
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Johannes Fahrmann,
University of Texas MD Anderson Cancer
Center, United States

REVIEWED BY

Ehsan Irajizad,
University of Texas MD Anderson Cancer
Center, United States
Ana Kenney,
University of California, Irvine, United States
James Long,
University of Texas MD Anderson Cancer
Center, United States

*CORRESPONDENCE

Huawei Zhang

slyyzhw@163.com;

zhanghuawei@sdfmu.edu.cn

Jia Qu

qujia19880106@163.com

RECEIVED 05 September 2023

ACCEPTED 11 December 2023

PUBLISHED 04 January 2024

CITATION

Zhang T, Liu J, Wang M, Liu X, Qu J and
Zhang H (2024) Prognosis stratification and
response to treatment in breast cancer based
on one-carbon metabolism-related signature.
Front. Oncol. 13:1288909.
doi: 10.3389/fonc.2023.1288909

COPYRIGHT

© 2024 Zhang, Liu, Wang, Liu, Qu and Zhang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 04 January 2024

DOI 10.3389/fonc.2023.1288909
Prognosis stratification and
response to treatment in breast
cancer based on one-carbon
metabolism-related signature
Tongxin Zhang, Jingyu Liu, Meihuan Wang, Xiao Liu,
Jia Qu* and Huawei Zhang*

Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical
University, Jinan, Shandong, China
Introduction: Breast cancer (BC) is the most common malignant tumor in

the female population. Despite staging and treatment consensus guidelines,

significant heterogeneity exists in BC patients' prognosis and treatment

efficacy. Alterations in one-carbon (1C) metabolism are critical for tumor

growth, but the value of the role of 1C metabolism in BC has not been

fully investigated.

Methods: To investigate the prognostic value of 1C metabolism-related

genes in BC, 72 1C metabolism-related genes from GSE20685 dataset

were used to construct a risk-score model via univariate Cox regression

analysis and the least absolute shrinkage and selection operator (LASSO)

regression algorithm, which was validated on three external datasets. Based

on the risk score, all BC patients were categorized into high-risk and low-risk

groups. The predictive ability of the model in the four datasets was verified by

plotting Kaplan-Meier curve and receiver operating characteristic (ROC)

curve. The candidate genes were then analyzed in relation to gene

mutat ions , gene enr ichment pathways , immune infi l t ra t ion ,

immunotherapy, and drug sensitivity.

Results: We identified a 7-gene 1C metabolism-related signature for

prognosis and structured a prognostic model. ROC analysis demonstrated

that themodel accurately predicted the 2-, 3-, and 5-year overall survival rate

of BC patients in the four cohorts. Kaplan-Meier analysis revealed that

survival time of high-risk patients was markedly shorter than that of low-

risk patients (p < 0.05). Meanwhile, high-risk patients had a higher tumor

mutational burden (TMB), enrichment of tumor-associated pathways such as

the IL-17 signaling pathway, lower levels of T follicular helper (Tfh) and B cells

naive infiltration, and poorer response to immunotherapy. Furthermore, a

strong correlation was found between MAT2B and CHKB and

immune checkpoints.
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Discussion: These findings offer new insights into the effect of 1Cmetabolism

in the onset, progression, and therapy of BC and can be used to assess BC

patients' prognosis, study immune infiltration, and develop potentially more

effective clinical treatment options.
KEYWORDS

one-carbon metabolism, breast cancer, prognosis, immune cell infiltration,
immunotherapy, drug sensitivity
1 Introduction

As recently reported, the incidence of breast cancer (BC)

continues to rise, accounting for 31% of all new cancer cases

among the female population in the U.S. in 2023 (1). Currently,

BC treatment mainly includes chemotherapy, radiotherapy,

targeted therapy, immunotherapy, and preoperative and

postoperative endocrine therapy, according to international

consensus guidelines (2). However, due to tumor heterogeneity,

metastatic heterogeneity, and drug resistance, many BC patients

still do not benefit from chemotherapy, endocrine therapy, and

other routine treatments and have poor prognoses (3, 4). After

diagnosis and routine treatment of the primary tumor, 20%-30% of

BC patients may develop metastases (4), and metastatic BC has been

reported to have a 5-year survival rate of only 28% (5). Thus, the

search for new tumor biomarkers and therapeutic targets is crucial

for identifying BC patients with poor prognoses and guiding the

treatment of BC.

One-carbon (1C) metabolism involves a range of interrelated

metabolic pathways such as the methionine cycle, the folate cycle,

and the transsulfuration pathway, which are essential for cellular

function and facilitate the distribution of 1C units to different

cellular processes through a range of chemical reactions (6).

These processes include cellular biosynthesis (DNA, amino acids,

polyamines, phospholipids, and creatine, etc.), amino acid

homeostasis (serine, glycine, and methionine), redox state

maintenance, epigenetics regulation, and genome maintenance via

regulation of nucleotide pools (7, 8). Importantly, in addition to the

synthesis of nucleotides and certain amino acids, folate-mediated

1C metabolism controls the production of glutathione and S-

adenosylmethionine, as well as other critical cellular processes

associated with the rapid progression of malignancies (9). In

addition, 1C metabolizing enzymes have been demonstrated to be

up-regulated in expression in a variety of cancers (10). For example,

SHMT2 has been determined to be overexpressed in BC,

glioblastoma, and colorectal cancer (11–13). Elevated expression

levels of SHMT2 in triple-negative breast cancer (TNBC) patients

correlate with their poorer prognosis (14). Expression of DNMT3B

in thyroid and hepatocellular carcinoma is closely related to their

poor prognosis (15, 16). Today, certain drugs that target 1C
02
metabolizing enzymes have been developed and applied in the

clinic, including methotrexate and pemetrexed (8). These drugs

have far-reaching implications in the treatment of many cancers,

including BC (17–19).

Immune cells include cancer cells, non-tumor host cells (innate

and adaptive immune cells, etc.), and their noncellular components,

which are crucial players in the tumor microenvironment (TME)

(20). Studies have shown that 1C metabolism affects immune cell

function, especially T-cell activation (8). Tumor progression,

invasion, metastasis, and drug resistance are emergent

characteristics of tumor cell-TME interactions (21). Targeting the

TME in combination with multiple therapeutic modalities, such as

chemotherapy, radiation, immunotherapy, surgery, and

nanotherapy, can synergistically and effectively target key

pathways associated with disease pathogenesis (22). However, the

specific effect of 1C metabolism on TME needs further study.

In this study, a 1C metabolism-related genes risk score model

was constructed. Then the prognostic value of the seven candidate

genes was confirmed by extensive analysis. Finally, the correlation

of candidate genes with immune checkpoints, related

immunotherapy, and sensitivity to common chemotherapeutic

drugs was investigated to contribute to guiding the treatment of

BC patients.
2 Materials and methods

2.1 Data source and processing

Gene expression profiles of 327 BC samples in the GSE20685

were obtained from Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) as a training dataset, together

with their clinical data such as age, TNM stage, and survival status.

Three additional GEO datasets were also obtained from GEO

database as test datasets, including GSE88770, GSE58812, and

GSE61304. The samples in dataset GSE58812 were all TNBC. After

processing the datasets according to the same filtering criteria such as

removing samples with incomplete data, expression profiles and

clinical data were used to conduct subsequent analysis. Gene

mutation data were acquired from The Cancer Genome Atlas
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(TCGA) database (https://portal.gdc.cancer.gov/). In addition, 72 1C

metabolism-related genes were retrieved from the Molecular

Signature Database (MSigDB, https://www.gsea-msigdb.org/gsea/

msigdb) with the keyword “one-carbon metabol ism”

(Supplementary Table 1). These genes were used as the basis for

our further studies.
2.2 Construction of the risk score model

We structured a risk signature assessment system based on the

expression of 1C metabolism-related genes to analyze the

correlation between these genes’ expression and BC prognosis.

For this purpose, genes were binarized into high or low according

to expression, and then raw expression was used for signature

generation. Firstly, 1C metabolism-related genes with prognostic

value in BC were extracted by univariate Cox regression analysis,

and the genes with p < 0.05 were identified to be overall survival

(OS)-related genes. Genes with non-significant differences in

survival between high- and low-expression groups were removed

by log-rank test. The least absolute shrinkage and selection operator

(LASSO) regression (with R packages “glmnet”) was then used to

determine non-zero coefficients, to achieve the purpose of

eliminating potential predictors and selecting the optimal OS-

related genes while preventing model overfitting. The LASSO

regression tuned the model with 10-fold cross-validation.

Additionally, we conducted multivariate Cox regression analysis

to further determine model genes and risk coefficients. Finally,

seven genes affecting prognosis were screened, including MAT2B,

DNMT3B, AHCYL1, CHDH, SHMT2, CHKB, and CHPT1. For

every patient, the product of coefficients and prognostic gene

expression level was risk score. Furthermore, BC samples were

categorized into two subgroups based on median risk scores,

including high- and low-risk groups.
2.3 Prognostic model validation

For assessing the feasibility of the 1C metabolism-related genes

risk score model, Kaplan-Meier survival analyses of OS were

implemented between the high- and low-risk groups in the

training set GSE20685, as well as the validation sets GSE88770

and GSE58812, respectively. Meanwhile, we used the outcome

events and time in GSE61304 to validate the disease-free survival

(DFS) of BC. In addition, the R package “timeROC” was used to

plot receiver operating characteristic (ROC) curves of 2-, 3-, and 5-

year survival. The area under the ROC curve (AUC) was also

calculated to further analyze and validate the accuracy of the model.
2.4 Independent prognostic analysis and
nomogram construction

Univariate and multivariate Cox regression analyses for age,

TNM stage, and risk score were performed from the training
Frontiers in Oncology 03
dataset GSE20685 clinical information to assess independent

prognostic factors for BC. Then, according to independent

prognost ic analyses , a nomogram combining the 1C

metabolism-related risk score with other clinical characteristics

in the training dataset was developed with the “rms” R package. In

addition, we plotted calibration curves to visualize the consistency

of the nomogram at 2, 3, and 5 years as evidence of its clinical

predictive value. Additionally, we constructed a multivariate Cox

model containing clinical characteristic information and risk

scores on the training dataset, and then performed validation

evaluations on the test datasets.
2.5 Functional enrichment analysis

To investigate potential biological functions and signaling

pathways of the two groups, we employed the R package

“Limma” for screening differentially expressed genes (DEGs)

among both groups with the criteria of |log FC| > 1 and p-value_

t < 0.05, and then analyzed them with Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Gene

set enrichment analysis (GSEA) was performed on the training set

using the R package “ClusterProfiler” to further identify the

different biological processes involved in the two risk groups. The

annotated gene set was extracted from the R package “org.Hs.eg.db”

and used in our analysis.
2.6 Somatic mutations and immune
infiltration analysis

We retrieved somatic mutation profiles of BC patients from

TCGA database to analyze somatic mutations among both

groups. The somatic mutation data were further analyzed with

the R package “maftools”. Correlations between the expression

of seven candidate genes and the tumor mutational burden

(TMB) were analyzed, and the results were plotted by selecting

those with significant correlations. Moreover, cell type

identification by estimating relative subsets of RNA transcripts

(CIBERSORT) was utilized to calculate the abundance of 22

tumor immuno-infiltrative cells within TME of BC samples from

the GSE20685 cohort. Subsequently, differences in immune cell

infiltration were analyzed for the two risk groups, with p-value <

0.05 considered statistically significant. The results were revealed

by box plots.
2.7 Immune checkpoints analysis and
immunotherapy response assessment

We analyzed the correlation of seven candidate genes with

immunological checkpoint genes (ICGs). A list of 79 common

ICGs can be obtained from a previous article (Supplementary

Table 2) (23), and 71 of them were included in our expression

matrix. Five ICGs significantly related to 1C metabolism-related
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genes (CD27, HLA-DPB1, HLA-E, CD40, and HLA-DMB) were

screened to plot the correlation heat map. Furthermore,

immunophenotype score (IPS) were obtained from The Cancer

Immunome Atlas (TCIA, https://tcia.at/) database, which is

helpful in screening patients who are sensitive to immune

checkpoint inhibitors (ICIs). To match the sample in the IPS

data, we used the TCGA-BRCA dataset for analysis. Hence, IPS

differences between high and low expression of seven candidate

genes were analyzed, and the results with statistically significant

differences were selected to draw violin plots.
2.8 Drug sensitivity analysis

Response to chemotherapy in BC patients was assessed

with the Genomics of Drug Sensitivity in Cancer database

(GDSC, https://www.cancerrxgene.org) via the R package

“oncoPredict”. Correlations between the two risk groups and

the sensitivity to common chemotherapeutic drugs were

calculated separately.
2.9 Statistical analysis

Statistical analyses were accomplished via R (version 4.2.2).

Survival analyses were presented by Kaplan-Meier approach, and

differences between groups were assessed with log-rank test.

Pearson’s correlation test was used for correlation analysis.

Univariate and multivariate analyses were performed with Cox

regression models to determine independent risk factors. The p-

value < 0.05 was regarded as statistically significant.
3 Results

3.1 Prognostic characteristics and value of
1C metabolism-related genes

The study’s flow is illustrated in Figure 1A. We ultimately

constructed a 7-gene 1C metabolism-related prognostic model,

including MAT2B, DNMT3B, AHCYL1, CHDH, SHMT2, CHKB,

and CHPT1. The process of LASSO regression was shown in

Figures 1B, C. Kaplan-Meier analysis revealed seven genes

correlated with OS. Among them, five genes, MAT2B, AHCY1,

CHDH, CHKB, and CHPT1, were regarded as protective factors,

whereas two other genes, DNMT3B and SHMT2, were considered

as risk factors (p < 0.05) (Figure 1D). Meanwhile, the following risk

score formula was obtained after multivariate Cox regression: risk

score = (-1.166*MAT2B) + (-0.040*DNMT3B) + (-0.581*AHCYL1)

+ (-0.067CHDH) + (0.168*SHMT2) + (-0.609*CHKB) +

(-0.346*CHPT1). Grouped according to the median risk score, the

expression differences of the seven candidate genes in the two risk

groups were presented in Figure 1E. The forest plot showed the

results of stepwise multivariate Cox proportional hazards regression

analysis (Supplementary Figure 1).
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3.2 Validation of the 1C metabolism-
related genes model prediction effect

To demonstrate the credibility of the prediction of the seven 1C

metabolism-related genes, we conducted survival analyses and plotted

ROC curves on the training and test cohorts, respectively. The AUCs

for 2-, 3- and 5-year survival in the GSE20685 training set were 0.79,

0.76, and 0.78, respectively (Figure 2A), while in GSE88770, GSE58812,

andGSE61304 the AUCs for 2-, 3- and 5- year were 0.84, 0.71 and 0.76;

0.62, 0.71 and 0.71; 0.70, 0.74 and 0.64, respectively (Figures 2B, 3A, B).

In addition, Kaplan-Meier analysis revealed that survival time was

markedly shorter in the high-risk group than the other one (GSE20685:

p <0.0001; GSE88770: p = 0.0031; GSE58812: p = 0.037; GSE61304: p =

0.043) (Figures 2C, D, 3C, D). Furthermore, risk curves and scatter

plots showed that mortality increases with risk scores in all four

datasets (Figures 2E, F, 3E, F). The heat maps also showed

remarkable expression differences in seven prognostic genes between

both groups (Figures 2E, F, 3E, F).
3.3 Independent prognostic analysis and
nomogram development

For the training dataset GSE20685, in the univariate Cox analysis,

TNM stage and risk score were closely linked to OS in BC patients (p <

0.001), whereas in multivariate Cox analysis, only N-stage and risk

score were independent prognostic predictors (p < 0.001) (Figures 4A,

B). Therefore, a nomogram was built to quantitatively predict

individual OS at 2-, 3-, and 5-year based on independent prognostic

markers (N-stage and risk score) (Figure 4C). Then, to verify its

predictive effectiveness, calibration curves were plotted to confirm

the consistency, which showed the desired predictive accuracy

(Figure 4D). In summary, the nomogram can predict short- and

long-term OS in BC patients, thus contributing to clinical

management. Furthermore, the performance of the multivariate Cox

model containing clinical characteristic information and risk score on

the training and test datasets was shown in Supplementary

Figures 2A-H. In addition, the N-stage was positively linked to risk

score (Figure 4E), with a statistically significant difference (p < 0.05).
3.4 Mutation landscape analysis

To further investigate discrepancies in the genetic landscape

between both groups, somatic mutation data from TCGA database

of BC patients were used for analysis. In the high-risk group, TP53

had the highest mutation frequency at 48%, followed by PIK3CA,

TTN, GATA3, MUC16, and CDH1 (Figure 5A). Correspondingly,

in the low-risk group, the top six genes in terms of mutation

frequency were PIK3CA, CDH1, TP53, TTN, GATA3, and

MAP3K1 (Figure 5B). Meanwhile, the mutation frequency of the

same gene differed considerably between groups (Figure 5C). TMB

was higher in the high-risk group compared to the other group

(Figure 5D). In addition, the expression of SHMT2 and DNMT3B

was positively correlated with TMB, while the expression of CHDH
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was negatively correlated with TMB (P < 0.05) (Figure 5E),

suggesting that these genes play a role in immunotherapy.
3.5 Gene set enrichment analysis

We screened 98 differentially expressed genes (DEGs) by the

“limma” variance approach, with 17 up-regulated as well as 81

down-regulated genes (Figure 6A). GO terms in biological process
Frontiers in Oncology 05
(BP), cellular component (CC), and molecular function (MF) that

were significantly associated with these DEGs were represented in

the bubble diagram (Figure 6B), suggesting that these DEGs were

mainly related to urogenital system development, female sex

differentiation, and collagen-containing extracellular matrix.

Furthermore, we found that the IL-17 signaling pathway, relaxin

signaling pathway, cellular senescence, lipid and atherosclerosis,

phototransduction, and bladder cancer are up-regulated, while

breast cancer, hedgehog signaling pathway, neuroactive ligand-
B

C

D

E

A

FIGURE 1

(A) Flow chart of the study. (B, C) LASSO Cox regression analysis to develop the prognostic model. (D) Kaplan-Meier survival curves of seven genes
associated with OS. (E) Expression of seven genes in the high- and low-risk groups.
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receptor interaction, complement and coagulation cascades, and

estrogen signaling pathway are down-regulated (Figure 6C). In

addition, to identify the underlying biological signaling pathways

for molecular discrepancies between both risk groups, we

performed GSEA analyses (Figures 6D, E). The results indicated

that in the high-risk group, pathways such as alcoholism, cell cycle,

cellular senescence, IL-17 signaling pathway, and bladder cancer

were significantly enriched, while pathways significantly enriched in

the low-risk group included regulation of lipolysis in adipocytes,

chemical carcinogenesis-DNA adducts, chemical carcinogenesis-

receptor activation, the complement and coagulation cascades,

herpes simplex virus 1 infection, and peroxisome.
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3.6 Immuno-infiltration analysis

We compared the levels of immune infiltration in the two risk

groups, and the distribution of immune cells in both was reflected in

Figures 7A, B. In addition, the overall immune infiltration in all BC

samples in the training set was illustrated in Figure 7C. Further

combined with the difference and correlation analysis, some

immune cell subpopulations showed statistically significant

differences between both groups. In particular, the infiltration

levels of T follicular helper (Tfh) and B cells naive were lower in

the high-risk group, whereas Neutrophils infiltration abundance

was higher in the high-risk group (Figure 7D).
B

C D

E F

A

FIGURE 2

1C metabolism-related genes signature associated with the OS of BC patients. (A) The predictive value for the 2-y, 3-y, and 5-y OS in GSE20685
dataset. (B) The predictive value for the 2-y, 3-y, and 5-y OS in GSE88770 dataset. (C) The OS between the high- and low-risk groups in GSE20685
dataset. (D) The OS between the high- and low-risk groups in GSE88770 dataset. (E) The risk plot of the 1C metabolism-related genes signature in
GSE20685 dataset. (F) The risk plot of the 1C metabolism-related genes signature in GSE88770 dataset.
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3.7 Immune checkpoints and
immunotherapy research

The heat map of the association between 7 1C metabolism-

related genes and 71 ICGs was displayed in Supplementary Figure 3.

Among them, the 5 ICGs that were significantly correlated with the

1C metabolism-related genes were selected for redrawing the heat

map (Figure 8A). In addition, MAT2B and CHKB are closely

associated with immune checkpoints as shown in Figures 8B, C.

Furthermore, BC patients with low expressions of DNMT3B and

AHCYL1 had higher IPS, indicating that these patients had higher

relative probabilities of responding to ICIs, whereas BC patients

with high expressions of MAT2B, CHKB, and SHMT2 had higher

relative probabilities of responding to ICIs (Figure 8D).
Frontiers in Oncology 07
3.8 Drug sensitivity analysis

To improve the clinical utility of survival models in the

management of BC, we calculated and compared IC50 values in

two groups of patients, because IC50 values are inversely related to

drug sensitivity. The results revealed that low-risk patients were

more sensitive to Mitoxantrone, Oxaliplatin, Dabrafenib,

Dactinomycin, Leflunomide, Ruxolitinib, Nilotinib, Sorafenib,

Irinotecan, and Zoledronate. Meanwhile, high-risk patients were

more sensitive to Lapatinib, Afatinib, Osimertinib, and Ibrutinib

(P < 0.05) (Figure 9A). In addition, there are drugs targeting 7 1C

metabolism-related genes available for the treatment of BC. We

discovered a positive association between SHMT2 expression and

sensitivity to Paclitaxel, Vinorelbine, Vorinostat, Entinostat,
B

C D

E F

A

FIGURE 3

1C metabolism-related gene signature associated with the OS and DFS of BC patients. (A) The predictive value for the 2-y, 3-y, and 5-y OS in
GSE58812 dataset. (B) The predictive value for the 2-y, 3-y, and 5-y DFS in GSE61304 dataset. (C) The OS between the high- and low-risk groups in
GSE58812 dataset. (D) The DFS between the high- and low-risk groups in GSE61304 dataset. (E) The risk plot of the 1C metabolism-related genes
signature in GSE58812 dataset. (F) The risk plot of the 1C metabolism-related genes signature in GSE61304 dataset.
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Docetaxel, Alpelisib, Bortezomib, Crizotinib, Gefitinib, and

Erlotinib. The expression of AHCYL1 was negatively associated

with Talazoparib, Cisplatin, Dasatinib, Crizotinib, and Bortezomib.

The expression of MAT2B was positively related to Ribociclib. The

sensitivity to Ribociclib was negatively linked to CHPT1 expression.

CHKB expression was positively connected to Niraparib and

Selumetinib (Figure 9B). With the above findings, the risk score

can be used as a guide for medication administration in BC patients.
4 Discussion

BC has surpassed lung cancer as the most prevalent cancer in

women (24). Despite improvements in its multidisciplinary
Frontiers in Oncology 08
treatment, BC remains the leading cause of death in female

cancer patients (24, 25). Alterations in the metabolism of cancer

cells are critical for tumor growth, and one of the most remarkable

aspects of this metabolic reprogramming is the 1C metabolism (26).

However, there is still a lack of studies on the 1C metabolism in BC

patients. Therefore, our research aims to make an essential step in

that direction.

We constructed a survival risk signature by 1C metabolism-

related genes in this study, which performed well in both training

and validation set cohorts. Furthermore, Kaplan-Meier analysis

showed that two genes can be regarded as risk factors, including

SHMT2 and DNMT3B, and five genes were identified as protective

factors, including MAT2B, AHCYL1, CHDH, CHKB, and CHPT1.

Moreover, the expression values of these genes were also measured
B

C

D E

A

FIGURE 4

(A) Univariate Cox regression analysis of the risk score and clinical parameters. (B) Multivariate Cox regression analysis of the risk score and clinical
parameters. (C) The construction of 2-, 3-, and 5-year OS predictive nomogram for patients of the GSE20685. (D) Calibration curves for the
nomogram. (E) Distribution of risk scores in different N-stage in GSE20685 dataset.
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in both groups. Two genes were up-regulated in high-risk patients,

consisting of SHMT2 and DNMT3B, while the down-regulated

genes included MAT2B, AHCYL1, CHDH, CHKB, and CHPT1,

which was consistent with Kaplan-Meier analysis. Among them,

SHMT2 is considered to be an important factor in the metabolism

of serine and glycine of several cancer cell types (including BC) (27),

which is crucial in the development of cancer cells, and high

SHMT2 expression is linked to poor prognosis in BC (28).

DNMT3B acts as a key player in breast tumorigenesis and

development, and targeting DNMT3B may be a potential

treatment for BC (29). Conversely, CHDH is an estrogen-

regulated gene that is overexpressed in BC patients with good

prognosis (30). As an enzyme related to methionine metabolism,

MAT2B can act as a cancer suppressor gene in BC development

(31). In addition, CHPT1, AHCYL1, and CHKB have been

demonstrated to be associated with roles that lead to other

cancers and affect patient outcomes, although relevant studies are

scarce in BC (32–34).
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Tumor-infiltrating immune cells are reported to be an essential

component of TME and can be used to predict cancer prognosis (35).

Hence, immune cells have been identified as a new cancer treatment

target (36). Differences in TME between the two groups were

examined using CIBERSORT. The results illustrated higher levels

of infiltration of Tfh cells and naive B cells, and lower levels of

infiltration of neutrophils in low-risk patients. Tfh cells are reported

to be a subset of CD4+ helper T cells involved in the humoral

response (37), whose role is to trigger B cells in the germinal center to

differentiate into plasma cells secreting antibodies and memory B

cells, which is the key to enhancing the immune response (38, 39). In

addition, naive B cells are activated, proliferate, and differentiate into

plasma cells and memory B cells, which are involved in antitumor

immunity (40). Accordingly, we presume that low-risk patients might

benefit more from immunotherapy. Moreover, neutrophils can

produce immunosuppressive factors, such as transforming growth

factor beta (TGF-b) and arginase1, effectively suppressing adaptive

immunity (41), and release growth factors such as hepatocyte growth
B
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FIGURE 5

Genomic alterations between the high-risk group and low-risk group. (A) The landscape of mutation profiles in the high-risk group. (B) The
landscape of mutation profiles in the low-risk group. (C) The six genes with the greatest variation in mutation frequency in the high-risk group and
low-risk group. (D) The difference in tumor mutation burden between the high-risk group and low-risk group. (E) Correlation between the
expression levels of target genes and tumor mutation burden.
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factor (42), which promote tumor progression. It has also been shown

that a high neutrophil/lymphocyte ratio in the circulation is a poor

prognostic factor in breast, liver, colon, and many other types of

cancer (41, 43), which is consistent with our findings. However, the

results did not demonstrate an effect of 1C metabolism on T cell

activation. It has been reported that 1C metabolism contributes to

purine and thymidine synthesis, allowing T cell proliferation and

survival, whereas genetic inhibition of the metabolic enzyme SHMT2

impaired T cell survival and antigen-specific T cell abundance in

culture and in vivo, respectively (44). The interaction of these factors

may have led to the generation of such inconsistent results. It may

also be due to differences in study design and clinical characteristics

of the subjects.

In our study, the IL-17 signaling pathway was significantly

enriched in KEGG and GSEA. The IL-17 family comprises six
Frontiers in Oncology 10
members (IL-17A to IL-17F) with distinct functions and sequence

homologies (45). Their aberrant expression is closely linked to

chronic inflammatory diseases and acts as an essential player in

cancer immunity (46). A number of recent findings have elucidated

the effect of the IL-17B/IL-17RB pathway in tumorigenesis. For

example, in mice, IL-17B signaling via IL-17RB facilitates cancer

cell survival, invasion, proliferation, and metastasis (47–50),

whereas in humans, high expression of IL-17B and IL-17RB is

linked to a poorer prognostic outcome in BC sufferers (48). In

addition, the peroxisome and herpes simplex virus-1 infection were

found to be enriched in the low-risk group. Peroxisomes are

organelles that affect the growth and survival of cancer cells, and

some cancer cells rely on lipolysis by peroxisomes for their energy

needs (51). Oncolytic herpes simplex virus-1 infection increases

anticancer activity by inducing apoptosis in adjacent cancer cells
B
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FIGURE 6

(A) The volcano plot of differential gene expression in high- and low-risk groups (|log FC| > 1 and p-value_ t < 0.05). (B) Bubble plot for GO
enrichment analysis. (C) Two-way bar chart for KEGG enrichment analysis. (D, E) Results of GSEA in GSE20685 cohort.
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(52). The enrichment of these pathways is consistent with the

finding that low-risk patients survived longer.

ICIs rebuild the anti-tumor immune response by blocking

co-inhibitory signaling pathways, thereby promoting immune-

mediated elimination of tumor cells (53). Although ICIs,

particularly anti-CTLA4 and anti-PD-1 antibodies, have

radically improved the prognosis of many cancers, especially

advanced melanoma (54), they have been less effective in BC

patients (55). This approach can be used to identify and screen
Frontiers in Oncology 11
patients who respond to treatment. Based on the research

results, BC patients with high expression of MAT2B and

CHKB may benefit from targeted therapy against immune

checkpoints with increased expression, such as CD27, CD40,

HLA-DPB1, HLA-E, and HLA-DMB. The resu l t s o f

immunotherapy analysis further proved the potential of these

seven candidate genes as novel prognostic indicators and

intervention targets for signature development. Therefore, for

BC patients, using our 1C metabolism-related genes model to
B
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FIGURE 8

(A) Correlation heat map between 5 immune checkpoints and 7 1C metabolism-related genes. (B) Correlation between MAT2B expression levels and
5 immune checkpoints. (C) Correlation between CHKB expression levels and 5 immune checkpoints. (D) Differences in IPS reactivity between high
and low expression levels of target genes.
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predict their response to ICIs can guide clinical treatment more

concretely and effectively.

Although some positive results have been obtained, several

limitations of our study remain. Since this is a retrospective study,

data omissions and selection bias are inevitable. Secondly, our study is

based on data from existing publicly accessible databases, so the results

need to be further validated in large cohorts. Further, people in

GSE61304 dataset have been followed for only 80 months while in

other datasets individuals have been followed up for more than 150
Frontiers in Oncology 12
months. This discrepancy in follow-up time can create a problem in the

validation. Finally, in-depth characterization of the mechanism

through in vivo or in vitro experiments is required.
5 Conclusion

In summary, seven 1C metabolism-related genes were

identified, resulting in a risk score model that can accurately
B

C

D

A

FIGURE 7

TME immune cell infiltration of BC samples from the GSE20685 cohort. (A) Heat map of the differences in immune cell distribution for each BC
patient in high-risk group. (B) Heat map of the differences in immune cell distribution for each BC patient in low-risk group. (C) Histogram of the
distribution of immune cells in all BC patients. (D) Differences in the distribution of immune cells in high- and low-risk groups.
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assess OS in BC patients. Individuals with low-risk scores have

longer survival and are better able to benefit from immunotherapy.

We believe that these seven genes should be used prospectively in

BC patients to predict their prognosis and guide clinical

chemotherapy and immunotherapy.
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