26). Consequentially, manipulation

of exposure to rhythmic entraining cues can be used to enhance or

shift the CTS function (27), with potential benefit for patients’

wellbeing (28).

Timekeeping behaviour is also important to the immune system.

Intrinsic clocks have been demonstrated to be present in a number of

innate immune cells, causing rhythmic gating of function as well as

regulating temporal spatial abundance (29). Natural killer cell

cytolytic activity was found to be suppressed in correlation with

altered clock gene expression in rats experiencing a simulation of

chronic shift-lag, which was also associated with increased lung

tumour growth (30). Additionally, experimental disruption of host

circadian rhythms has shown to create an immunosuppressive

remodelling in the tumour microenvironment, promoting cancer-

cell proliferation andmetastatic spread (31, 32). Evidence of circadian

rhythmicity has also been found in the adaptive immune system in

regulating CD8+ T-cell and dendritic cell differentiation and

trafficking, with implications in cancer immunotherapy (29, 33).

Studies in night shift work in humans corroborate experimental

evidence on a negative effect of circadian disruption on immune

system physiology (34).

The circadian rhythmicity of the innate and adaptive immune

system ensures proportionate responses to infections, whereas

dysregulation presents acutely in an inflammatory cytokine

syndrome or manifests long-term as chronic inflammatory

conditions, with relevant therapeutic implications in oncology as

well as in many other medical conditions and procedures (35, 36).

The taxonomic composition of the microbial ecosystem,

principally but not solely in the gut, has been associated with the

incidence and clinical course of many different diseases, as well as

with response to specific treatments (37). The mechanisms

involved, which can display circadian oscillations (38, 39), include

direct vagal stimulation, inflammation processes, and production of

cytokines and metabolites (38, 40). Of paramount interest here is

the growing evidence of the impact of the gut microbiota on ICI

efficacy (41). Alongside this, the CTS and microbiome have been

demonstrated to have intertwined relationships illustrated best by

research showing how in combination they can synchronize bi-

directionally the body’s metabolic response to diet (42) as well as

light (43), exercise (44) and socialisation (45). Thus, the gut
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microbiome, itself potentially modifiable through iatrogenic

interventions (46) takes a pivotal role in the rhythmic interplay

among malignant processes, metabolism and immunity (13, 38, 47–

49). Indeed, as a developing theme, the gut microbiome has been

demonstrated as having effects on innate immunity, adoptive

immunity and intriguingly direct within the tumour

microenvironment (50).

The link between the immune system and the CTS has been

used to investigate potential ways of optimising response to various

cancer treatments, including ICI. In particular, the time of day of

ICI administration has been shown to be an independent prognostic

factor for overall survival in several cancer types, with consistent

findings disfavouring late afternoon administration (51). As the

CTS can be entrained through modifications to lifestyle

determinants, it therefore stands to reason that via the CTS

certain lifestyle modifications could ultimately positively impact

overall survival in cancer patients receiving ICI (Figure 1).
Light exposure

Photic signals from the retina to the suprachiastmatic nucleus

(SCN) encodes time of day information regarding the

environmental surroundings (52). Photic signalling integrated in

the SCN modify cellular and molecular activity of astrocytes,

neurones and synchronises peripheral clock activity of organs (52,

53). The SCN interacts with peripheral clocks via inputs from the

endocrine and adrenergic nervous system (54) resulting in

activation of immune cells (55).
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However, photic signalling information can be altered in cancer

patients because of insufficient physiological bright light exposure

during the day and experience of artificial light at night (ALAN). For

example, ALAN affects both innate and adaptive immune function in

invertebrates, birds, and rodents with robust pineal melatonin

rhythm (43). Abnormal photic exposure not consistently encoding

time-of-day information can affect innate and adaptive immune

activity (44, 45, 56, 57), potentially impacting the efficacy of ICI.

Although the impact of circadian photic schedule on ICI remains

putative to date, in other conditions such as in psychiatry, light-based

chronotherapy has shown positive therapeutic interactions with

pharmacological and other behavioural interventions (58–60).

Although prone to intrinsic constraints in the anatomical region of

measured light exposure, contemporary digital tools allow for

circadian evaluation of light exposure schedule and intensity, with

potential cancer chronoimmunotherapeutic overtones (61, 62).

It is shown trafficking of immune cells are affected in a time of

day dependent fashion (63, 64) Photic exposure entrains immune

cell trafficking via the adrenergic nervous system (63, 64). No direct

evidence exists to our knowledge on the impact of photic scheduling

and entraining effects on outcomes of ICI, chemotherapy or other

targeted therapies used in cancer. There are experimental and

clinical data to support the impact of daytime bright light

exposure and avoidance of artificial light at night, on both the

immune and microbiome activity (43, 65–68). For instance, in the

absence of light, the sympathetic nervous system triggers the pineal

gland to produce melatonin, which synchronises SCN activity to

peripheral clocks of immune cells (57, 69). Melatonin regulates

innate, cellular and humoral responses of the immune system

through modulating production of cytokines and oxidative stress

(57). Additionally, melatonin acts as an immunostimulant under

basal or immunosuppressed conditions, providing more effective

early immune response against external stressors, such as viruses or

parasites (70). However, in transient or chronically exacerbated

immune response states, melatonin exerts negative regulation and

can be regarded as an anti-inflammatory molecule (71).

The activity of the immune system is also influenced by Vitamin

D, which is produced because of sunlight’s effect on keratinocytes

(72, 73). Furthermore, Vitamin D modulates the gut microbiome

and its metabolic activity, which is shown to be influenced by ALAN

(69, 74). Thus, Vitamin D deficiency is linked with inflammatory

bowel disease (75), obesity (76), diabetes (77), pro-inflammatory

cytokine production (78), intestinal barrier disturbance (79), gut

dysbiosis (80) and immune-mediated disease (81).
Physical exercise

Physical exercise has been shown to strongly entrain the human

circadian timing system, particularly through its effects on skeletal

muscle and the cardiovascular system (82, 83). Furthermore,

peripheral clocks within cardiovascular cells are key for

modulating endothelial function, vasodilation, resistance, blood

pressure, heart rate and several other key functions (84). Aerobic

exercise induces neuroendocrine changes including increased

production and release of melatonin and lower cortisol levels at
FIGURE 1

Figure showing some of the reported relations between lifestyle
factors, the CTS, the microbiome, and ICI efficacy.
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night. This allows resynchronisation of the circadian clock,

resulting in better sleep quality, and lower blood pressure and

heart rate (82).

Entrainment of the circadian rhythm via exercise occurs even

through low-intensity exercise and may be partly driven by changes

in body temperature during physical activity (85). The degree to

which physical exercise increases the body temperature is also

dependent on the circadian phase, being larger in the rest phase

than in the active phase (84). Moreover, combining photic cues, and

non-photic exercise cues, has been shown to result in entrainment

of the human clock at a faster rate than those with limited

exercise (82).

Altogether, appropriate physical exercise in terms of timing,

intensity, duration and type, adapted to the individual constraints of

cancer patients, can be exploited to entrain the CTS and increase the

robustness of circadian rhythms. Mobile health devices can lend

useful tools to implement tailored circadian-based exercise

schedules, even in cancer patients on ICI (16, 86, 87).

Although no direct evidence on the impact of physical exercise

on outcomes on ICI is available to date, its impact on both the

immune system and the microbiome supports its individualised

manipulation to try to increase circadian-based ICI efficacy. Indeed,

physical exercise has several immunomodulatory effects, including

immune cell mobilisation in the blood, particularly PD-1+ CD8+ T

cells redirected to peripheral tissues, which are crucial for host

defence against tumours (88, 89).

An additional study analysing mice with pancreatic cancer

demonstrated an improved responsiveness to immunotherapy in

mice that exercised regularly, compared to those that did not. Mice

who had regular exercise also had a greater antitumor response and

an increased volume and influx to tumours of NK and CD8+ T

cells (90).

Moreover, regular exercise influences the gut/brain axis, leading

to an anti-inflammatory, immunoregulatory state and enriched gut

microflora diversity (91). Indeed, multiple factors have been

associated with intestinal dysbiosis in cancer patients (92), and

physical exercise, alongside diet, could be a potentially modifiable

element to ameliorate the gut microbiome in order to maximise

benefit from ICI.
Diet

Our eating habits generally follow a broad pattern that repeats

every 24 hours. This pattern will vary from person to person and

culture to culture, however commonly it may include three meals of

various composition at a similar time each day. Interactions

between the CTS and diet can therefore be divided into those

relating to meal timing and those related to meal composition.

Evidence suggests both these factors interact with the CTS (25, 93).

Food is one of the main synchronisers of the peripheral clocks

(94). Both meal timing and meal composition can disrupt and re-

programme the CTS by altering clock gene expression, causing

reorganisation of liver metabolic pathways and altered pancreatic

insulin secretion (95, 96). Thus, with regards to circadian

entrainment, both timing, including fasting duration, and
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composition of the meal are relevant and could be potentially

manipulated for therapeutic purposes. Modern digital tools can

provide monitoring capability of feeding and fasting habits over the

24-h period and a way to behavioural dietary interventions (16, 86,

97–99).

Furthermore, diet can influence markers of immune function,

with an association between diet and incidence of several immune-

mediated diseases including allergy, diabetes, and cancer reported

(100). Moreover, fasting can influence immune responses in

tumour-laden mice, with twice-monthly fasting resulting in

higher white blood cell count and reduction in neoplasms despite

no change in calorie intake (101). The influence of circadian dietary

pattern on the immune system has also been explored, with studies

showing associations between circadian feeding cycle, fasting period

and alterations in both adaptive and innate immune response, with

potential therapeutic implications (56, 102, 103).

Modifying diet also affects the gut microbiome, with different

diets associated with noticeably different abundances and diversity

of gut microbiota (104–106).

Interactions between outcomes on ICI and diet are thought to

often occur via the microbiome, with studies reporting correlations

between diversity and relative abundance of specific species, such as

Akkermansia and Ruminococcaceae (107–109).

Contrarily to light exposure and physical exercise, there is

clinical evidence on the impact of diet type on ICI efficacy.

Although there is some discordance between studies, and

heterogeneity with regards to cut-offs, adherence and duration of

particular diets, disease types and clinical outcomes, there is an

overall trend towards better outcomes associated with what is

regarded as an healthy diet in humans in general by the WHO

(110). For instance, high amount of fruit and vegetable, and low

amount of dairy portions, were significantly associated with clinical

benefit from ICI therapy (111). Specifically, increased fibre intake

(threshold of 20g per day or more), higher adherence to a

Mediterranean diet (rich in whole grains, fish, nuts, fruit, and

vegetables, and low in red and processed meat), and a periodic

fasting-mimicking diet (consisting of a nutritional composition that

mimics fasting) displayed beneficial impact in patients receiving ICI

in various studies (112–114).

Moreover, normal (> 30 ng/dL) vitamin D3 levels, whether

naturally-occurring or through oral supplementation, were

associated with significantly better outcomes (115). Furthermore,

experimental evidence suggests an impact of ketogenic (low

carbohydrate, low protein, and high fat) diet, of dietary amino-

acid restriction and of polyphenols administration on ICI efficacy

(116–118).

Interestingly, defecation frequency was also relevant, with

emptying bowels less than daily associated with poor response to

ICI (111).
Discussion

Immune checkpoint inhibitors have provided enormous benefit

in the management of an ever-expanding array of cancer types, with

dramatic increases in overall survival in those who respond. Their
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current main weaknesses lie in a variable response rate and risk of

toxicity. Recent studies have consistently reported increased efficacy

of ICI therapy when infusions were administered in the morning,

and that timing of immunotherapy is an independent prognostic

factor for overall survival (10, 51, 119–126). This suggests a link

between ICI efficacy and the CTS, which is responsible for circadian

variations in many physiological features. In reporting a correlation

between time of administration and efficacy, the findings suggest

the CTS could be harnessed by clinicians to improve ICI efficacy. In

order to do this, it is important a patient’s CTS is entrained, as any

benefit could be impaired by CTS disruption. Indeed, circadian

disruption (evaluated with continuous wrist-actigraphy or with

diurnal salivary cortisol slope) has been associated with shorter

overall survival in various cancers, but not yet in those treated with

ICI (127, 128).

Conveniently, the CTS can be entrained by numerous lifestyle

factors which have also been shown in studies to have independent

effects on the immune system, the microbiome and sometimes on

ICI efficacy, as shown above and as brilliantly discussed by others

very recently (13). Both ICI therapy and circadian systems are

complex, and further research will be needed to better understand

the science of their interactions in order to harness this insight for

therapeutic purposes.

Although extensive research is aiming at identifying tumour-

associated or host-related factors predicting for ICI efficacy or

tolerability, most of them are immutable and intrinsic to the

patient and the disease, thus potentially impossible to be

manipulated (e.g., PD-L1 expression levels) or very hard to be

meaningfully modified in a relatively short timeframe (e.g., body

mass index) (129). Similarly, the use of some drugs (e.g., antibiotics,

proton-pump inhibitors and obviously steroids) has been shown to

impair ICI efficacy in retrospective studies (130). Yet, most likely

these drugs have been prescribed for a therapeutic reason and

arguably it would not be easy to avoid them altogether in

clinical practice.

Conversely, lifestyle interventions, including light exposure,

physical exercise and diet, could be allegedly manipulated more

easily to obtain the maximal therapeutic benefit from ICI (Table 1).

Thus, a circadian-based optimisation of entraining cues and timing

of administration could safely improve the outcomes of cancer

patients treated with ICI.

However, this would require dedicated observational and

interventional studies, with a robust translational component, in

order to precisely and dynamically personalise lifestyle

modifications. Indeed, the intertwining between these factors are

multiple and complex, and involve hormonal messaging (e.g.,

melatonin, Vitamin D), unavoidable interactions (e.g., between

outdoors physical activity and exposure to bright sunlight), and

indirect microbiome-mediated mechanisms.

Further, they are all intrinsically bound to occur at a certain

time of the day, thus impacting on the CTS and its temporal control

of the immune system and of pharmacological determinants

(136, 137).

Thus, although with this brief overview we have critically

discussed photic stimuli, physical exercise and dietary factors,

encompassing clinical and experimental findings, we believe that
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additional research will be of great interest and should be warranted

in furthering our understanding of the effects of lifestyle factors on

ICI efficacy as a whole, through modulation of the CTS, and the

temporal organisation of the immune system and the microbiota.

However, difficulties with this approach should be acknowledged,

including the intrinsic heterogeneity in populations, studies and
TABLE 1 Table of potential lifestyle interventions, their effects, and
clinical considerations for studies/deployment.

Intervention Effects Aspects to be
considered/
optimised

Physical Exercise * Entrainment of the CTS,
increased production of
melatonin and lower cortisol
release at night (82)
* Anti-inflammatory and
immunoregulatory effects (91)
* Immune cell mobilisation to
peripheral bloodstream, including
PD-1 CD8+ T cells, which are vital
for host tumour defence (88, 89)
* Enrichment of gut microbiome (91)

* Regularity and
frequency of exercise
* Time of day
exercise is conducted
* Intensity and type
of exercise
* Duration of exercise
* Circadian phase
whilst exercising and
change in body
temperature

Light Exposure * Causes suprachiasmatic nucleus
neurons (master clock) to alter
clock gene expression (53, 131, 132)
* Clock genes expressed
synchronise peripheral clocks to the
daily light dark cycle (120, 133)
* Affects both innate and adaptive
immunity (43, 45, 57, 134)
* Alters gut microbiome and its
metabolic activity (69, 135)

* Timings of bright
(outdoors) light
exposure
* Duration of bright
(outdoors) light
exposure
* Intensity of artificial
bright light exposure
* Timing of avoidance
of artificial light at
night exposure
* Feasible and
realistic intensity (and
spectrum) of
acceptable artificial
light at night

Diet * Entrainment of the CTS (94)
* High levels of fruit and veg
consumption associated with
improved ICI efficacy (111)
* Low dairy consumption also
associated with improved ICI
efficacy (111)
* Increased fibre intake
associated with improved
progression-free survival (112)
* Normal vitamin D levels (with
or without supplementation)
associated with improved
response rate (115)
* Increased adherence to
Mediterranean diet associated
with increased chance of
response to ICI (114)
* Fasting-mimicking diet
associated with increased ICI
efficacy (113)
* Opening bowels daily
associated with improved ICI
efficacy (111)

* Fibre intake
* Vitamin D levels
* Mediterranean diet
adherence
* Fruit and vegetable
consumption
* Dairy consumption
* Frequency of
defecation
* Spacing of meals
throughout day
* Duration of fasting
period
* Consistency of meal
timings
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outcomes, and, for instance, microbiome composition across cohorts

(138), as well as the tolerance to interventions to factor into a patient’s

cancer treatment plan.

This tolerance is indeed equally relevant when using lifestyle

modifications as treatments. Consideration should be given as to the

likeliness of patients with cancer and undergoing cancer treatment being

able to enact and maintain lifestyle changes without unduly impacting

their quality of life. For the patient, the impact of certain lifestyle

modifications may not outweigh the possible benefit of increased ICI

efficacy in a trade-off which will be personal to the patient.

It is difficult to discuss the potential for lifestyle modifications to

optimise cancer treatment further without taking the time to

emphasise the importance of the individual patient. Not only will

optimisation of cancer treatment have to consider cancer subtype

and patient chronotype, but also the patient’s symptoms,

comorbidities, habits, health beliefs, socio-economic status, social

support, self-determination, and values in helping them make

informed decisions on how best to utilise lifestyle modifications

to optimise their cancer management. Practical implementation of

such approaches could also be challenging, without appropriate

support. Tellingly, surveys carried out exploring how often patients

implement lifestyle changes after cancer diagnosis found that 41 to

65% of patients made dietary changes post-cancer diagnosis and 14

to 27% increased their level of exercise (139, 140). Future research

could also make use of digital technologies to monitor circadian

biorhythm to further refine our understanding of the correlation

between the CTS and outcomes on ICI (127).

In summary, building on evidence showing the CTS plays a role

in increasing ICI efficacy and circadian disruption have deleterious

effect on cancer patients survival, we argue CTS precise and

personalised entrainment by lifestyle factors such as photic

stimuli, diet composition and timing, and physical exercise could

be harnessed to potentially increase ICI efficacy. Conveniently,

existing evidence suggests these behavioural interventions shown

to improve outcomes on ICI – either directly or via the gut

microbiota – regularly are associated with healthier lifestyle

habits, with intrinsic health benefits. Combining these findings,

the CTS could feasibly be entrained by a patient-tailored

combination of lifestyle determinants of ICI efficacy to maximise

response, with future research offering patients and clinicians an

expanding evidence base on which to draw from.
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