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Modeling of senescence-related
chemoresistance in ovarian
cancer using data analysis and
patient-derived organoids
Xintong Cai1†, Yanhong Li1†, Jianfeng Zheng1, Li Liu1,
Zicong Jiao2, Jie Lin1, Shan Jiang1, Xuefen Lin1 and Yang Sun1*

1Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer
Hospital, Fuzhou, Fujian, China, 2Department of Translational Medicine, Scientific Research System,
Geneplus -Beijing Institute, Beijing, China
Background: Ovarian cancer (OC) is a malignant tumor associated with poor

prognosis owing to its susceptibility to chemoresistance. Cellular senescence, an

irreversible biological state, is intricately linked to chemoresistance in cancer

treatment. We developed a senescence-related gene signature for prognostic

prediction and evaluated personalized treatment in patients with OC.

Methods: We acquired the clinical and RNA-seq data of OC patients from The

Cancer Genome Atlas and identified a senescence-related prognostic gene set

through differential and cox regression analysis in distinct chemotherapy

response groups. A prognostic senescence-related signature was developed

and validated by OC patient-derived-organoids (PDOs). We leveraged gene set

enrichment analysis (GSEA) and ESTIMATE to unravel the potential functions and

immune landscape of the model. Moreover, we explored the correlation

between risk scores and potential chemotherapeutic agents. After confirming

the congruence between organoids and tumor t issues through

immunohistochemistry, we measured the IC50 of cisplatin in PDOs using the

ATP activity assay, categorized by resistance and sensitivity to the drug. We also

investigated the expression patterns of model genes across different groups.

Results:We got 2740 differentially expressed genes between two chemotherapy

response groups including 43 senescence-related genes. Model prognostic

genes were yielded through univariate cox analysis, and multifactorial cox

analysis. Our work culminated in a senescence-related prognostic model

based on the expression of SGK1 and VEGFA. Simultaneously, we successfully

constructed and propagated three OC PDOs for drug screening. PCR and WB

from PDOs affirmed consistent expression trends as those of our model genes

derived from comprehensive data analysis. Specifically, SGK1 exhibited

heightened expression in cisplatin-resistant OC organoids, while VEGFA

manifested elevated expression in the sensitive group (P<0.05). Intriguingly,

GSEA results unveiled the enrichment of model genes in the PPAR signaling

pathway, pivotal regulator in chemoresistance and tumorigenesis. This revelation

prompted the identification of potential beneficial drugs for patients with a high-

risk score, including gemcitabine, dabrafenib, epirubicin, oxaliplatin, olaparib,

teniposide, ribociclib, topotecan, venetoclax.
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Conclusion: Through the formulation of a senescence-related signature

comprising SGK1 and VEGFA, we established a promising tool for

prognosticating chemotherapy reactions, predicting outcomes, and steering

therapeutic strategies. Patients with high VEGFA and low SGK1 expression

levels exhibit heightened sensitivity to chemotherapy.
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1 Introduction

Ovarian cancer (OC) is the primary contributor to gynecologic

carcinoma worldwide. The first-line OC treatments, outlined by the

NCCN guidelines, encompass comprehensive debulking surgery

and platinum-based chemotherapy. In advanced stages, adjunctive

antiangiogenic agents are recommended (1). While chemotherapy

remains pivotal in OC treatment, about 70%-80% of patients

experience relapse after treatment eventually culminating in

chemotherapy resistance (2, 3).

Cellular senescence is an irreversible biological state in which

cells lose their ability to proliferate and transition from the cell cycle

into a relatively stable state, an indispensable mechanism for tumor

suppression (4). Chemotherapy-induced senescence (CIS),

represents a subtype of cellular senescence, triggered by platinum-

based chemotherapy, such as cisplatin (5). Eluding CIS might serve

as a plausible explanation for drug resistance (6). It has been

observed that CIS cells can break free from their arrested state,

re-enter the cell cycle, and exhibit significantly elevated tumor

initiation potential (7). In OC, both spontaneous and drug-

induced senescent cells contribute to cancer progression (8).

Leveraging death receptor 5 (DR5)-selective agonists to augment

treatment-induced apoptosis in senescent cancer cells may impede

tumor progression (9). Consequently, prognosticating patients

susceptible to senescence-induced chemotherapy resistance could

hold the key to improving OC outcomes.

Organoids represent 3D multicellular structures akin to organs,

enabling more precise replication of microenvironments for disease

modeling, drug development, regenerative medicine, toxicology

research, and personalized medicine. In 2009, Sato’s team

achieved successful cultivation of the first organoid in the small

intestine that can undergo long-term proliferation and passage,

marking the beginning of contemporary organoid research (10). In

2017, Soragni et al. successfully constructed OC organoids and

revealed the potential therapeutic effects of ReACp53 through high-

throughput screening (11). Phan, meanwhile, suggested the utility

of high-throughput drug screening based on organoid technology in

OC treatment (12).

In our study, we performed extensive data analysis to ascertain

senescence-related differential expression genes in patients with
02
OC, distinguishing between platinum-resistant and platinum-

sensitive groups. Subsequently, we formulated a predictive

signature and validated its efficacy by assessing the expression of

senescence genes in OC patients-derived organoids (OC PDOs).

Further categorizing clinical samples into resistant and sensitive

groups allowed us to scrutinize the cisplatin sensitivity and verify

the prognostic potential of the signature, thereby paving the way for

more personalized treatments.
2 Materials and methods

2.1 Collection of data and tumor tissues

We initiated our study by sourcing clinical information and

RNA-seq profiles of patients with OC from TCGA database

(https://www.cancer.gov/). We retrieved senescence-related genes

from the GeneCards database (https://www.genecards.org). Single-

cell RNA-seq data were acquired from GSE154600 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154600). Tumor

tissues were procured from patients with OC who underwent

primary resection without prior chemotherapy, confirmed

through pathology at the Department of Gynecology, Clinical

Oncology School of Fujian Medical University, Fujian Cancer

Hospital. The study secured approval from the ethical committee

of Fujian Cancer Hospital (K2022-052-01). Informed consent was

obtained from all participants, apprised of the research objectives.
2.2 DEGs of senescence in platinum-
resistant and sensitive groups

The analysis encompassed 2740 differentially-expressed genes

(DEGs) derived from the examination of raw count RNA-seq

data in 197 patients with platinum sensitivity and 90 patients

with platinum resistance to OC from TCGA using R package

“DEseq2”. Employing Hallmark enrichment analysis, we

scrutinized mechanisms or pathways with potential relevance to

chemoresistance. After standardization of data by vst function in R

package “DEseq2”, 18 prognostic senescence-related DEGs were
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extracted through univariate Cox analysis, and protein-protein

interaction (PPI) was evaluated using the STRING database

(https://version-11-5.string-db.org/ ).
2.3 Construction of the risk model

Through multivariate Cox regression analysis, we identified three

independent prognostic-related genes. The normality of the

expression data was verified using Kolmogorov-Smirnov test and

visualized by QQ plots. To test the significance of differences between

the two groups, we performed Student’s t-test for normally

distributed data, and Wilcoxon rank sum test for non-normally

distributed data. Subsequently, we constructed a prognosis model

following the formula: risk score=SGK1*coef (SGK1)-VEGFA*coef

(VEGFA). Patients were categorized into high- and low-risk groups

based on the median score value, and the prognosis for these groups

was scrutinized. We utilized the “survival” R package to execute

Kaplan–Meier (K-M) analysis, probing for the survival differences

between OC patients in the low- and high-risk groups. Based on the

somatic mutation data from TCGA, we conducted gene mutation

through “maftools” package. Single-cell RNA-seq data was integrated

by “Seurat” and “SingleR” R packages. We normalized data with Log

Normalize method, then utilized t-distributed stochastic neighbor

embedding (t-SNE) via the “RunTSNE” function to cluster and

visualize cell populations. Finally, we explored the expression of

these two genes across various cell types.
2.4 Immune infiltration landscape and
chemotherapy sensitivity analysis

To estimate the proportion of 22 immune cell types between the

low- and high-risk groups, we employed the CIBERSORT

algorithm (13). The R package “ESTIMATE” was employed to

evaluate stromal, immune, and tumor purity scores of OC, based on

the proportion of immune and stromal cells. We forecasted the

chemotherapy response of commonly used drugs for OC patients

through the Genomics of Drug Sensitivity in Cancer (GDSC;

https://www.cancerrxgene.org/) database. The half-maximal

inhibitory concentration (IC50) was determined using the

“pRRophetic” package to assess chemotherapy response (14).
2.5 Human ovarian cancer organoid
establishment, culture, and verification

Specimens, sized 1- 2 cm3, wereminced into 1-mm3 fragments and

incubated in a tissue digestion solution (K601003; Tumor Tissue

Digestion Solution; bioGenous™) at 37°C for 20-40 minutes.

Digestion duration was determined through microscopic

observations of cells dissociating into 10- to 20-µm small clusters.

The suspension was then filtered through a 100-µm nylon cell strainer

and centrifuged at 300 g for 5 minutes. After lysing red blood cells

using the Red Blood Cell Lysis Solution (E238010; bioGenous™) and

centrifuging again to wash the cell pellet with DMEM (Gibco), a
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portion of the suspension was mixed with organoid cryopreservation

medium (E238023; bioGenous™). The mixture was then placed in a

programmed cooling box at -80°C for 24 hours and subsequently

stored in liquid nitrogen. Approximately 2000-5000 cells per well were

mixed with 35µL basement membrane extract (BME; bioGenous™)

and seeded into pre-warmed 24-well plates. Following BME

solidification, each well was incubated with 500 µL human OC

organoid medium (K2168-OC; bioGenous™) at 37°C. The medium

was replenished every 2-3 days. Capture images every 3 days with a

microscope (TS2; Nikon) and a camera (SYA-C20). Organoids were

passaged approximately every 14 days by dissociation with an organoid

dissociation solution (E238001; bioGenous™) for 10 minutes at 37°C.

The success rate for establishing OC PDOs was 50%. After organoids

were propagated to the first generation, immunohistochemistry was

performed to validate whether their origin was consistent with tumor

tissue. The process is outlined in Figure 1.
2.6 ATP quantification cell viability assay

For organoid construction, the previously mentioned cell

suspension was counted using a cell counter. Approximately 2500

cells per well were placed in a 96-wells 3D cell culture plate (Cat.NO:

HCKB-1196UA; HonrayMed™) with 200 µL of human OC organoid

isolation medium (K2168-OC; bioGenous™) at 37°C for 2-4 days.

Subsequently, the medium was replenished with a medium mixture

containing varying concentrations of cisplatin (catalog no. C2210000;

Sigma): 0, 0.78, 1.56, 3.12, 6.25, 12.5, 25, 50, and 100 µM.) This

incubation persisted for 4 days. ATP quantification was performed to

determine sensitivity to cisplatin by assessing the inhibition rate of

organoid activity. IC50, IC90, and peak plasma concentration (PPC)

were the evaluation metrics used to ascertain whether or not the

organoids exhibited resistance to cisplatin. Cases where IC50>25%

PPC and IC90>100% PPC were classified as resistant, while those with

IC50<25% PPC and IC90< or > 100% PPC, or IC50>25% PPC and

IC90<100% PPC, were deemed sensitive (15).
2.7 Quantitative real-time polymerase
chain reaction and western blot

Total RNA extraction for human OC organoids in the sensitive

and resistant groups was performed following the instructions of

the RNA extraction kit (LS1040; Promega). cDNAs were

synthesized through reverse transcription (GoScript™ Reverse

Transcription Mix, Oligo(dT) A2790; Promega). Quantitative

polymerase chain reaction (Q-PCR) was performed using the

SYBR Green Master Kit (Roche), with mRNA expression levels

normalized to GAPDH. The primer sequences are provided as

follows: SGK1-F: aaacacagctgaaatgtacgac; SGK1-R: ttggttaaaaggg

ggagtaatc; VEGFA-F: atcgagtacatcttcaagccat; VEGFA-R: gtga

ggtttgatccgcataatc; GAPDH-F: tgtgggcatcaatggatttgg; GAPDH-R:

acaccatgtattccgggtcaat. After culturing P1 generation organoids

for 14 days, collected organoids and lysed with RIPA buffer

(Epizyme Biotech, PC101), The BCA protein assay kit (Epizyme

Biotech, ZJ101) was used to measure protein concentration. The
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proteins were separated on SDS-PAGE gels and transferred to

polyvinylidene fluoride (Millipore, IPVH00010, 0.45µm) and then

blocked with 5% milk for 1 h at RT and immunoblotted with

primary antibodies at 4°C overnight: GAPDH (cell signaling

technology, 2118, 1:1000 dilution), VEGFA (Proteintech, 66828-

1-Ig, 1:1000 dilution), SGK1 (Proteintech, 28454-1-AP, 1:1000

dilution). Finally, the membranes were incubated with secondary

antibodies (abcam, ab205718, ab205719, 1:10000 dilution) and

visualized by imaging systems.
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2.8 Statistical analysis

Statistical analyses were carried out using Perl scripts (v5.30.0),

R software (v.4.1.0), and GraphPad Prism (v8.0.2). Kaplan-Meier

(K-M) analysis was employed to assess survival differences.

Differential functions were analyzed using the Wilcoxon rank-

sum test between two groups. All experiments were repeated in

triplicate. The data were expressed as mean ± standard. P < 0.05 was

considered as statistical significance.
FIGURE 1

The flowchart for constructing and passaging ovarian cancer organoids.
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3 Results

3.1 Validation of senescence-related genes
in the platinum-sensitive and resistant
OC groups

Our investigation harnessed clinical data from the TCGA

database, yielding 197 cases in the platinum-sensitive group and

90 cases in the drug-resistant group. Clinical pathological

parameters were shown in Supplementary Table 1. Subsequently,

RNA-seq data for these cases were acquired and subjected to

analysis, resulting in the identification of 2740 DEGs (|log2FC|>0

and P<0.05), including 1373 upregulated and 1367 downregulated

genes, which were then visualized through heat-maps and volcano

plots (Figures 2A, C). We further extracted 43 aging-related DEGs

by intersecting 279 aging-associated genes with the 2740 DEGs

(Figure 2B). Employing univariate Cox analysis, we identified 18

genes exhibiting significant correlations with prognosis, including

9 genes with negative associations and 9 with positive

correlations (Figure 2D).

These 18 prognosis-linked genes were used to construct PPI

networks, from which 12 pivotal genes formed a central network

marked by interactions (Figure 2E). Functional enrichment analysis

indicated their enrichment in pathways associated with hypoxia,

inflammation, and glycolysis processes closely intertwined with

cellular aging (Figure 2F).
3.2 Construction of a senescence-related
gene signature in platinum-resistant and
-sensitive OC groups

Through multivariate Cox regression analysis on these 12 core

genes, we obtained 3 genes significantly link to prognosis, depicted

in Figure 3A. Distinct survival ability of OC patients with different

expression level of IFNG, SGK1 and VEGFA were discerned

(P<0.05) (Supplementary Figure 1A) (Figure 3B). The normality

of the expression data was verified using Kolmogorov-Smirnov test

and visualized by QQ plots. The expression of SGK1 and VEGFA

was verified to be normally distributed (Figure 3B), whereas IFNG

was not (Supplementary Figure 1B). Student’s t-test was used to

exam the differences in expression levels between the platinum-

resistant and sensitive groups for SGK1 and VEGFA, and IFNG was

using the Wilcoxon rank sum test (Supplementary Figure 1C).

Notably, SGK1 and VEGFA demonstrated significantly different

expression (P<0.05), while IFNG presented no significant

expression differences between two groups (Figure 3C). Therefore,

we included SGK1 and VEGFA in our risk model construction

following the formula, risk score=SGK1*coef (SGK1)-VEGFA*coef

(VEGFA) (coef values were in Supplementary Table 2). Segregation

of patients based on risk scores yielded the high- and low-risk

groups, with those in the high-risk category facing a worse

prognosis (P<0.05, Figure 3D). Gene mutation waterfall plots for

both groups are showcased in Figure 3E. In the GSE154600 dataset,

there are 9 cell types marked mainly including cancer, immune, and
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stromal cells, and a t-SNE plot visualized cell subtypes in patients

with OC (Figure 4A), with subtype annotations provided in

Figure 4B. Both SGK1 and VEGFA exhibited increased expression

in macrophages, suggesting a correlation between these risk genes

and macrophage dysregulation in OC (Figures 4C, D).
3.3 GSEA and immune
microenvironment status

Based on KEGG database, genes with higher expression levels in

resistant group were involved in the peroxisome proliferator-

activated receptor (PPAR) signaling pathway, Cytokine Receptor

Interaction pathway, and Neuroactive Ligand Receptor Interaction

pathway (P<0.05), the same trend was found in Interferon Alpha/

Gamma Response pathway based on hallmark gene sets. While

elevated involvement of oxidative phosphorylation pathway was

found in genes highly expressed in sensitive group (P<0.01;

Figures 5A, B). We carried out the CIBERSORT algorithm to

analyze the proportion of the 22 immunocyte. Discrepancies in

the microenvironment between high- and low-risk groups primarily

centered around CD8+ T cell, monocytes, and macrophages

(Figure 6A). Estimate analysis depicted correlations between

immune, stromal and tumor purity scores with high- and low-

risk scores (Figure 6B). Figure 6C illustrated the heatmap of

differences in infiltrating immune cells between the two groups.
3.4 Prediction of potential drugs

We further investigated the correlations between the IC50 of

potential target drugs and risk scores. The smaller IC50 presented,

the more sensitive patients were to drugs. Patients with high risk

appeared to benefit from drugs such as gemcitabine, dabrafenib,

epirubicin, oxaliplatin, olaparib, teniposide, ribociclib, topotecan,

and venetoclax (Figure 7), while others seemed more beneficial for

patients in the low-risk group.
3.5 Cultivation and verification in human
ovarian cancer organoids

Our study successfully obtained and cultured three OC

samples into organoids, visually documented through growth

progression as indicated by the red arrows in Figure 8A. The

development of organoids from P0 to P2 showed in Figure 8A

(Scale bar = 100 µm). Furthermore, patients’ clinical data are

summarized in Table 1. Immunohistochemical testing of p53,

WT-1, and MUC16 in the organoids, the routine marker in

diagnosing OC, exhibited striking concordance with tissue

expression, (Figure 8B, Scale bar for tissue = 70 µm, scale bar

for organoid = 40 µm), affirming the homology between the

organoids and the corresponding tumor tissue. We exposed

organoids from the P1 generation to cisplatin diluted with

medium across varying concentrations and captured their

growth state after 72 hours. Figure 9A showed the representative
frontiersin.org
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growth status changes under 12.5 µM cisplatin medium in drug-

resistant and sensitive PDOs (Scale bar = 100 µm). Notably, the

sensitive group’s organoids exhibited shrinkage, rupture, and loss

of original structure following cisplatin addition. By contrast,

organoids in the resistant group displayed only mild shrinkage.

The dose-response curve reflecting drug inhibition rates on the

organoids is illustrated in Figure 9B. Organoids were categorized

into cisplatin-resistant and -sensitive groups based on IC50 and
Frontiers in Oncology 06
IC90. Specifically, PDO1121 was recognized as cisplatin-resistant

sample, whereas PDO0213, and PDO0315 were designated as the

cisplatin-sensitive ones. In these groups, VEGFA exhibited low

expression in cisplatin-resistant organoids, while SGK1 was

prominently expressed (Figure 9C). Figure 9D illustrated the

protein expression and the gray scale analysis of SGK1 and

VEGFA in OC PDOs. SGK1 were higher expressed in PDO1121

and VEGFA were higher in PDO0213 and PDO0315.
B

C

D

E

F

A

FIGURE 2

Identification of 12 vital differentially expressed senescence genes in ovarian cancer. Heatmap (A) and volcano plot (C) of DEGs between the
platinum-resistant and sensitive OC patients based on TCGA. (B) Venn diagram of ageing-genes and DEGs, (D) Univariate Cox analysis of the aging-
related DEGs expression. (E) PPI network illustrated the relationship among the 12 DEGs. (F) Hallmark enrichment analysis of the aging-related DEGs.
(*P < 0.05).
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4 Discussion

Cellular senescence, instigated by DNA damage response,

unfolds distinct characteristics: an irreversible growth halt;

augmented lysosomal activity (16), amplified damage response

signaling pathways; the emergence of macromolecular damage

(17), and a senescence-associated secretory phenotype (SASP)

(18, 19). Senescence operates as a dual-edged sword. In normal

tissue, it can impair repair and regeneration, accentuating aging,as
Frontiers in Oncology 07
well as maintain normal tissue homeostasis by immune-mediated

clearance (20). In tumor tissue, it serves as a robust anti-tumor

mechanism, thwarting the proliferation of cancerous cells and the

genetic transfer of damaged cells on the one hand (21), but also

promotes cellular reprogramming into a stem-like state, resulting in

drug-resistant and invasive clones on the other hand (22).

Contemporary studies spotlight chemotherapy and radiation as

catalysts for treatment-induced senescence (TIS) within tumor

cells (23). And CIS could interact with tumor micro environment
B

C D

E

A

FIGURE 3

Construction and verification of the prognostic index. (A) Forest plot of aging-related DEGs via multivariate Cox regression analysis. (B) The survival
ability of OC patients with high and low expression level of VEGFA (P=0.0168) and SGK1 (P=0.0137). Q-Q plot of VEGFA and SGK1 to test the normal
distribution of data. (C) The expression of VEGFA and SGK1 in resistant and sensitive groups. (D) Differences in overall survival between high- and
low-risk groups (P=0.0198). (E) Mutation waterfall maps show the gene mutation differences in high- and low-risk groups. (* P<0.05).
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B

A

FIGURE 5

GSEA of aging-related DEGs based on hallmark gene sets (A) and KEGG database (B). (NES: normalized enriched score).
B

C D

A

FIGURE 4

Tumor immune microenvironment. (A) t-SNE plot visualized 9 cell subtypes in OC patients. (B) The annotation diagram of different cell types.
(C, D) The distribution of SGK1 and VEGFA expression in all cell types.
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(TME). In breast cancer it is confirmed CIS could change TME and

increase the aggressiveness through the CXCL11 signaling pathway

(24). Nicolas Adele et al. also revealed that the senescence of

inflammatory cancer-associated fibroblasts (iCAFs) induced by

chemoradiotherapy was tightly correlated with poor prognosis in

rectal cancer (25). Meanwhile, cellular senescence might induce

EMT and drug resistance through the PI3K/AKT pathway in

colorectal cancer (26). Additionally, in lung cancer, TIS-induced

cisplatin resistance may be pivotal to autophagy and hypoxia (27).
Frontiers in Oncology 09
The study of OC manifests TIS within stromal cells and exhibits

SASP through cancer-associated fibroblasts (CAFs), which

underlies resistance of PARP inhibitors (28). Hence, the study of

cellular senescence-related therapeutic targets may help to

overcome tumor drug resistance. Taking death receptor 5 (DR5)

as an example, the activation of DR5 may impede tumor

progression, not only through the senescent cells but also non-

senescent cells adjacent by bystander effect (29). Furthermore, a

novel nanoplatform has been studied targeting tumor necrosis
B C

A

FIGURE 6

Different proportion of 22 immune cells between high- and low-risk groups analyzed by CIBERSORT algorithm (A) and heatmap (C). (B) Estimate
analysis of immune, stromal, and tumor purity score in high- and low-risk group.
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factor-related apoptosis-inducing ligand (TRAIL) to further

strengthen DR5-induced apoptosis, which provides a promising

approach to clinically overcome tumor resistance (30).

In our investigation, a novel senescence-related gene signature

sourced from patients with platinum-resistant and platinum-

sensitive OC, featuring genes such as SGK1 and VEGFA, was

constructed with potential prognostic predictive value. The

biological functions of these model genes are listed in Table 2.

Patients were classified into low- and high-risk cohorts based on the

median scores. Notably, patients in the low-risk group displayed
Frontiers in Oncology 10
superior prognoses, while those at higher risk had a significantly

worse prognosis. SGK1 exhibited elevated expression, while VEGFA

presented a low expression trend in the platinum-resistant group

with a poor prognosis. We speculate that this may be related to poor

angiogenesis in the platinum-resistant OC patients and the

chemotherapeutic agents are unable to reach the tumor site. The

low expression of VEGFA may also be strongly associated with the

acquisition of resistance to bevacizumab leading to poorer

outcomes in patients with platinum-resistant (39). Through the

construction of OC PDOs, the credibility of this predictive signature
FIGURE 7

Correlation between risk score and IC50 of potential chemotherapeutics predicted by the “pRRophetic” package.
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B

A

FIGURE 8

(A) The growth states of organoids recorded. (Scale bar = 100 µm) (The red arrow indicates the same organoid) (B) HE and IHC staining of P53,
MUC16, WT-1 in OC tissues and organoids (Scale bar for tissue = 70 µm, scale bar for organoid = 40 µm).
TABLE 1 Clinical information of patients for culturing organoids.

Organoid Age(years) Tumor type Presentation FIGO Treatment CA125 returned to normal level
(chemotherapy cycles)

PDO1121 51 EOC Primary IIIB TC 2

PDO0213 39 EOC Primary IVB TC 2

PDO0315 62 EOC Primary IVB TC *
F
rontiers in Oncolo
gy
 11
(TC: Paclitaxel+ Carboplatin, * As of the time of paper writing, the patient has received 3 cycles of chemotherapy without CA125 normal).
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was validated. Nonetheless, further inquiry remains imperative to

elucidate the precise effect of these senescence-related genes on the

prognosis of patients with OC.

The GSEA unveiled significant enrichment of high expressed

genes in chemotherapy-resistant cohorts in the PPAR signaling

pathway. PPAR encompasses three isoforms: PPARa, PPARb/d,
and PPARg-a nuclear receptor family pivotal in regulating and

transcribing target genes, energy metabolism, cellular dynamics,
Frontiers in Oncology 12
inflammation, and carcinogenesis (42, 43). The interplay between

the PPAR pathway and chemoresistance has garnered attention

across diverse cancers, including diffuse large B-cell lymphoma

(DLBCL) (44), breast cancer (45), hepatocellular carcinoma (HCC)

(46), non-small cell lung cancer (NSCLC) (47), and OC (48). In

addition, activation of the PPAR gamma signaling pathway can

balance the release of inflammatory and anti-inflammatory

cytokines, orchestrating a pre-malignant microenvironment that
B C

D

A

FIGURE 9

(A) The different state of organoids in two groups after culturing 72 hours with 12.5 mM cisplatin. The red arrows indicate organoid changes. (B) The
inhibition ratio plot of organoids under different concentrations cisplatin. Data presented as mean ± SD. (C) Relative expression level of SGK1 and VEGFA
in organoids. Data presented as the mean ± SEM, one-way ANOVA was used for statistical calculation, n=3 independent experiments. (D) Western blot
and gray values of SGK1 and VEGFA expression in PDOs. (Scale bar = 100 µm, ns: No significance **P < 0.01. ***P < 0.001, ****P < 0.0001).
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promotes cell senescence, and alleviating tumor burdens (49). In

endometrial carcinoma, inhibition of PARR through Bcl-2/Caspase3

pathways could hinder apoptosis, fostering carcinogenesis (50). In

our investigation, the activation of the PPAR pathway was correlated

with poor prognosis in OC patients.

To further validate the prognostic potential of our risk model,

we constructed the OC PDOs. Organoids are intricate 3D

multicellular structures that distinguish themselves from patient-

derived xenograft (PDX), which entail drawbacks such as high

costs and extended durations, as well as 2D cell lines that suffer

from limitations such as the absence of cell morphology, original

tumor tissue structure, and intercellular interactions. Tumor

organoids possess distinctive attributes: they adeptly mimic

microenvironments, foster in vitro miniature tumor formations,

and closely mirror the differentiation and expression characteristics

of the original tumor tissue. This renders them highly suitable for

investigating tissue responses to drugs, injuries, or mutations,

conducting drug candidate screenings, and enabling precision

clinical treatments (51). Phan et al. previously indicated the

potential application of high-throughput drug screening based on

organoid technology in OC treatment (12). In our study, we

developed three human OC organoids, predicted patient

responses to cisplatin treatment through ATP viability assay, and

corroborated the expression of model genes (SGK1 and VEGFA)

within cisplatin-resistant and cisplatin-sensitive groups. Notably,

our findings aligned consistently with the analysis conducted on

the TCGA database.

In this endeavor, a senescence-linked risk model was devised,

underscoring the connection between model gene and PDO drug

responses to cisplatin treatment. A broader sample set of clinical

trials is necessary to adequately assess the clinical significance of our

features. However, few patients have primary resistance in the

clinical setting, while platinum-resistant patients tend to relapse

six months after initial treatment, with fewer opportunities for

surgery and difficult access to specimens. Due to the difficulty of

obtaining enough platinum-resistant tissue to culture organoids,

there are limitations to our organoid validation cohort. We plan to

conduct further fundamental experiments to explore the complex

mechanisms of senescence-related genes in OC’s chemoresistance.
Frontiers in Oncology 13
5 Conclusion

Through a holistic analysis and rigorous in vitro validation,

our study conceived a senescence-related gene signature (SGK1

and VEGFA) in OC. Our model demonstrated the potential

to forecast chemotherapy outcomes and prognosis, guiding

therapeutic interventions.
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