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Mendelian randomization
analysis to elucidate the causal
relationship between small
molecule metabolites and
ovarian cancer risk

Xin Chang1,2, Shijia Liu1,2 and Lu Han1*

1Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China,
2Department of Graduate, Dalian Medical University, Dalian, Liaoning, China
Background: Small molecule metabolites are potential biomarkers for ovarian

cancer. However, the causal relationship between small molecule metabolites

and ovarian cancer remains unclear.

Methods: Single nucleotide polymorphisms (SNPs) correlated with 53 distinct

small molecule metabolites were identified as instrumental variables (IVs) from

comprehensive genome-wide association studies. Aggregate data

encompassing 25,509 cases of ovarian cancer and 40,941 controls of

European descent were procured from the Ovarian Cancer Association

Consortium. To evaluate causative associations, four Mendelian randomization

techniques—including inverse-variance weighted, weighted median, maximum

likelihood, and MR-Egger regression—were employed.

Results: In total, 242 SNPs were delineated as IVs for the small molecule

metabolites under consideration. A significant association with the overarching

risk of ovarian cancer was observed for six distinct metabolites.

Hexadecenoylcarnitine and methioninesulfoxide were associated with a 32%

and 31% reduced risk, respectively. Fifteen metabolites were linked to subtype

ovarian cancers. For instance, both methionine sulfoxide and tetradecanoyl

carnitine exhibited an inverse association with the risk of clear cell and high-

grade serous ovarian cancers. Conversely, tryptophan demonstrated a 1.72-fold

elevated risk for endometrioid ovarian cancer.

Conclusion: This study identified several metabolites with putative causal effects

on ovarian cancer risk using Mendelian randomization analysis. The findings

provide insight into the etiological role of small molecule metabolites and

highlight potential early detection biomarkers for ovarian cancer. Subsequent

investigations are imperative to corroborate these findings and elucidate the

underlying pathophysiological mechanisms.

KEYWORDS

ovarian cancer, Mendelian randomization, single nucleotide polymorphisms, amino
acids, biomarkers
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1 Introduction

Cancer remains one of the most formidable adversaries in the

realm of global health, contributing significantly to the burden of

disease and mortality, with its impact felt acutely in developing

countries. Within this broader context, ovarian cancer (OC)

emerges as a predominant gynecological malignancy. Recent

statistics from 2020 have underscored this reality, revealing an

estimated 310,000 new cases of OC and a deeply concerning figure

of 210,000 deaths associated with the condition. The trajectory of

OC is particularly alarming, with projections suggesting that by the

year 2040, we may witness the global incidence of this cancer soar to

approximately 434,184 cases (1–4). The high mortality rate is

largely attributed to the asymptomatic nature and late diagnosis

of OC (5). In diseases with a significant burden, such as OC, the

underlying etiology and pathogenesis remain largely elusive.

Established risk factors for OC encompass age at menarche, age

at natural menopause, and age at diagnosis of endometriosis (6).

Elevated dietary consumption of fiber and soy has demonstrated

potential prophylactic benefits against OC (7, 8). Furthermore, a

deficiency in vitamin D levels has been associated with an

augmented risk of OC (9). Identification of novel biomarkers that

can detect OC at an early stage or predict susceptibility is urgently

needed to reduce disease burden.

Emerging evidence suggests that metabolic reprogramming is

implicated in ovarian tumorigenesis and progression (10).

Metabolomics profiling has revealed aberrant levels of various

small molecule metabolites, such as amino acids, biogenic amines,

acylcarnitines, and carbohydrates, in OC (10–13). These small

molecules are involved in multiple oncogenic signaling pathways

and may serve as diagnostic biomarkers or therapeutic targets.

Recent comprehensive genome-wide association studies (GWAS)

have delineated single nucleotide polymorphisms (SNPs) correlated

with metabolic phenotypes. These SNPs can be judiciously

employed as instrumental variables to infer putative causal

associations between specific metabolites and disease outcomes

(14–16). Conversely, a limited number of studies have delved into

the relationship between OC and the small molecular derivatives

of metabolism.

Mendelian randomization (MR) analysis employs genetic

variants as instrumental variables (IVs), enhancing the robustness

of causal inference and mitigating biases stemming from reverse

causation and confounding (17). This methodology has been

extensively employed to assess the putative causal role of alterable

exposures in carcinogenesis (18). However, to date, no investigation

has probed the potential causal implications of small molecular

metabolites on OC via Mendelian randomization. In this study, we

performed a two-sample MR analysis to evaluate putative causal
Abbreviations: OC, ovarian cancer; HGSOC, high-grade serous ovarian cancer;

LMPOC, low malignant potential ovarian cancer; IMOC, invasive mucinous

ovarian cancer; CCOC, clear cell ovarian cancer; EndoOC, endometrioid ovarian

cancer; GWAS, genome-wide association studies; SNPs, single nucleotide

polymorphisms; MR, Mendelian randomization; IVs, instrumental variables;

IVW, inverse-variance weighted; LD, linkage disequilibrium; CPT-1, carnitine

palmitoyltransferase-1.
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associations of genetically predicted small molecule metabolites

with OC risk. Findings from this study could uncover novel

etiological mechanisms and guide future development of

metabotype-based biomarkers for OC.
2 Materials and methods

2.1 Study design

In our study, we utilized SNPs identified through GWAS as

genetic instrumental variables (IVs), aiming to investigate the

plausible causal connection between small molecule metabolic

products and ovarian cancer. As presented in Figure 1, our two-

sample MR study was built upon three principal assumptions (19).

1) Relevance assumption: The IVs had a strong connection to the

exposure (19). 2) Independence assumption: There was no

correlation between the IVs and any variables that affected both

exposure and outcome (19). 3) Exclusion Restriction Assumption:

The IVs exclusively influenced the exposure, without introducing

any additional causal pathways that could impact the outcome (19).

All the summary data utilized in our study were openly accessible to

the general public (IEU OpenGWAS project). Additional data can

be found in the Supplementary Material (Supplementary Table 1).

As our research relied on publicly available GWAS data, no

additional ethical approval was necessary.
2.2 Data source and study samples of
ovarian cancer

This study considered a total of six frequently observed clinical

phenotypes of ovarian cancer, specifically: OC, high-grade serous

ovarian cancer (HGSOC), low malignant potential ovarian cancer

(LMPOC), invasive mucinous ovarian cancer (IMOC), clear cell

ovarian cancer (CCOC), and endometrioid ovarian cancer

(EndoOC). The findings presented in this study are based on a

genome-wide association studies conducted within the Ovarian

Cancer Association Consortium (OCAC) (20). This thorough

analysis was conducted using a dataset that encompassed 25,509

cases of ovarian cancer and 40,941 controls of European ancestry,

enabling an exploration of the associations between genetic factors

and ovarian cancer (21). The dataset encompasses 63 distinct

genotyping project/case-control sets (21). Genomic information

was acquired through direct genotyping utilizing an Illumina

Custom Infinium array, known as OncoArray, featuring around

530,000 SNPs (21). To enhance the dataset’s comprehensiveness,

imputation was executed utilizing the 1000 Genomes Project Phase

3 dataset as a reference (21). The cases encompassed the subsequent

invasive epithelial ovarian cancer types: HGSOC (n = 13,037),

LMPOC (n = 3,103), MOC (n = 1,417), CCOC (n = 1,366) and

EndoOC (n = 2,810) (21). The majority of individuals were

recruited from cancer genetics clinics, which also included some

related individuals (21). More specific information regarding the

cohorts, genotyping, quality control, and imputation can be viewed

in previous studies (21).
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2.3 Genetic instruments selection

The genetic components involving small molecule metabolic

products, which encompass Acylcarnitines, Amino acids, Biogenic

amines, and Hexose, were derived from a GWAS. This study

involved a collective cohort of 86,507 adults with European heritage

drawn from the Fenland cohort, with synergies established between the

EPIC-Norfolk and INTERVAL studies (14). We first selected IVs for

each small molecule products based on a strict cutoff of P <5×10-8.

Independent SNPs (r2 < 0.01, distance = 250 kb) were preserved after

calculating the linkage disequilibrium (LD) of related SNPs.

Furthermore, the robustness of the genetic instruments was

evaluated through F-statistics to mitigate potential biases from weak

instruments. The F-statistics were computed using the formula: F-

statistics = (Beta/Se) 2, with the mean serving as the comprehensive

measure and an F-statistic > 10 signified substantial statistical potency

(22, 23). Finally, a total of 242 SNPs associated with 53 small molecule

products of metabolism were remained as the instrument variables

(IVs). Detailed information of the IVs form small molecule products of

metabolism were summarized in Supplementary Table 2, respectively.
2.4 Statistical analyses

Four methods including the inverse-variance-weighting (IVW),

weighted median, maximum likelihood-based methods, and MR-

Egger regression. maximum likelihood-based methods were

performed to assess the causal association between small molecule

products of metabolism and OC. The IVW method operates under

the assumption of the validity of all instrumental variables,

amalgamating their effects to produce an overall weighted

outcome (24). Given the potential heterogeneity, the random

effect and fixed effect IVW were both calculated and regarded as

the main analyses (24). The weighted median estimator can
Frontiers in Oncology 03
generate resilient causal estimates, maintaining robustness even

when up to 50% of instrumental variables may be invalid (25).

Besides, under an assumption of a linear relationship between

exposure and outcome, the maximum likelihood-based method

offered normal bivariate distribution for the estimated causal

association (26). Finally, the MR Egger method introduces an

intercept term in the regression model to assess the directional

pleiotropy (27). A substantially non-zero intercept term in

statistical analysis signals the existence of pleiotropy and a breach

in the fundamental Mendelian randomization assumption (27).

We employed the Cochran’s Q test to evaluate the heterogeneity

among IVs (28). In case of notable heterogeneity being detected (P <

0.05), the random-effects model was employed; conversely, if

heterogeneity was not significant (P > 0.05), the fixed-effects

model was utilized (28). A leave-one-out analysis was conducted

to pinpoint influential SNPs in the causal estimations. A threshold

of statistical significance was set at P < 0.05 (two-sided). When the

quantity of SNPs is fewer than four, the analysis is confined to using

the IVW method. All analyses were performed using

“TwoSampleMR”, and “gg-plot2” packages in R software (version

3.6.3, R Foundation for Statistical Computing, Vienna, Austria).
3 Results

3.1 Causal estimates of genetically
predicted small molecule metabolic
products on overall ovarian cancer

As shown in Table 1 and Figure 2, we totally found six small

molecule metabolic products were associated with overall OC. In

brief, genetically predicted hexadecenoylcarnitine as well as

methioninesulfoxide dropped a 32% (OR, 0.68; 95% CI =0.51-

0.91, P = 0.010) and 31% (OR=0.69, 95% CI =0.48-1.00, P =
FIGURE 1

Flow chart of MR analysis and three assumptions in this study. GWAS, Genome-wide association study; MR, Mendelian randomization; SNP, single
nucleotide polymorphism.
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TABLE 1 The main result of small molecule metabolites and ovarian cancer risk.

Outcome Exposure Method
Number
of SNP

OR LCI UCI
P-

value
P for

heterogeneity
P for pleiotropy

Overall
ovarian
cancer

Hexadecenoylcarnitine Wald ratio 1 0.68 0.51 0.91 0.010 / /

Wald ratio 1 0.69 0.48 1.00 0.048 / /

Overall
ovarian
cancer

Octadecandienylcarnitine

Inverse
variance
weighted
(fixed effects)

4 0.88 0.80 0.97 0.011 0.426

Maximum
likelihood

4 0.88 0.79 0.97 0.011

Simple
median

4 0.88 0.76 1.01 0.075

Weighted
median

4 0.86 0.77 0.96 0.007

MR Egger 4 0.84 0.64 1.11 0.341 0.766

Overall
ovarian
cancer

Octadecenoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.83 0.73 0.95 0.008 0.478 /

Maximum
likelihood

2 0.83 0.72 0.96 0.010

Overall
ovarian
cancer

Phenylalanine

Inverse
variance
weighted
(fixed effects)

4 1.29 1.03 1.62 0.028 0.894

Maximum
likelihood

4 1.29 1.03 1.63 0.029

Simple
median

4 1.32 1.00 1.74 0.050

Weighted
median

4 1.32 1.02 1.71 0.038

MR Egger 4 1.21 0.44 3.32 0.748 0.907

Overall
ovarian
cancer

Tetradecanoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.80 0.66 0.97 0.020 0.168 /

Maximum
likelihood

2 0.80 0.66 0.97 0.022

High grade
serous ovarian
cancer

Tetradecanoylcarnitine

Inverse
variance
weighted
(fixed effects)

3 0.81 0.66 0.99 0.041 0.696

Maximum
likelihood

3 0.81 0.66 0.99 0.042

Simple
median

3 0.80 0.62 1.03 0.089

Weighted
median

3 0.79 0.63 0.99 0.039

MR Egger 3 0.48 0.13 1.79 0.471 0.574

Low
malignant

Arginine
Inverse
variance

7 0.63 0.42 0.95 0.028 0.871

(Continued)
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TABLE 1 Continued

Outcome Exposure Method
Number
of SNP

OR LCI UCI
P-

value
P for

heterogeneity
P for pleiotropy

potential
ovarian
cancer

weighted
(fixed effects)

Maximum
likelihood

7 0.63 0.42 0.95 0.029

Simple
median

7 0.69 0.39 1.22 0.201

Weighted
median

7 0.57 0.34 0.93 0.025

MR Egger 7 0.53 0.27 1.04 0.124 0.537

Low
malignant
potential
ovarian
cancer

Dodecanoylcarnitine Wald ratio 1 0.12 0.02 0.74 0.022 / /

Low
malignant
potential
ovarian
cancer

Leucine

Inverse
variance
weighted
(fixed effects)

4 4.25 1.22 14.83 0.023 0.064

Maximum
likelihood

4 4.45 1.23 16.08 0.023

Simple
median

4 4.84 0.91 25.83 0.065

Weighted
median

4 4.35 0.82 23.06 0.084

MR Egger 4 0.19 0.00 99.92 0.659 0.416

Low
malignant
potential
ovarian
cancer

Octadecenoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.61 0.37 1.00 0.049 0.124 /

Maximum
likelihood

2 0.60 0.36 1.00 0.050

Low
malignant
potential
ovarian
cancer

Threonine

Inverse
variance
weighted
(fixed effects)

3 0.42 0.23 0.77 0.005 0.352

Maximum
likelihood

3 0.41 0.22 0.77 0.005

Simple
median

3 0.66 0.26 1.70 0.390

Weighted
median

3 0.44 0.22 0.86 0.017

MR Egger 3 0.07 0.00 1.01 0.301 0.406

Invasive
mucinous
ovarian
cancer

alpha-Aminoadipic acid

Inverse
variance
weighted
(fixed effects)

2 2.09 1.02 4.28 0.045 0.811 /

(Continued)
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TABLE 1 Continued

Outcome Exposure Method
Number
of SNP

OR LCI UCI
P-

value
P for

heterogeneity
P for pleiotropy

Maximum
likelihood

2 2.09 1.00 4.35 0.049

Invasive
mucinous
ovarian
cancer

Creatinine

Inverse
variance
weighted
(fixed effects)

12 0.45 0.24 0.84 0.012 0.666

Maximum
likelihood

12 0.45 0.24 0.84 0.013

Simple
median

12 0.41 0.18 0.95 0.038

Weighted
median

12 0.43 0.19 0.99 0.046

MR Egger 12 0.05 0.00 1.00 0.079 0.175

Invasive
mucinous
ovarian
cancer

Hexose Wald ratio 1 2.51 1.05 6.02 0.039 / /

Invasive
mucinous
ovarian
cancer

Methionine Wald ratio 1 0.23 0.06 0.89 0.033 / /

Invasive
mucinous
ovarian
cancer

Tetradecenoylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.39 0.17 0.93 0.034 0.502

Maximum
likelihood

2 0.39 0.16 0.95 0.038

Clear cell
ovarian
cancer

Butyrylcarnitine

Inverse
variance
weighted
(fixed effects)

2 0.62 0.40 0.95 0.029 0.116 /

Maximum
likelihood

2 0.62 0.40 0.95 0.030

Clear cell
ovarian
cancer

Methioninesulfoxide Wald ratio 1 0.28 0.09 0.85 0.025 / /

Endometrioid
ovarian
cancer

Citrulline

Inverse
variance
weighted
(fixed effects)

4 1.65 1.17 2.34 0.005 0.259

Maximum
likelihood

4 1.66 1.17 2.38 0.005

Simple
median

4 1.64 1.08 2.49 0.021

Weighted
median

4 1.80 1.16 2.80 0.008

MR Egger 4 0.44 0.03 6.32 0.606 0.428

Endometrioid
ovarian
cancer

Tryptophan

Inverse
variance
weighted
(fixed effects)

2 1.72 1.12 2.64 0.013 0.698 /

Maximum
likelihood

2 1.72 1.11 2.66 0.015
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0.048) risk of overall OC by the Wald ratio method, respectively.

This decreased risk was also observed in the association between

octadecandienylcarnitine and overall OC, replicated by the

Maximum likelihood method (OR = 0.88, 95% CI = 0.79-0.97, P

=0.011 and weighted median approach (OR=0.86, 95% CI=0.77-

0.96, P=0.007). Estimates in size were similar for the association of

octadecenoylcarnitine and tetradecanoylcarnitine with overall OC

(Supplementary Table 3). The heterogeneity test and pleiotropy test

indicated that there no influence for the casual effect of

octadecandienyl carnitine on overall ovarian cancer (P>0.05).
3.2 Causal estimates of genetically
predicted small molecule metabolic
products on subtype ovarian cancers

The results of all small molecule metabolic products on subtype

ovarian cancers were presented in the Supplementary Tables 4–8.

Figure 2 presented the estimate from the MR analysis and suggested

that a total of 15 small molecule metabolic products were related to

the subtype ovarian cancers. Methionine sulfoxide was observed

that associated clear cell ovarian cancer with dramatically reduced

risk (OR=0.28, 95% CI=0.09-0.85, P=0.024). The similar causal

association between tetradecanoylcarnitine and high grade serous

ovarian cancer was detected. For endometrioid ovarian cancer,
Frontiers in Oncology 07
IVW method suggested genetically predicted Tryptophan would

climb its 1.72-fold risk (95% CI=1.12-2.64, P =0.013). Five small

molecule metabolic products were found that related to low

malignant potential ovarian cancer and invasive mucinous

ovarian cancer, respectively. For example, genetically predicted

creatinine reduced the risk of invasive mucinous ovarian cancer,

with estimates of IVW at 0.45 (95% CI=0.24-0.84, P =0.012;

Figure 3). This causal relationship also was verified by Maximum

likelihood approach and simple median method, while it did not

attach a statistical significance in weighted median. Besides,

arginine had a negative effect (OR=0.63, 95% CI=0.42-0.95, P

=0.028; Figure 4) on low malignant potential ovarian cancer as

well as threonine (OR=0.42, 95% CI=0.23-0.77, P =0.004; Figure 5).

The pleiotropy test of Egger intercept suggested that there was no

pleiotropy (P>0.05).
4 Discussion

OC remains one of the foremost gynecological malignancies

with a significant global impact (5). Despite significant

advancements in elucidating its etiology, the insidious onset of

OC frequently results in advanced-stage diagnoses, underscoring

the paramount importance of early detection biomarkers (5). This

current study addresses this pressing clinical gap, harnessing the
FIGURE 2

The volcano plot for inverse-variance-weighted method in the association between molecule metabolic products and ovarian cancer.
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FIGURE 4

The inverse causal estimate between molecule metabolic products and the low malignant potential ovarian cancer (Increased arginine level may
decrease the 46.7% risk of low malignant potential ovarian cancer. P =0.004).
FIGURE 3

The negative effect of creatinine on the invasive mucinous ovarian cancer risk in the IVW analysis and it verified by Maximum likelihood approach
and simple median method (all P<0.05).
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capabilities of Mendelian randomization to discern putative causal

associations between small molecular metabolites and OC

susceptibility. Significantly, this represents the inaugural effort of

its nature to apply this methodology on comprehensive genetic

datasets to assess these correlations. Overall, our findings provide

novel insights into the complex metabolic underpinnings of OC.

In recent studies, several small-molecule metabolites have

emerged as potential biomarkers for the early detection, risk

stratification, and targeted prevention of OC (29).

In our comprehensivemetabolic analysis, we identified a total of six

metabolites significantly associated with the incidence of overall OC.

Decreased risks were observed in association with the following

metabolites: octadecandienylcarnitine, octadecenoylcarnitine,

hexadecenoylcarnitine, tetradecanoylcarnitine, and methionine

sulfoxide. Conversely, an elevated phenylalanine level was

significantly associated with an augmented risk of overall OC. For

HGSOC, tetradecanoylcarnitine was indicative of a reduced risk. In the

context of LMPOC, the metabolites arginine, octadecenoylcarnitine,

and threonine were inversely correlated with risk, while an increase in

leucine levels showed a heightened risk. Regarding IMOC, a

diminished risk was noted in conjunction with creatinine,

decenoylcarnitine, methionine, and tetradecenoylcarnitine.

Conversely, the levels of alpha-Aminoadipic acid and hexose were

positively correlated with increased risk. For CCOC, butyrylcarnitine

was a marker of reduced risk, whereas increased methioninesulfoxide

levels were linked to heightened risk. In EndoOC, citrulline and

tryptophan were indicative of a reduced risk. However, elevated

glycine levels were observed to increase the risk.
Frontiers in Oncology 09
Notably, an increase in genetically predicted levels of methionine

sulfoxide correlated with a 31% reduction in the risk of overall OC.

Methioninesulfoxide is generated via oxidation of methionine

residues in proteins and serves as a biomarker of oxidative damage

(30, 31). Accumulating evidence suggests that methioninesulfoxide

reductases act as antioxidant repair enzymes to revert oxidized

methionines and defend against oxidative stress (32). Our results

indicate that methioninesulfoxide may confer protection against OC

through antioxidant effects. Genetically elevated tryptophan levels

were associated with a 1.72-fold increased risk of endometrioid OC in

our analysis. Tryptophan is an essential amino acid and precursor for

bioactive molecules like serotonin and melatonin (33). Previous

studies have found that changes in tryptophan metabolism in

tumors are often accompanied by abnormal expression of

tryptophan-related enzyme genes. Among the observed alterations,

variations in the expression of genes associated with indoleamine 2,3-

dioxygenase and tryptophan 2,3-dioxygenase emerge as the most

prevalent (34). In the human body, tryptophan has three metabolic

pathways. Catabolism of tryptophan through the kynurenine

pathway produces immunosuppressive metabolites and has been

implicated in facilitating tumor immune evasion (35). We also

found that higher predicted arginine and threonine were associated

with 37% and 58% decreased risks of low malignant potential ovarian

cancer, respectively. Threonine serves several functions. One of its

primary roles is in the synthesis of mucin, a substance crucial for

maintaining intestinal integrity and function (36). Additionally,

threonine plays a significant part in immune function, contributing

to the body’s defense mechanisms (36). It is also involved in the
FIGURE 5

The inverse causal estimate between molecule metabolic products and the low malignant potential ovarian cancer. Threonine has a negative impact
on the low malignant potential ovarian cancer (OR=0.42, 95% CI=0.23-0.77, P =0.004).
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phosphorylation and glycosylation of proteins, processes that are

essential for protein function and stability (36). Lastly, threonine in

the synthesis of glycine, an amino acid that has numerous roles in the

body (36). Arginine is a semi-essential amino acid and substrate for

nitric oxide synthesis (37). Nitric oxide is a ubiquitous messenger

molecule with dichotomous pro- and anti-tumorigenic actions (38).

Further research should clarify the role of arginine metabolism inOC.

We found that higher genetically predicted levels of several

acylcarnitine species (tetradecanoylcarnitine, hexadecenoylcarnitine,

octadecenoylcarnitine, octadecadienyl carnitine) were associated with

decreased risks of OC. Acylcarnitines are generated via esterification

of fatty acids and shuttle lipids into the mitochondrial matrix for b-
oxidation (39). Reduced acylcarnitine levels imply impaired fatty acid

oxidation and mitochondrial dysfunction, which are implicated in

OC (40, 41). Additionally, an association was observed between

tetradecanoylcarnitine and a diminished risk of HGSOC. Carnitine

palmitoyltransferase-1 (CPT-1), positioned on the outer membrane

of mitochondria, principally catalyzes the conversion of long-chain

fatty acyl-CoA and carnitine to fatty acyl carnitine. This conversion

represents the preliminary rate-limiting phase in the mitochondrial

oxidation of fatty acids (42). CPT-1 downregulation induces a

glycolytic shift in cancer cells (43, 44). Targeting CPT-1 may thus

restrain HGSOC growth by blocking fatty acid oxidation.

Regarding IMOC, a diminished risk was noted in conjunction

with higher genetically predicted levels of creatinine,

decenoylcarnitine, methionine, and tetradecenoylcarnitine. This

suggests impairments in pathways related to these metabolites, such

as fatty acid oxidation, antioxidant defenses, and nitrogen

metabolism, may contribute to the development of this ovarian

cancer subtype (45). Creatinine is a breakdown product of creatine

phosphate in muscle and is usually produced at a fairly constant rate

by the body (46). The lower creatinine levels associated with higher

ovarian cancer risk may indicate impaired muscle metabolism or

greater catabolism in this patient population. This is also consistent

with previous studies (47). Decenoylcarnitine is a medium-chain fatty

acid derivative involved in transporting fatty acids into the

mitochondria for beta-oxidation. The reduced cancer risk with

higher decenoylcarnitine hints at a possible role of improved fatty

acid metabolism in protecting against ovarian carcinogenesis.

Methionine is an essential amino acid that serves as a precursor for

protein synthesis and other important biomolecules like cysteine and

taurine (48). The inverse association between methionine and IMOC

risk is consistent with its known functions in maintaining genomic

stability and redox homeostasis through DNA methylation and

antioxidant systems (49). Higher methionine levels may suppress

ovarian tumorigenesis through these mechanisms. In contrast,

elevated levels of alpha-aminoadipic acid and hexose were

associated with increased IMOC risk. Alpha-aminoadipic acid is an

intermediate in lysine degradation, while hexoses are simple sugars.

The positive correlations indicate dysregulated lysine catabolism and

carbohydrate metabolism could play pathogenic roles. Alpha-

aminoadipic acid is an intermediate in lysine metabolism and a

marker of oxidative stress that may accumulate with possible lysine

deficiency or dysfunction in this pathway (50). Hexose represents the

combined pool of six-carbon sugars including glucose and fructose

(51). The increased ovarian cancer risk with higher hexose levels may
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stem from greater availability of glycolytic intermediates to fuel rapid

tumor growth (52). This fits with existing evidence on the key role of

glycolytic metabolism in ovarian cancer progression (53).

For CCOC, elevated levels of butyrylcarnitine were associated

with a reduced risk. Butyrylcarnitine is involved in fatty acid

metabolism, and previous studies have found fatty acid oxidation

pathways to be downregulated in CCOC (42). The reduced

butyrylcarnitine levels observed here likely reflect impairments in

this metabolic pathway that may promote CCOC pathogenesis.

For EndoOC, lower citrulline and tryptophan levels were

indicative of a reduced risk. Citrulline is a key intermediate in the

urea cycle, while tryptophan is an essential amino acid. Past work

indicates both these metabolites are involved in maintaining immune

homeostasis (54). The decreased levels seen here imply EndoOC risk

may rise when immune regulation is disrupted. Meanwhile, elevated

glycine was tied to heightened EndoOC risk. Glycine serves as a

precursor for glutathione, a key antioxidant. The increased glycine

levels likely reflect a compensatory response to mitigate oxidative

damage that otherwise enables EndoOC pathogenesis (55).

This study has several strengths. We employed mendelian

randomization–a powerful genetic epidemiological tool. It utilizes

SNPs closely tied to the exposure, serving as IVs to uncover

potential causal links between the exposure and the outcome.

Genotypes are believed to be randomly distributed during

gametogenesis. Thus, using the IVs model addresses many

confounding challenges in observational research, especially when

biases arise from unmeasured confounders. Thanks to the inherent

randomness of genotypic distribution, MR helps counter potential

confounding and reverse causality. We drew from the most

extensive GWAS dataset on OC, enhancing our statistical validity.

This study presents several limitations. Primarily, the cohort was

confined to individuals of European descent, whichminimizes potential

bias from population stratification but may not adequately capture the

diversity of SNP redundancy, particularly given the unavailability of the

original dataset. Moreover, while our results suggest a potential causal

linkage between small molecular metabolites and OC, the clarity of data

presentation regarding the relationships between different metabolites

could be improved for the reader’s comprehension and comparative

analysis. Recognizing these issues, we assert the necessity for subsequent

investigations, including experimental validation in a broader array of

populations and in-depth exploration of the underlying biological

mechanisms. Such research will not only corroborate our findings

but also illuminate the complex metabolic interactions associated with

OC, offering substantial contributions to the oncological community’s

understanding of this disease.
5 Conclusion

In this MR analysis, we observed putatively causal associations

between certain small molecule metabolites and the risk of OC. Our

observations underscore the potential for metabolic profiling in risk

stratification, early diagnosis, and individualized preventive

strategies for OC. These findings not only enhance our etiological

understanding but also pave the way for subsequent investigations

into targeting anomalous metabolic pathways in OC.
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