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An open-source nnU-net
algorithm for automatic
segmentation of MRI scans
in the male pelvis for
adaptive radiotherapy

Ebbe Laugaard Lorenzen1,2*, Bahar Celik1, Nis Sarup1,
Lars Dysager3, Rasmus Lübeck Christiansen1,
Anders Smedegaard Bertelsen1, Uffe Bernchou1,2,
Søren Nielsen Agergaard1, Maximilian Lukas Konrad1,
Carsten Brink1,2*, Faisal Mahmood1,2, Tine Schytte2,3

and Christina Junker Nyborg3

1Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital,
Odense, Denmark, 2Department of Clinical Research, University of Southern Denmark,
Odense, Denmark, 3Department of Oncology, Odense University Hospital, Odense, Denmark
Background: Adaptive MRI-guided radiotherapy (MRIgRT) requires accurate and

efficient segmentation of organs and targets on MRI scans. Manual segmentation

is time-consuming and variable, while deformable image registration (DIR)-

based contour propagation may not account for large anatomical changes.

Therefore, we developed and evaluated an automatic segmentation method

using the nnU-net framework.

Methods: The network was trained on 38 patients (76 scans) with localized

prostate cancer and tested on 30 patients (60 scans) with localized prostate,

metastatic prostate, or bladder cancer treated at a 1.5 T MRI-linac at our

institution. The performance of the network was compared with the current

clinical workflow based on DIR. The segmentation accuracy was evaluated using

the Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff

distance (HD) metrics.

Results: The trained network successfully segmented all 600 structures in the

test set. High similarity was obtained for most structures, with 90% of the

contours having a DSC above 0.9 and 86% having an MSD below 1 mm. The

largest discrepancies were found in the sigmoid and colon structures. Stratified

analysis on cancer type showed that the best performance was seen in the same

type of patients that the model was trained on (localized prostate). Especially in

patients with bladder cancer, the performance was lower for the bladder and the

surrounding organs. A complete automatic delineation workflow took

approximately 1 minute. Compared with contour transfer based on the

clinically used DIR algorithm, the nnU-net performed statistically better across

all organs, with the most significant gain in using the nnU-net seen for organs
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subject to more considerable volumetric changes due to variation in the filling of

the rectum, bladder, bowel, and sigmoid.

Conclusion: We successfully trained and tested a network for automatically

segmenting organs and targets for MRIgRT in the male pelvis region. Good test

results were seen for the trained nnU-net, with test results outperforming the

current clinical practice using DIR-based contour propagation at the 1.5 T MRI-

linac. The trained network is sufficiently fast and accurate for clinical use in an

online setting for MRIgRT. The model is provided as open-source.
KEYWORDS

U-net, adaptive radiotherapy, MRI-guided, pelvis, segmentation, automatic
segmentation, open-source, nnU-net
1 Introduction

MRI-guided radiotherapy (MRIgRT) is a novel technology that

enables real-time imaging with high soft-tissue contrast and

adaptive treatment planning for various types of cancers.

MRIgRT could potentially reduce toxicity in prostate cancer

radiotherapy compared to conventional radiotherapy by

minimizing the irradiation of normal tissues (1). A recent

prospective phase II trial reported low rates of acute and late

genitourinary and gastrointestinal toxicity with MRIgRT for

localized prostate cancer (2).

However, MRIgRT also poses several challenges, such as the

accurate and efficient segmentation of organs and targets on MRI

scans. Manual segmentation is one of the most resource- and time-

consuming parts of adaptive MRIgRT, as it requires significant

human resources and expertise (3). Moreover, manual

segmentation is prone to inter- and intra-observer variability,

which may affect the quality and consistency of the treatment.

The current clinical practice at MRI-linacs (MRL) relies on

deformable image registration (DIR)-based contour propagation

from the planning (MRI/CT) scan to the MRI scan of the day, but

often profound manual editing is required, especially for organs

with large changes in volume due to variations in filling (4).

Therefore, there is a need for automatic segmentation methods

that can provide fast and reliable contours on MRI scans

for MRIgRT.

Artificial intelligence (AI)-based methods, such as deep learning

using convolutional neural networks (CNNs), have shown

promising results for automatic segmentation in the male pelvis

(5–11). However, most of the studies are of limited relevance due to

a low number of segmented organs or because the trained network

is not shared publicly.

This study aimed to train and test a network for the automatic

segmentation of 10 organs and targets in the male pelvic region on

MRI scans using the nnU-net framework (12). We compared the

performance of our trained network with the current clinical

workflow based on DIR. Finally, we tested the robustness of the

network on patients with other types of cancer than those in the
02
training cohort. The trained network is available for download as

open-source.
2 Materials and methods

2.1 Training, validation, and test data

Patients receiving radiotherapy for localized prostate, metastatic

prostate, and bladder cancers at the Elekta Unity 1.5 T MRI-linac

(Elekta AB, Stockholm, Sweden) at Odense University Hospital

from 2018 to 2021 were candidates for inclusion in this study. Two

MRI scans were included for each patient: the planning scan

obtained at a 1.5 T Philips Ingenia MRI scanner (Philips Medical

Systems BV, Best, The Netherlands) and the scan from the last

treatment fraction at the 1.5 T MRI-linac. These scans were chosen

to include variations in the image contrast, anatomical changes, and

potential radiation reaction of the tissue compared to the planning

scan. All scans were 3D T2-weighted (see Table 1 for scan

parameters). Localized prostate cancer was defined as patients

having prostate cancer with a maximum of T2bN0M0 and

metastatic prostate cancer as patients having metastatic prostate

cancer (TxNxM1). The patients with bladder cancer were fragile

patients with localized bladder cancer unfit for long-course

treatment. They were treated on the bladder alone.

Thirty-eight patients (76 scans) with localized prostate cancer

were used for training and validation. The test cohort consisted of a

total of 30 patients: nine patients with localized prostate cancer (18

scans), 11 with metastatic prostate cancer (22 scans), and 10 with

bladder cancer (20 scans).
2.2 Manual segmentation and guidelines

Ten organs shown in Figures 1, 2 were delineated to

form ground-truth segmentations according to the Danish

Multidisciplinary Cancer Groups guidelines (under publication).

The organs were as follows: prostate including the peripheral zone
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and excluding any extracapsular growth; seminal vesicles; penile

bulb; femoral head left and right separately excluding the hard bone

(2–3 mm) due to it having the same low intensity as tendons;

bladder including the bladder wall; anal canal; rectum; sigmoid,

defined as the sigmoid colon and the descending colon (only a small

part of the descending colon was included in the scans); bowel

including the ascending colon (a small part of the ascending colon

was typically present and difficult to differentiate from bowel, hence

this approach). The rectosigmoid was defined so that the rectum

leaves the mesorectum horizontally into the sigmoid colon. All

segmentations were performed post-treatment by an experienced

radiographer trained in delineating prostate cancer patients with

guidance from two experienced radiation oncologists. MIM 7.3.2

was used for the manual delineation. The needed delineation time

was decreased using an initial delineation model trained on the first
Frontiers in Oncology 03
13 training cases. Segmentations from this initial model were

provided for the remaining scans as input to the manual

segmentation, but all organs were corrected manually to agree

with the national guidelines. Training of the final model used all

the training data (including the initial 13 training cases) but did not

utilize any model parameters from the initial delineation model,

which was only used to make the delineation process time efficient.
2.3 Model training and inference

The original nnU-net package (version 1) (12) was used for

training and inference. The standard training procedure was used

for training a full-resolution 3D network, with the only

modification that no mirroring was used in the data

augmentation due to the femoral heads being defined as left- and

right-sided. The standard approach of training includes training in

a fivefold approach where five models are trained on five different

(but overlapping) training scan subsets, each including 80% of the

data and each model being validated on the remaining 20% (unique

to each model with no overlap between the five models—fivefold

cross-validation). A workstation with an Nvidia RTX 4090 GPU

and an AMD 7950X CPU was used for both training and inference.

Since the standard training approach was used, only 12 GB of GPU

memory was utilized. All five models were used for ensemble-based

inference as per the standard approach in the nnU-net.
2.4 Test metrics and statistics

For contour comparison, three metrics were used: Dice

similarity coefficient (DSC), mean surface distance (MSD), and

Hausdorff distance (HD). The MSD was calculated between two

contours, A and B, by calculating the mean of the shortest absolute

distance between all surface points in A toward B, then from B to A,

and finally by taking the mean of these two values. Similarly, the HD

was calculated as the maximum of the shortest distances of the

surface points in A to B, from B to A, and finally by taking the

maximum of these two values. All metrics were calculated in

MATLAB 2022B using in-house code. All segmentations were

sampled to the resolution of the corresponding image before

any analysis.
2.5 Comparison with clinical deformable
image registration

On all 30 test patients, manual ground-truth delineations were

performed at both the images from the Ingenia scanner (planning

scan) and the MRL scan of the patients. The clinical DIR algorithm

(DIR functionality in MONACO version 5.51.10) uses the manual

delineation of the planning scan (and the MRL scan) as input to

produce the clinical delineation of the MRL scan. The DIR

algorithm was applied to the manual delineation of the planning

scans to segment the MRL scans. Therefore, there were three sets of

delineations for all test patients at the MRL scans—manual ground
FIGURE 1

3D rendering of the 10 organs delineated in the study.
TABLE 1 Sequence parameters for the 3D T2-weighted MRI in the
training and test data.

Training (N = 76) Test (N = 60)

Reconstructed voxel size
[mm]

x 1 [0.81–1] 1 [0.91–1]

y 1 [0.81–1] 1 [0.91–1]

z 2 [2–2] 2 [2–2]

Reconstructed matrix size

x 448 [448–576] 448 [448–512]

y 448 [448–576] 448 [448–512]

z 125 [113–125] 125 [125–125]

Repetition time [ms] 1,300 [1,300–1,400]
1,400 [1,300–

1,400]

Echo time [ms] 87 [61–152] 150 [60–152]

Flip angle [degrees] 90 [90–90] 90 [90–90]

Number of averages 2 [2–2] 2 [2–2]

Scan time [s] 221 [221–283] 236 [221–283]
The x, y, and z (cranial–caudal) refer to the imaging axes. The read-out direction was along the
x-axis in all acquisitions. Values are given as median [minimum–maximum].
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truth, DIR, and nnU-net—while only the manual delineation and

the nnU-net delineations were available at the Ingenia scans.

Therefore, DIR and nnU-net could only be compared on the

MRL scans. The performance of the two automatic delineations

was evaluated by calculating the MSD relative to the ground truth

for each patient.

Potential differences were statistically tested using the Mann–

Whitney U test, with a statistical significance level of 5%.
2.6 Comparison of nnU-net performance
on planning and MRL scans

The MR images obtained from the Ingenia scanner differ

somewhat from those from the MRL. The performance of the

nnU-net algorithm on these two sets of images was evaluated by

calculating the MSD relative to the ground truth for each patient on

both the planning and the MRL scans.
3 Results

The trained model segmented all 600 structures in the test set

(30 patients, 60 scans, 10 structures per scan). The trained network

is available for download at [link will be provided following

acceptance for publication]. The performance of the nnU-net is

provided in Table 2. Across all nnU-net structures, 90% of the

contours had a DSC above 0.9, and 86% had an MSD below 1 mm.

The largest discrepancies were found in the sigmoid and colon

structures (included in the bowel), partly due to uncertainties in

differentiating between these two organs. Stratifying the analysis

according to the type of cancer, as shown in the boxplots in

Figure 3, showed that the performance in patients with localized

prostate cancer (same type of cancer as in the training set) and

metastatic prostate cancer is similar (left femoral head is the only

statically significant result, p = 0.048), while the performance in

patients with localized prostate cancer and bladder cancer showed
Frontiers in Oncology 04
statistically significant differences for the bladder (p = 0.001), anal

canal (p = 0.009), and sigmoid+bowel (p ≤ 0.001). These differences

indicate the potential difficulties in transferring models between

different types of cancers. A complete automatic delineation

workflow took approximately 1 minute.

Compared with contour transfer based on DIR in MONACO,

the nnU-net generally performed better across all organs, as shown

in Figure 4 (all p-values are below one permille, except for the left

femoral head, which has a p-value of 4%). The most significant gain

in using the nnU-net was seen for organs subject to more

considerable volumetric changes due to variation in filling, such

as the rectum, bladder, bowel, and sigmoid. The AI was better for

the prostate and the seminal vesicles, with a lower median value for

most patients, but had some outliers deviating more from the

ground truth than MONACO DIR, as shown in the scatter plot

in Figure 5.
FIGURE 2

Examples of the patient scans with the three types of cancer included in the study: localized prostate cancer (maximum stage of T2M0N0), metastatic
prostate (TxN0M1), and bladder cancer. The training cohort consisted of 76 scans of localized prostate cancer, and the test cohort consisted of 18 scans
of localized prostate cancer, 22 scans of metastatic prostate cancer, and 20 scans of bladder cancer.
TABLE 2 Test metrics for all 60 scans in the test set.

DSC MSD (mm) HD (mm)

Prostate 0.96 [0.94–0.98] 0.46 [0.34–0.83] 4.30 [2.83–7.26]

Seminal vesicles 0.94 [0.89–0.96] 0.35 [0.20–0.63] 4.00 [2.10–6.20]

Penile bulb 0.96 [0.94–0.97] 0.20 [0.12–0.30] 1.00 [1.00–2.00]

Femoral head_L 0.98 [0.98–0.98] 0.29 [0.27–0.38] 2.00 [1.00–2.24]

Femoral head R 0.98 [0.97–0.98] 0.29 [0.27–0.43] 2.00 [1.00–2.00]

Bladder 0.98 [0.96–0.99] 0.31 [0.18–0.68] 4.18 [2.00–16.57]

Anal canal 0.97 [0.96–0.98] 0.22 [0.19–0.40] 1.00 [1.00–2.24]

Rectum 0.97 [0.96–0.98] 0.28 [0.22–0.49] 2.00 [1.00–6.00]

Sigmoid 0.95 [0.89–0.97] 0.58 [0.28–2.00] 21.44 [7.54–46.55]

Bowel 0.96 [0.90–0.99] 1.15 [0.40–3.16] 24.71 [12.20–42.34]

Sigmoid+Bowel 0.97 [0.93–0.98] 0.65 [0.35–1.87] 18.91 [11.66–27.13]
The Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance
(HD) are presented as the median [25th–75th percentile]. Metrics for evaluating the sigmoid
and bowel as one structure are given in “Sigmoid+Bowel”.
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The performance of the nnU-net on the planning scan

correlated with the performance on the corresponding MRI-linac

scan with an overall Pearson’s correlation coefficient of

0.71 (Figure 6).
4 Discussion

We successfully trained and tested a network for the automatic

segmentation of organs and targets for use in MRI-guided

radiotherapy in the male pelvis. Good test results were seen for

the trained nnU-net, with test results outperforming the current

clinical practice using DIR-based contour propagation at the 1.5 T

MRI-linac. A complete segmentation time, including all data

conversion, was approximately 1 minute per patient, which is

sufficiently fast for clinical use.

To our knowledge, our study is currently the most

comprehensive regarding the number of organs in an openly

available network trained for segmentation on MRI in the male

pelvis. The performance of our trained network is similar to, or
Frontiers in Oncology 05
better than, that of other published studies on automatic

segmentation in the male pelvic region (MRI (5–7, 10, 11): and

CT (8, 9):), even though the number of training scans is relatively

low in our study (N = 76). This is possible due to the nnU-net

showing consistently good segmentation results across several

medical segmentation challenges (12) and, more specifically,

shown as the best algorithm for prostate segmentation on MRI

compared to a range of other CNN-based methods (6, 7). The

current performance with limited data is partly due to the nnU-net’s

heavy use of data augmentation (although we disabled mirroring in

our study) and a fivefold training approach, both maximizing the

use of the training data. In the initial phase of the current project, it

was concluded that our local clinical segmentations were somewhat

inconsistent (e.g., only the part of structures close to the irradiation

regions was delineated for specific patients since that was the

clinically relevant part). The observed clinical variation was why

it was decided to re-delineate the structures for the current project.

Thus, the good performance of our network is possibly due to the

careful and detailed manual delineation of the test and training

cases. This is in contrast to several other studies that have used
FIGURE 3

Mean surface distance (MSD) of the test results of the trained nnU-net segmentations of the 10 organs (sigmoid and bowel evaluated as one
structure) stratified according to the type of cancer of the 60 test scans.
FIGURE 4

Mean surface distance (MSD) of the nnU-net vs. ground truth compared with MSD of deformable image registration (DIR)-based contour transfer
using MONACO vs. ground truth evaluated on the 30 test scans from the MRI-linac.
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clinical segmentations often performed under time pressure. With

86% of the contours having an MSD below the typical in-plane

voxel size of 1 mm, the output of the segmentation algorithms is of

such a quality that, for most patients, minor correction, if any, will

be needed in a clinical setting. Cases with larger deviation were

typically seen in patients with large tumors in the bladder or the

prostate/seminal vesicle region, i.e., test patients who differed the

most from the training cohort. For metastatic prostate cancer, there

were some cases where the algorithm included tumors adjacent to

the prostate and seminal vesicles in the respective organs. This is

somewhat a matter of definition as we could as well have decided to

include, e.g., extracapsular tumor growth of the prostate in the

prostate ground-truth segmentation. Some bladder cancer patients

showed highly different MRI gray values in the bladder compared to

the training cohort values, as exemplified in Figure 2. The

performance was inferior not only in the bladder itself but also in

the organs surrounding the bladder.

The observed performance degradation in patients with bladder

cancer compared to prostate cancer highlights the importance of

using a model on data similar to those used for training unless
Frontiers in Oncology 06
detailed validation has been made on the new data type (out-of-

distribution data). However, the model performance was still better

or comparable to the clinically used DIR-based contour propagation

even for bladder cancer. This shows some robustness of the model,

making it a candidate for use in an online setting, potentially reducing

manual editing time and leading to faster contouring and shorter

overall treatment times. DIR-based contour propagation could still be

used for specific cases, such as the challenging cases in our test cohort

with atypical tumors. Already at the planning stage, such cases could

potentially be identified based on the performance of the AI

segmentation on the planning MRI, as indicated by the correlation

seen in Figure 6. Further, DIR-based contour propagation could be

used as an independent real-time quality assurance of the AI-based

segmentation, e.g., alerting the clinical staff if the contours differ

above a set threshold. As shown in Figure 5, such an approach would

be feasible for prostate and seminal vesicles where MONACO had

fewer extreme outliers than the nnU-net. For organs with more

considerable volumetric changes during treatment, such as the

bladder, rectum, sigmoid, and bowel, using DIR-based contour

propagation as quality assurance would likely result in far too
FIGURE 5

Scatter plot of the nnU-net test results vs. MONACO test results. Both compared to the ground-truth segmentation in the 30 scans from the MRI-
linac. Mean surface distance (MSD) is given in the top row and Hausdorff distance (HD) in the bottom row. The identity line (x = y) is shown for
guidance; points below this line indicate better nnU-net performance than MONACO and vice versa. A version zoomed around (0,0) is provided in
the Appendix.
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many false positives to add value. An alternative method for finding

AI segmentation failures is exploring the uncertainty of the network

itself. Several approaches exist, such as ensemble-based uncertainty

estimation and Monte Carlo dropout. A recent study showed

promising results for quality assurance of AI segmentation of the

prostate in MRI (13).

The time needed to make the manual delineations was

significantly reduced by creating an initial model based on the first

13 patients, which was then used to provide initial contours for the

manual delineation process. This approach, used for both training

and test data, reduced the delineation time from approximately 2

hours per patient to approximately 0.25 hours. However, even though

the initial contours were corrected for all patients, it can be argued

that there might be a slight bias in favor of the developed model.

However, this approach has enabled an efficient and precise

delineation with somewhat limited delineation time.

The current paper has focused on using a limited amount of

“high-quality” data instead of large amounts of standard clinical

data. The limited amount of data used to build the current model

suggests that it is possible to create functional AI models based on

limited data if the precision of the delineation is high compared to

standard clinical delineations. Thus, in combination with the

approach mentioned above of an initial delineation support

model, it seems feasible to build an AI model even if there is no

access to a large amount of clinical data, which can be beneficial if,

e.g., new delineation procedures are warranted clinically.

The field of AI segmentation is moving quickly; thus, it is

challenging for vendors to provide “the best” segmentation at any

time. Thus, to take advantage of the ability to create AI models fast

and locally, vendors must provide easy import of external structure

sets, such that they support the use of independent segmentation

software, both commercial or in-house developed. Such an open

approach would also enable the sharing of delineation tools across
Frontiers in Oncology 07
centers for specific clinical trials, thereby increasing the consistency

within the trials.

Our study has limitations; most importantly, it was trained and

tested only on single institutional data on institution-specific MRI

sequences. Further, while national guidelines were used for all

organs, local interpretations of some details of these guidelines

might exist. Therefore, the generalizability of our findings and the

performance of our network on data and segmentations from other

centers are untested. While we cannot share the test or training data

due to regulations, the trained model is available for download and

testing on local data.

In conclusion, good performance was observed for the AI

segmentation of all organs in most test cases. The trained

network is currently used to provide initial contours for manual

editing and approval in the planning phase at our institution.

Online implementation at the MRI-linac is currently ongoing.
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