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Roles of extracellular vesicles
in glioblastoma: foes, friends
and informers

Taral R. Lunavat1,2†, Lisa Nieland1,3*†, Anne B. Vrijmoet1,
Ayrton Zargani-Piccardi1, Youssef Samaha1, Koen Breyne1

and Xandra O. Breakefield1*

1Molecular Neurogenetics Unit, Massachusetts General Hospital and Harvard Medical School,
Charlestown, MA, United States, 2Department of Biomedicine, University of Bergen, Bergen, Norway,
3Department of Neurosurgery, Leiden University Medical Center, Leiden, RC, Netherlands
Glioblastoma (GB) tumors are one of the most insidious cancers which take over

the brain and defy therapy. Over time and in response to treatment the tumor

and the brain cells in the tumor microenvironment (TME) undergo many genetic/

epigenetic driven changes in their phenotypes and this is reflected in the cellular

contents within the extracellular vesicles (EVs) they produce. With the result that

some EVs try to subdue the tumor (friends of the brain), while others participate

in the glioblastoma takeover (foes of the brain) in a dynamic and ever changing

process. Monitoring the contents of these EVs in biofluids can inform decisions

based on GB status to guide therapeutic intervention. This review covers

primarily recent research describing the different cell types in the brain, as well

as the tumor cells, which participate in this EV deluge. This includes EVs

produced by the tumor which manipulate the transcriptome of normal cells in

their environment in support of tumor growth (foes), as well as responses of

normal cells which try to restrict tumor growth and invasion, including traveling

to cervical lymph nodes to present tumor neo-antigens to dendritic cells (DCs).

In addition EVs released by tumors into biofluids can report on the status of living

tumor cells via their cargo and thus serving as biomarkers. However, EVs released

by tumor cells and their influence on normal cells in the tumor

microenvironment is a major factor in immune suppression and coercion of

normal brain cells to join the GB “band wagon”. Efforts are being made to deploy

EVs as therapeutic vehicles for drugs and small inhibitory RNAs. Increasing

knowledge about EVs in the TME is being utilized to track tumor progression

and response to therapy and even to weaponize EVs to fight the tumor.
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Introduction

From the human perspective, any factors that support

progression of glioblastomas (GBs) are considered foes and any

that hinder their growth or support therapeutic intervention are

friends. GB is an extremely fast growing and almost always a lethal

malignancy arising presumably from neural precursor or glial cells

in the brain (1). The lethality of the GB can be attributed in part to

the usually advanced stage at the time of diagnosis and the many

modes of resistance to treatment. Extracellular vesicles (EVs) are a

stealthy means of communication within the brain that can transfer

components of one cell to other cells, thereby altering their

physiologic state. EVs are secreted by all cell-types in the tumor

microenvironment (TME), including the tumor cells themselves,

and have unique and conflicting roles in this fight for survival.

These vesicles are membrane enclosed, retaining the orientation of

the membrane of the cells from which they are derived. Typically,

50-200 nm in diameter they contain cargo from the source cell

including protein, RNA, DNA, lipids and sugars (2, 3). Tumor-

derived EVs can be considered as packets of directives to instruct

other cells on how to respond to the tumor, inform on the status of

the tumor, and potentially be manipulated to contribute to

therapeutic intervention. They have an important role, working in

conjunction with secreted factors and cell-to-cell contact in

changing the phenotype of normal cells in the TME, controlling

immune responses to the tumor and regulating the rate of tumor

cell proliferation and invasion into the brain.

This review will focus on advances in understanding these

dynamic interactions in research articles over the past five-or-so

years. We also recommend a few other reviews which have provided

insight into this ongoing dialogue, although there is still much to be

discovered (4–6). Other relevant reviews include protumorigenic
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mechanisms in GB (7); interactions of tumor EVs in radiotherapy

(8), therapeutic vesicles for GB (9) and EVs as biomarkers for GB

(10). A timeline (Figure 1) of important publications related to EVs

in GB is provided.
Foe activity – EVs promote
tumor progression

GB-derived EVs change the phenotype
of surrounding brain cells in support of
tumor growth

GBs are known for their heterogeneity between patients and even

at the genome/phenotype level within a single tumor (30–32), as well as

the complexity of the TME, which comprises various cell-types,

including tumor cells, neurons, microglia, astrocytes, macrophages,

endothelial cells and immune cells (4). Glioma cells affect almost all cell

types in the TME, and recruit non-tumor cells to support glioma

expansion, such as monocytes from the bloodstream (33) and

microglia from other areas of the brain (34). Multiple studies have

shown that GB cells are capable of hijacking healthy brain cells to

promote tumor growth through “instructions”mediated in part by EV

cargo (35, 36) (Figure 2). EVs regulate gene expression by surface

signaling and depositing their cargo into cells in their proximity and at

even more distant sites, and are also released into the cerebral spinal

fluid (CSF) and blood (37). For example, EVs mediate crosstalk

between GB cells and astrocytes, the latter being the most abundant

glial cells in the brain (38). GB cells secrete EVs that alter normal

astrocytes, which are intended to protect healthy brain tissue, and turn

them into highly reactive GB-associated astrocytes via activation of

MYC and inhibition of p53 pathways (39). These GB-associated
FIGURE 1

Timeline of milestone discoveries regarding GB-derived EVs. 1800, First comprehensive histomorphological description of glioblastoma by Rudolf
Virchow (11). 1960, First observation of microvesicles (12). 1963, First promising chemotherapy (13). 1980, Radiation is accepted as standard therapy
(14). 1983, Exosomes were first observed (15). 1987, The term exosome was defined (16). 1990, The EGFRvIII mutation was identified (17). 1993, WHO
classifies brain tumors (18). 1993, Combination therapy of chemotherapy & radiation after surgery (19). 1999, Temozolomide is introduced (20). 2001,
Report of tumor-derived extracellular vesicles (21). 2005, Genome mapping of glioblastoma (22). 2005, Introduction of the Stupp protocol (23).
2007, Discovery that extracellular vesicles transfer functional nucleic acid between cells (24). 2008, EV RNA as blood biomarker for GB and GB-
derived extracellular-vesicles modulate recipient cells (25). 2008, Bevacizumab receives FDA approval (26). 2017, 5-ALA approved by the FDA as an
intra-operative optical imaging agent (27). 2018, Discover of the immuno-suppressive role of glioblastoma-derived extracellular vesicles (28). 2020,
The role of glioblastoma-derived extracellular vesicles in the tumor microenvironment is recognized (29).
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astrocytes transition into a tumor-promoting phenotype characterized

by secretion of pro-inflammatory molecules, such as interleukin (IL)-6

(39), increase in their migrational capacity with enhanced cytokine

production through signaling pathways, such as nuclear factor kappa B

(NF-kB) and transforming growth factor-b (TGF-b) (40). In addition,

through JNK signaling, high levels of CD147 secreted by GB lead to

matrix metalloproteinase-mediated degradation of the extracellular

matrix (ECM) supporting tumor growth and invasiveness (41).

In addition, GB-derived EVs promote vascularization via

reprogramming of endothelial cells, a main component of the

perivascular niche – the microenvironment around a blood vessel

(42). RNA-sequencing (RNA-seq) analysis has identified candidate

microRNAs (mi-RNAs), including miR-9 which mediates post-

transcriptional downregulation of angiostatic genes, including

RGS5, SOX7, and ABCB1 and could explain the failure of anti-

angiogenic therapy using anti-vascular endothelial growth factor

(VEGF) strategies (43). RNAseq analysis further revealed that

microglia, the innate immune cells of the brain which have taken

up tumor-derived EVs downregulate genes that are involved in

sensing tumor cells and generating an immune reponse to tumor

neo-antigens, and actually end up supporting tumor growth (34).

GB-derived EVs also promote proliferation and migration of

neuronal progenitor cells through the PI3K-Akt-mTOR pathway

(44) and can potentially participate in transformation of these stem-

like cells, such that they become tumor-like and may participate in

support of tumor recurrence (45). Moreover, EVs play a role in

resistance to therapy through their function as decoys of antibody-

based therapy, or as drug efflux transporters, as elaborated in a
Frontiers in Oncology 03
recent review (5). Additionally, GB-derived EVs are involved in

radiation-resistance through specific mi-RNA cargosuch as

mir320e, miR520f-3p, miR363-3p, miR144-4p, miR16-5p,

miR495-3p, miR23a-3p, and miR155-5p which target the PTEN

pathway (46).

In conclusion, current evidence points towards a pro-

tumorigenic role for GB-derived EVs in modulating the TME,

reprogramming healthy brain cells towards a more tumor

supportive state and protecting tumor cells from therapy.

Although studies have shown that glioma-derived EVs affect

neighboring cells in the brain, the many mechanisms by which

GB-EVs regulate the TME and affect current therapeutic strategies

needs to be further elucidated. One major player - miR-21 is high in

GB cells and knocking out miR-21 results in reduced tumor growth

(47). GB EVs also have high miR-21 and when transferred to

microglia results in changes in their transcriptome which support

tumor growth (48). Further studies are crucial to understand

glioma-derived EV communication and its interplay with

healthy cells of the brain, which could potentially open new

therapeutic avenues.
GB-derived EVs suppress the immune
response to tumor antigens

Overall, GBs effectively counter anti-tumor immunity essential

for a positive immunotherapy outcome (49). As well-recognized

intercellular mediators, GB EVs incorporate immune attenuating
FIGURE 2

GB-derived EVs are capable of hijacking healthy brain cells to promote tumor growth. Tumor-derived EVs carry catabolic proteins and express
immunosuppressive molecules, including PD-L1, TGF-b, IDO, and galectin 9. Moreover, they contain immunosuppressive miRNAs (miR-1246, miR-
10a, miR-21, miR-29a, miR-92a). These EVs operate within the ECM and are taken up by cells in the TME, contributing to immune evasion and other
tumor-promoting processes (left). The TME consists of many cell types, including astrocytes, microglia, T cells, DCs, endothelial cells, and
macrophages. Astrocytes contribute to the degradation of the ECM within the TME. Microglia cells within the TME promote tumor growth by
increasing the production of pro-inflammatory and endothelial factors, including VEGF, IL-6, IL-12, and IL-10. T cells are hindered within the TME
due to the increased expression of immune checkpoint proteins, including PD-L1, CTLA-4, and AMP. This blockade restricts the functionality of T
cells within the TME. DCs in the TME potentially reduce tumor cell functionality by increasing the expression of TIM-3, which may contribute to
impairing tumor cell function. Endothelial cells in the TME promote angiogenesis, by downregulating RGS5, SOX7, and ABCB1, thereby creating a
pro-angiogenic environment. A unique group of macrophages identifiable by the CD169 marker contributes to the establishment of an anti-tumor
surrounding within GB.
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molecules, such as checkpoint inhibitor proteins - programmed

death ligand-1 (PD-L1;(28), cytotoxic T-lymphocyte associated

protein 4 (CTLA-4;(50), and immunosuppressive cytokines, such

as TGF-b (29). GB EVs also contain small immunosuppressive mi-

RNA species such as miR-1246, miR-10a, miR-21, miR-29a, and

miR-92a, which serve to generate an “immunosuppressive halo”

around tumor cells (51). The goal of these regulatory signals

transported by GB-derived EVs is to manipulate oncogenic cells

associated with the tumor for example microglia, myeloid-derived

suppressor cells, and dendritic cells (DCs), while blocking potential

anti-tumor activity in the TME by interfering with the recruitment

from the periphery and activity of immune cells, including CD4+

effector T cells and CD8+ effector T cells (52).

EVs mimic immunosuppressive signals that act through direct

contact with immune target cells. GB-derived EVs are enriched with

membrane-associated PD-L1 interacting with PD-1+ tumor-

reactive T cells to impair their proliferation and stimulation (28).

In addition to PD-L1, other immune checkpoint proteins, such as

CTLA-4, can be exposed to GB-derived EVs and act to suppress

natural killer (NK) cell and CD4+ T cell activation (50). The same

study showed that CD39 and CD73 are also transported by these

EVs. These catabolic proteins convert ADP/ATP into AMP or

adenosine, leading to blockage of clonal expansion and homing of

T cells by interacting with the adenosine receptor, A2AR (53–55).

Another inhibitory molecule transferred by GB-EVs known to

modulate T cells is leukocyte immunoglobulin-like receptor

subfamily 2 (LILRB2) (56).

Unlike EVs of non-GB origin, GB-EVs uniquely modulate the

transcriptome of monocytes, macrophages, and microglia into

tumor-supportive phenotypes. Oncogenic EV-uptake by tumor

associated cells leads to changes in cytokine secretion (e.g., VEGF

and IL-6), changes in antigen display to deviate T cells from their
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target, and increased expression of matrix metalloproteinases (57) or

lowering of miR-146a-5p (58) rendering the extracellular space more

permissive for tumor cell migration. Immunosuppression by GB-EVs

results in altered release of cytokines from monocytes, such as

arginase, TGF-b, and IL-10, which lead to T cell dysfunction in

glioma, while blocking pro-inflammatory cytokines such as IL-12,

and TNF-a (59). Other functions of GB-EVs include the transfer of

information to myeloid cells to obtain pro-tumor immunogenic

properties in a process called superinduction (60). Superinduction

occurs when exposure of GB cells to IFN-g during a T-cell response
leads to the release of PD-L1 and indoleamine 2,3-dioxygenase (IDO)

via GB-derived EVs. These molecules are then internalized by

monocytes, promoting the differentiation of myeloid-derived

suppressor cells. These myeloid derived suppressor cell, in turn,

have the ability to reduce T cell proliferation. Tumor-

recruited astrocytes can also contribute to the GB-myeloid

immunosuppression circuit. It is known that astrocytes that have

taken up GB-derived EVs increase levels of hyaluronic acid (61). This

is an important ligand for CD44-positive macrophage differentiation

at the GB site attenuating tumor immunogenicity and, consequently,

promoting GB growth (62). Other indirect blockage systems involve

reducing the functionality of DCs to suppress T-cell maturation,

proliferation, and activation (63). Galectin-9 on GB-EVs isolated

from the CSF of GB patients binds the TIM-3 receptor on DCs and

inhibits antigen recognition, processing, and presentation by DCs

and thus a subsequent cytotoxic T cell response (63).

In conclusion, EVs derived from a number of cell types in the

TME help mediate the immunosuppressive milieu dictated by GB

cells (Figure 3). These EVs work to ensure that immune cells are

not able to respond appropriately to GB neoantigens and thereby

aid in tumor establishment and growth, as well as resistance

to immunotherapy.
FIGURE 3

GB EVs and Immunity: Friend or Foe. (A) Friend GB-derived EVs travel through the lymphatic system and carry macromolecules from the tumor to
various immune system accessory cells, primarily in the cervical lymph nodes. This includes antigen presentation directly to T cells for activation, or
T cell activation mediated by APCs and increase in cytokine release. GB-derived EVs can also act as a blockade of PD-L1 secretion, allowing for a
more effective immune response. A list of confirmed and potential TAA (left box). (B) Foe GB-derived EVs carry immune blocking proteins, such as
PD-L1, which can lead to the suppression of T cells and a reduction in APC activity through a number of cytokines, proteins and miRNAs (right box).
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Friend activity - EVs block
tumor progression

EVs released by TME cells can act to
restrict tumor growth/invasion

EVs have emerged as significant regulators of the immune

response throughout tumor progression, as they carry a diverse

array of molecular cargo that has a critical role in modulating the

immune response (64). In recent years, researchers have discovered

that brain cell-derived EVs have the potential to suppress tumor

growth, offering new insights into the complex interactions between

the brain and cancer.

Communication between microglia and GB cells through EVs

plays a role in maintaining or restoring the balance of glutamate

levels, important in maintaining homeostasis in the central nervous

system (CNS) (65). These microglia-derived EVs serve as carriers of

specific molecular messages targeted at cancer cells, prompting

alterations in the metabolism of GB cells. Notably, these effects

are orchestrated by miR-124, encapsulated within small EVs (sEVs)

released by microglia which are internalized by GB cells. Once

internalized, miR-124 exerts an influence on the behavior and

metabolism of GB cells, resulting in a diminished release of

lactate, nitric oxide, and glutamate into the extracellular

environment. This interplay between microglia and GB cells

contributes to the rebalancing of CNS homeostasis and have an

effect on how GB cell responses to their surroundings (65).

However, it is important to note that the role of microglia

secreted EVs in tumor growth can vary depending on the context

and specific factors involved.

Another example of EVs acting as a tumor friendly influencer is

in regard to oligodendroglioma. These tumor cells release EVs

carrying TRAIL and molecular chaperones, which wield their

impact by triggering cell demise in astrocytes, potentially

hindering tumor growth (66). Moreover, these EVs have the

capability to initiate neuronal apoptosis as well (67), which

potentially reduces the tumor’s ability to interact with neurons for

its benefit an activity against the tumor.

The limited infiltration of NK cells into GB and the effective

evasion strategies employed by such tumors have made targeting

GB cells challenging (68). However, NK-EVs have been implicated

in multiple mechanisms of cancer cell destruction (68, 69)

employing both caspase-independent and caspase-dependent

pathways to induce cytotoxicity (70). The actions of NK-EVs

contribute, at least partially, to the cytotoxic effects observed in

NK cell-induced tumor cell death (68, 70). Furthermore, increased

levels of specific proteins, such as perforin, granzyme A, granzyme

B, and granulysin are associated with the cytotoxic potential of NK-

EVs (70).

Endothelial cells in the neovasculature of tumors also put up a

good fight. The involvement of endothelial cell-derived EVs

carrying esophageal cancer-related gene‐4 (ECRG4) protein can

result in the inhibition of glioma cell proliferation (71).

Furthermore, the expression of inflammatory cytokines and

angiogenesis-related factors, including NF‐kB, IL‐1b, IL‐6, IL‐8,
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monocyte chemoattractant protein‐1 (MCP‐1), hypoxia‐inducible

factor 1‐alpha (HIF‐1a), VEGF and vascular endothelial growth

factor receptor 2 (VEGFR2) in the TME are suppressed by ECRG4‐

EVs (71). GBs also release EVs containing podoplanin (PDPN),

resulting in platelet activation and a clotting cascade, which can lead

to thrombosis in the tumor and peripheral vasculature, although

definitely a health risk to patients it is not clear whether this helps or

hurts the tumor itself.

In conclusion, the release of EVs by different brain cells

represents a fascinating avenue in cancer research. The ability of

some of these EVs to suppress tumor growth through various

mechanisms highlights their potential therapeutic significance.

Further exploration of these interactions between brain cells and

tumors may help to develop targeted anti-cancer therapies that

exploit the natural tumor-suppressive properties of some brain cell-

derived EVs.
EVs released by GBs can travel to cervical
lymph nodes to present neo-antigens

An effective T cell response is an important step in mounting an

immune response against a tumor. The cervical lymph nodes serve

as one of the primary sites of tumor antigen presentation to T cells.

DCs, a type of professional antigen presenting cell (APC), expose

their loaded antigens to naive T cells, which can prime the T cells

into effector T cells, with cytotoxic, regulatory or helper capabilities

(72) (Figure 3).

To launch an antigen specific response, cytotoxic T-

lymphocytes (CTLs) must form a close relationship, called the

immune synapse (IS), between themselves and target cells to

begin an antigen specific response (73). EVs have been shown to

be effective in activating CTLs, by activating naïve T cells, even in

the absence of APCs (74). GB is considered to be a “cold” tumor, i.e.

low in tumor neoantigens. Neoantigens arise from somatic

mutations that occur in coding regions of genes during

tumorigenesis and are not found in healthy cells (75).

GB is known for its low mutation burden and a low frequency of

mutations in the tumor cells. One of the most recognized

neoantigens is EGFRvIII, a mutant form of EGFR found in ~ 30%

of GBs (76). Using RNA-seq data from 142 GB patients, 6,585

mutated genes were identified as potential sources of tumor specific

antigens (TSAs) and 5,221 genes were overexpressed and identified

as potential tumor-associated antigens (TAAs) (77). Of the 1,322

GB-associated genes that fell under both categories, nine genes

(ADAMTSL4, COL6A1, CTSL, CYTH4, EGFLAM, LILRB2,

MPZL2, SAA2, and LSP1) were identified as being associated

with both overall survival and relapse free survival. These nine

genes had positive correlations with DC infiltration, implying

recognition of potential neoantigens which could be presented to

APCs and be involved in an immune response. These potential

neoantigens were identified as possible targets for an mRNA

vaccine, and may even be transported by GB-derived EVs to elicit

an immune response. Tumor cell-derived proteins have been

detected in and on EVs isolated from plasma using a cross-

species xenograft model, providing additional proof that tumor-
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derived EVs circulate in the blood (78). As tumor-derived EVs are

carriers of neoantigens, it is possible that they could be mediators of

an anti-tumor immune response. In two murine glioma models,

major histocompatibility complex I (MHC-I) (H-2Db)–restricted

Imp3D81N (GL261 cells) and Odc1Q129L (SMA-560 cells) were

confirmed to be endogenous neoantigens with immunogenic

properties, with neoantigen-specific T cell populations being

detected both intratumorally and within cervical lymph nodes

(79). Thus, MHCI molecules exposed to tumor antigens on the

surface of EVs can directly prime naive T cells into CD8+ T cells

with cytotoxic capabilities.

Alternatively, EVs can be taken up by professional APCs, such

as DCs, and GB neoantigens presented to T cells as another form of

antigen presentation, known as cross-presentation (49). Migratory

DCs presenting tumor antigens can travel to regional lymph nodes

and present their antigens, or release EVs that will present these

antigens to resident-lymphoid DCs through vesicle transfer to

facilitate antigen presentation to T cells (49). This process aids

circulating naive T cells in becoming active against a corresponding

tumor-antigen (49). The process of EVs presenting tumor-antigens

to immune cells reveals the potential of EVs to be beneficial in

mounting an immune response against GB and other malignancies.
EVs can serve as therapeutic vehicles

EVs hold promise a means of delivering drugs and other

therapeutics to GB in various applications. When administered

systemically to rodents, GB EVs have demonstrated the ability to

transport functional cargo while evading immune clearance more

effectively than conventional delivery methods, such as surgery,

chemotherapy and targeted immunotherapy (80), and intravenous

administered EVs can pass through the blood-brain barrier (BBB)

(81). The latter can be facilitated with focused ultrasound (82).

The therapeutic potential of EVs is further supported by clinical

data emerging from cancer research. For comparison nanoparticles

(NPs) containing doxorubicin (DOX) were employed for the

treatment of intracranial GB (83–85). After uptake by U87 glioma

cells, NPs facilitated the release of DOX from lysosomes with

cytotoxic effects (84). Red blood cells (RBC) EVs loaded with

drugs exhibited no systemic toxicity, while direct doses of DOX

demonstrated systemic toxicity at levels which were therapeutically

effective. RBC-derived EVs loaded with combination of cytoplasmic

phospholipase A2 (cPLA2) siRNA/metformin served to

downregulate GB energy metabolism (86). Impaired GB

metabolism resulted in reduced tumor growth and increased

mouse survival in a patient-derived xenograft GB model (86).

miR-1208 loaded EVs led to suppression of the TGB-b pathway

and reduction of glioma growth in mice (82). EVs have also been

loaded with CRISPR-Cas9 to sensitize glioma cells to radiotherapy

by enhancing induction of ferroptosis (87) and with the cytokine IL-

12 in EVs from mature DCs to enhance immune response to the

tumor (88). These recent examples from the literature illustrate

loading of EVs with drugs, RNA and proteins for therapeutic effect

on GB.
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The specific use of EVs as drug carriers also presents

opportunities for immunotherapy. A recent study demonstrated

that the CpG-STAT3 antisense oligonucleotides loaded into neural

stem cells derived EVs potently stimulated immune activity of

human DCs or mouse macrophages, inducing NF-kB
signaling and IL-12 production in the glioma microenvironment

in mice (89). Furthermore, an anesthetic Propofol suppressed the

communication between pro-tumorigenic GB stem cells (GSCs)

and microglia by interfering with the transmission of EVs (90). This

study substantiated the anticancer attributes of Propofol,

delineating its capacity to modulate GSCs, rendering them more

receptive to ionizing radiation and temozolomide (TMZ) therapy.

Furthermore, Propofol can perturb the pro-tumorigenic

interactions between GSCs and microglia when combined with

EV-mediated transport of antisense RNA to brain-derived

neurotrophic factor (BDNF) (90).

In a rat GB model, EVs carrying yeast cytosine deaminase::

uracilphosphoribosyl transferase (yCD::UPRT-MSC) conjugated

with 5-fluoroytocysine (5-FC) cured a significant number of rats

when injected intraperitoneally or intranasally, with 5-FC being

converted to the cytotoxic 5-fluorouracil (91). Recently, it has been

shown that adipose stem cell-derived EVs may prove intrinsically

therapeutic by regulating, proliferation, invasiveness and

angiogenesis of GB cells, as shown in in vitro and in vivo

chorioallantoic membrane model assays (92).

The inherent potential of EVs to selectively interact with target

cells upon introduction into an organism is a fundamental

characteristic crucial for precise targeting of particular cell

populations, such as tumor cells. It has been established that EVs

derived from zebrafish brain endothelial cells, carrying paclitaxel

and DOX payloads, exhibit the remarkable capability not only to

traverse the BBB, but also to exhibit a high degree of specificity in

targeting GB cells (93). Other targeting mechanisms for GB have

included docking of antibodies to PD-L1 on CD64 on the EV

surface for delivery of mRNA for IFN-g (94) and conjugation of

cyclic-RGDyC to the EV surface to target integrin alpha v beta 3 on

GB cells to deliver DOX (95). EVs derived from engineered MSCs

expressing anti-EGFRvIII antibody on their surface selectively

induced apoptosis in U87-EGFRvIII GB cells, as compared to

U87 cells in vitro (96).

Neoantigens have also proven to be promising candidates for

immunotherapy, targeting various malignancies, including GB. In a

Phase Ib GB clinical trial, MHCI-based neoantigen vaccines were

used to induce an immune response after surgery and

chemotherapy (97). The results suggested that levels of infiltrating

T cells increased only in patients who developed an immune

response specific to the neoepitopes of the vaccine. In a Phase IIa

clinical study against newly diagnosed GB, SurVaxM, a peptide

vaccine targeting a member of the inhibitor of apoptosis protein

family, was shown to be safe with no serious side effects attributed to

SurVaxM. A randomized, large-scale clinical trial of SurVaxM is

currently ongoing (NCT02455557; source ClinicalTrail.gov) (98).

In a Phase I clinical trial, an ITI-1001 multi-antigen DNA vaccine

was given to patients with newly diagnosed GB. The ITI-1001

vaccine utilized the UNITE platform, which combines the
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lysosomal targeting protein LAMP1 with target antigens (pp65, gB,

and IE-1) (NCT05698199; source ClinicalTrail.gov). Treatment of a

syngeneic GB mouse model (CT-2A) with ITI-1001 resulted in

increased antigen presentation, multi-antigen-specific CD4 and

CD8 T cell responses, and around 56% long-term survival

in tumor-bearing mice (99). These promising findings led

to a follow-up phase I clinical trial with GBM patients

(NCT05698199; source ClinicalTrail.gov). Further studies could

elucidate more potential neoantigens that provide an anti-tumor

immune response and apply them to existing EV-nano vaccine

approaches targeting GB.

Despite the encouraging prospects of EVs as a prospective

diagnostic and therapeutic avenue for GB, there remains a

scarcity of clinical-level investigations evaluating their potential

therapeutic applications in GB. Although the involvement of EVs

in the progression of GB is well-established, substantial challenges

persist in harnessing EVs for therapeutic purposes in GB. These

challenges encompass the isolation, subtyping, enrichment, cargo

loading, and conferring of target specificity to EVs, among other

aspects. Overcoming these impediments holds the potential to

establish EV-based therapies as a routine treatment modality for

glioma patients in the future.
Informer activity - EVs serve
as biomarkers

EVs released by GBs can serve as
biomarkers (informers) for cancer drivers
and response to therapy

Currently, magnetic resonance imaging (MRI) is the most

commonly used method for detecting GB and monitoring tumor

progression. This process is, however, time-consuming,

inconvenient for patients, and not always reliable in patients who

previously received tumor resection followed by radiotherapy or

immunotherapy, referred to as pseudo-progression (100–102).

Additionally, invasive tumor biopsies are performed to confirm

tumor subtypes and genetic drivers, as well as to tailor treatments

precisely to patients (100). Therefore, there is a great need for

minimally invasive techniques to detect and monitor GB

progression and response to therapy at all stages.

Biomarkers found in blood, CSF, urine or saliva can provide

detailed information about tumors using a minimally invasive

approach and have a prominent role in tumor diagnosis, and

assessment of disease progression and treatment response (102,

103). In GB, however, the search for biomarkers has been

challenging mainly due to the restricted permeability of the BBB,

which limits the passage of tumor-derived biomarkers into the

circulation (102, 104). EVs released by tumor cells and other cells in

the TME contain various proteins and RNA species and can pass

through the BBB, carrying detailed information about the tumor

and the TME, including tumor-specific biomarkers (105).

Moreover, EVs have relatively short half-lives in circulation,

thereby reporting on the current status of the tumor (106).
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EV isolation methods pose many challenges, resulting in either

loss of EV quantity or purity of EV samples (107, 108).

Nevertheless, new methods are continuously being created to

identify EV content, such as Surface-enhanced Raman

spectroscopy with nanocavity microchips (MoSERS microchip)

(109) and tunable micropattern arrays (110). GB-EVs found in

the blood are present in small quantities, especially in early GB

stages, and mixed into a complex composition of EVs derived from

other cell types, circulating cells, proteins, nucleic acids and lipids

(107, 108). Protein biomarkers are found to be valuable biomarkers

in a variety of cancers (111, 112), but have shown limitations as

biomarkers in GB as serum contains a limited amount of GB-

derived protein (107, 111). This makes it challenging to isolate

enough tumor-derived protein for early GB diagnostic purposes. As

tumor-derive proteins will be present in higher quantities at later

stages of tumor progression, proteins could be useful for analyzing

treatment response and prognosis. RNA, on the other hand, has

great potential as a diagnostic biomarker for GB, as RNA is

protected from degradation in EVs and can be amplified after EV

isolation (111).

Early studies identified the EGFRvIII mutant RNA in serum of

patients harboring EGFRvIII-positive tumors (25). This now

includes a host of other tumor markers including amplified EGFR

(113); miR-21 (114), miR-486-3p (115); O6-methylguanine DNA

methyltransferase, and isocitrate dehydrogenase (116). In patients

with GB, the levels of PD-L1 RNA in EVs derived from serum and

plasma have exhibited correlation with tumor volume up to 60

cm3 (110).

Even though proteins pose challenges as potential biomarkers in

early GB diagnosis, several studies have revealed their potential.

Cilibrasi et al. (106) compared sEVs (< 200 nm) derived from the

plasma of healthy controls with those from GB patients, explicitly

looking at protein content within EVs. They found ninety-four

proteins derived from EVs to be significantly different between GB

patients and healthy controls, including Von Willebrand-Factor

(VWF), complement signature C3, Fc Gamma Binding Protein

(FCGBP), Protein S 1 (PROS1) and Serpin Family A Member 1

(SERPINA1). These proteins were previously identified as linked to

GB and have been associated with immune evasion and poor

prognosis (106). In addition, CD29, CD44, CD146, CD81, C1Qa,

and histone H3 were also recently identified as potential protein

markers for the tumor progression of GB. These markers were

upregulated in sEVs of recurrent GB patients and are associated

with angiogenesis, invasiveness, and proliferation (102). Another

protein that promotes angiogenesis, LGALS3BP is overexpressed in

plasma EVs of several cancers, including GB, making it a good

marker for GB diagnosis (117). The EV levels of LGALS3BP are

thought to correlate with tumor grade and increased tumor burden

(117, 118).

Saliva also contains EVs with protein biomarkers (105). Some

potential biomarkers found in sEVs of saliva are aldolase A

(ALDOA), 14‐3‐3 protein ϵ (1433E), transmembrane protease

serine 11B (TM11B), and enoyl CoA hydratase 1 (ECH1). These

proteins are increasingly present in pre-operative GB patients with

unfavorable outcomes compared to pre-operative patients with

favorable outcomes. These proteins have a role in cell
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proliferation, apoptosis, migration, and invasion, potentially

increasing the likelihood of poor outcomes in patients (105).

Research studies vary with regard to EV size and concentration

in GB patients compared to healthy controls. The majority of

studies indicate higher EV levels in patients compared to healthy

subjects (3, 102, 103). Whereas others, found no significant

differences (106). The variation in findings among research

groups might be attributed to differences in EV isolation

techniques or patient cohorts (106, 119).

In addition to sEVs derived from plasma or saliva, sEVs isolated

from the CSF may also provide in-depth information about the

internal interactions between the tumor and the TME. As these

sEVs will not have passed through the BBB, they may provide a

more accurate representation of the current situation within the

TME. EVs isolated from CSF have shown higher sensitivity in

detecting GB than EVs isolated from other bodily fluids (104, 120).

This method of EV isolation, however, is more invasive for patients,

making it a more challenging method for tumor monitoring and

treatment response (5, 120). An example of CSF biomarkers

released in EVs of GB cells and glioma stem cells are miR-21 and

miR-9 (120). These potential biomarkers play a role in tumor

migration and proliferation.

Recently, urine samples of GB patients have been studied and

urine-derived EVs contain useful diagnostic and prognostic

biomarkers for GB (119, 121). It is challenging to extract EVs and

biomarkers from urine, but several research groups have shown that

nanowire assays can be a useful tool for extracting these biomarkers.

Urine is easily accessible and would provide a minimally invasive way

to diagnose or analyze treatment response in GB. Fifty-seven mi-

RNAs are differentially expressed in patients with CNS tumors

compared to healthy subjects, of which 23 most strongly associated

with GB were selected using logistic LASSO regression analysis -

miR-6070, miR-22-3p, miR-4538, miR-1285-3p, miR-372-5p, miR-

4525, miR-5698 were increasingly expressed in CNS tumor patients,

including GB patients, and miR-204-3p, miR-6763-5p, miR-101-5p,

miR-208a-5p, miR-371a-3p, miR-378a-5p, miR-216a-5p, miR-6864-

3p, miR-450b-3p, miR-640, miR-4426, miR-17-3p, miR-450a-2-3p,

miR-1248, miR-100-5p, and miR-16-5p were under expressed in

these patients as compared to controls (121). In addition, the EV

membrane protein CD31/CD63 was overexpressed in urine of GB

patients compared to healthy patients (119). CD31 is correlated with

tumor progression and prognosis as it plays a role in vasculogenesis

(119). All in all, urine has potential as a source for EV biomarkers, but

further research needs to explore the extent and application of EV

biomarkers present in urine, as well as how small the EVs need to be

to pass through the kidney filtration. Besides using EVs in GB

diagnosis, EVs can serve as predictive markers for treatment

response and can, thus, have a role in personalized medicine.

Several studies observed increased expression of heat shock

proteins (HSPs), mainly HSP70, in both sEVs (< 200 nm) and the

TME of TMZ resistant human glioma lines tested in vitro, most

prominently U87 (122–124). TMZ-sensitive U87 cells showed a

decrease in HSPs compared to untreated U87 cells (123). HSPs are

proteins broadly involved in proteome homeostasis, with HSP70
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specifically playing a role in treatment resistance and increasing

survival in cultured U87 cells (123). Similar decreases of isocitrate

dehydrogenase type 1 (IDH1), PDPN, and Hsp90 were observed in

both sEVs (< 200 nm) and large (l) EVs (> 200 nm) of TMZ

treatment-sensitive GB cells in culture compared to untreated

samples. HSPs, IDH1 and PDPN have great potential as predictive

markers for GB and should be further explored in vivo.

RNA content of EVs is known to be a highly sensitive and

predictive biomarker of GB. Upregulation in the long-non-coding

RNA - SBF2-AS1 was associated with TMZ resistance in vitro and

in vivo (122). Moreover, Dacomitinib, a tyrosine kinase inhibitor,

showed differences in gene expression in recurrent GB with

amplified EGFR as measured in EV mRNA comparing GB

patients with responsive and non-responsive tumors. EGFRvIII or

EGFR-extracellular domain (ECD) mutation status was, however,

not correlated with the clinical response (122, 125). In addition,

expression of the RAD51 gene and the MDM2 gene increase

significantly in the TME of the U87 MG and LN229 glioma cell

lines in association with HSP proteins in vitro. MDM2 plays a role

in the degradation of p53, resulting in evasion of apoptosis. An

increase of MDM2 is observed in both the TME and EVs, whereas

RAD51 is only increased in the TME (124). RAD51 is involved in

DNA repair mechanisms, so increasing expression of this gene

could fortify resistance in treatment that induces DNA damage,

such as chemotherapy. In clinical tissue samples and serum derived-

EVs from GB patients, the lncRNA HOX transcript antisense RNA

(HOTAIR) was overexpressed, which has great potential as a

prognostic and diagnostic biomarker and may also provide

further information about TMZ treatment resistance (126).

Ding et al. (127) compared GB patients’ immunological states

and treatment responses and categorized patients based on EV gene

expression and survival (high risk vs. low risk). Three EV

transcripts for nerve growth factor (NGF), insulin‐like growth

factor binding protein 6 (IGFBP6), and T cell receptor constant b
chain-1 (TRBC1) were identified as the most relevant features in

predicting patients’ risk. The high-risk group showed significantly

shorter survival compared to low-risk group. In addition, they

demonstrated differences in immune cell invasion, with the high-

risk groups expressing more immune checkpoint markers,

including programmed cell death protein (PD1), and having a

worse prognosis. Due to the expression of PD1/PD-L1, these

patients were found to have improved responses when treated

with anti-PD-L1 compared to those in the low-risk group. On the

other hand, the low-risk patients displayed more somatic

mutations, such as in EGFR and TP53. Targeted therapies may,

thus, benefit patients in the low-risk groups. Therefore,

exploring gene expression in EVs from patients may be valuable

for anticipating treatment response and might aid in the

development of personalized therapies for patients (122, 125, 127).

Finally, positive treatment response to photon- and proton-

based radiotherapy showed an increase in patients with EVs

expressing the cell surface proteins - CD9 and CD81 (128). A

substantial increase in CD9- and CD81-positive EVs post-treatment

was found to be a valuable indicator of treatment effect. This
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increase was also observed when GB cells (A172, LN229, U373, and

T98G) in culture underwent apoptosis. An increased presence of

CD9- and CD81-positive EVs are not, however, indicative of

radiosensitivity, as these markers are highly expressed in the

majority of GB patient EVs regardless of how effective the

treatment is (128).

In conclusion, EVs can be valuable biomarkers for GB

diagnosis, tumor progression and treatment response (Figure 4).

EV size and concentration are currently unreliable for GB diagnosis

or progression, but protein and RNA markers can be informative.

Further research is needed to expand distinguishing EV

characteristics in GB patients of various types, at different stages

of the disease and in response to therapy.
Conclusion

EVs function as cargo vehicles transporting a variety of cellular

contents throughout the TME and are therefore promising as

biomarkers and even targets for therapeutic approaches in

treatment of cancer, including GB. However, EVs – especially

those released from tumor cells are very adept at promoting

tumor progression, including changing the phenotype of normal

cells in the TME so that they come to support tumor growth. In

addition these EV enemies of the brain have multiple roles in

suppressing the immune response to the tumor. All in all it is

sometimes difficult to categorize EVs as friends or foes as they have

so many cross acting communicative functions. In general, early in

tumor growth EVs from normal cells, such as microglia and
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astrocytes, are focused on eliminating this “foreign object”, but

later as the tumor progresses and bombards them with its own EVs

they switch camps and are more supportive of the tumor. In this

review we have summarized the roles of EVs in protection of brain

from GB and tumor progression and discussed recent and

current research regarding the use of EVs as a diagnostic and

therapeutic tool.
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FIGURE 4

GB-derived EVs function as biomarkers in liquid biopsies. Liquid biopsies from blood, CSF, urine, or saliva are becoming valuable, minimally invasive
tools for tumor diagnosis and prognosis (102, 103). Each type has advantages and disadvantages (left). CSF is closest to the tumor and in contact
with the TME, accurately representing the current tumor status (102, 103). However, obtaining CSF is highly invasive, making it more challenging to
analyze tumor progression and treatment response. Biomarkers in saliva, blood and urine have crossed the BBB and have, thus, been filtered. This is
even more extreme in urine as they travel through the kidneys (129, 130). This makes these liquid biopsies less reliable for analyzing tumor status and
representation, however, obtaining these biopsies is less invasive for patients. Previously identified potential biomarkers have been listed. The source
(CSF, saliva, blood/serum, urine) and type (i.e., RNA, DNA, protein, mi-RNAs). of these EV biomarkers are illustrated (pink, protein; red, RNA; yellow,
tetraspanin; grey, DNA; blue, lon-noncoding RNA; orange, mi-RNA) (right). Biomarkers written in italics are identified in pre-clinical models, but not
in patient samples yet.
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