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Breast cancer is the most common malignant neoplasm in women. Despite

progress to date, 700,000 women worldwide died of this disease in 2020.

Apparently, the prognostic markers currently used in the clinic are not

sufficient to determine the most appropriate treatment. For this reason,

great efforts have been made in recent years to identify new molecular

biomarkers that will allow more precise and personalized therapeutic

decisions in both primary and recurrent breast cancers. These molecular

biomarkers include genetic and post-transcriptional alterations, changes in

protein expression, as well as metabolic, immunological or microbial changes

identified by multiple omics technologies (e.g., genomics, epigenomics,

transcriptomics, proteomics, glycomics, metabolomics, l ipidomics,

immunomics and microbiomics). This review summarizes studies based on

omics analysis that have identified new biomarkers for diagnosis, patient

stratification, differentiation between stages of tumor development

(initiation, progression, and metastasis/recurrence), and their relevance for

treatment selection. Furthermore, this review highlights the importance of

clinical trials based on multiomics studies and the need to advance in this

direction in order to establish personalized therapies and prolong disease-

free survival of these patients in the future.
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1 Introduction
According to GLOBOCAN 2020, female breast cancer (BC) is

the most common type of cancer. In 2020, female BC accounted for

nearly 700,000 cancer deaths and 2.3 million new cases worldwide

(1). Breast cancer is highly heterogeneous, and its treatment

classically depends on its clinical status (early stage, locally

advanced or metastatic), histological characteristics and

biomarker profile (2). Histologically, breast cancers can be

classified as sarcomas or carcinomas depending on whether they

originate from connective tissue or epithelial cells. In turn,

carcinomas are classified as carcinomas in situ if they have not

invaded other tissues, or as invasive carcinomas if they have invaded

adjacent tissues or other organs of the body. Both in situ and

invasive carcinomas are found in the lobules and ducts (lobular

carcinoma in situ, LCIS; ductal carcinoma in situ, DCIS; invasive

lobular carcinoma, ILC; and invasive ductal carcinoma, IDC) (2).

The presence or absence of estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor receptor 2

(HER2) molecularly determines breast cancer subtypes (3).

Estrogen receptor positive (ER+) tumors require estrogen to

subsist and grow. PR expression, in turn, is estrogen dependent.

Therefore, ER+ and/or PR+ tumors are amenable to endocrine

therapies targeting estrogen biosynthesis or estrogen receptors (4,

5). Likewise, HER2 amplification or overexpression determines the

use of HER2-targeted therapy (6). Breast cancer can be classified

into luminal A, luminal B, HER2-enriched and triple-negative

breast cancer (TNBC), also known as basal-like. The luminal A

subtype is characterized as ER+ and/or PR+ but HER2−, the

luminal B subtype is ER+ and/or PR+/HER2+, the HER2-

enriched subtype is characterized by overexpression of HER2 and

ER−/PR−, and TNBC is negative for ER, PR and HER2 expression
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(2, 3, 7, 8). In addition, six TNBC subtypes have been identified:

basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M),

mesenchymal stem-like (MSL), immunomodulatory (IM), and

luminal androgen receptor (LAR) (9). In principle, the

stratification of patients allows the establishment of treatments

adapted to each subtype of breast cancer (2, 10) (Figure 1).

Despite efforts, 700,000 women died from breast cancer in 2020

(1). Apparently, prognostic markers currently used in the clinic,

such as ER and HER2 status, histologic subtype, size, lymph node

status and Nottingham grade, as well as current predictive tests such

as germline BRCA status, tumor PIK3CA mutation status and

programmed death-ligand 1 (PDL-1) status, are not sufficient to

determine the most appropriate treatment (11). Relapses are the

main obstacle faced by clinicians and are mainly due to the

development of resistance to the drugs administered. However,

there are still insufficient data to determine whether resistance

develops after exposure to the drug or whether resistant cells are

present from the onset of the disease, preceding antineoplastic

treatments (12). This has prompted the search for biomarkers

related to different characteristics of breast cancers, such as

genetic alterations, epigenetic reprogramming, tumor-promoting

inflammation and immune evasion, dysregulation of cell

metabolism, or changes in the microbiota, among others (13, 14).

Over the past 50 years, efforts have been made to identify genetic

and post-transcriptional alterations, changes in protein expression,

and more recently, metabolic changes and even immunological or

microbial changes. These changes can be detected at the single

molecule or pathway level and can serve as markers for diagnosis

and/or discovery of personalized therapies. The detection of these

modifications is made possible by technologies known as “omics”,

such as genomics, transcriptomics, proteomics or metabolomics, or

more specific ones such as epigenomics, glycomics or lipidomics,

among others. The identification of new biomarkers might allow
FIGURE 1

Schematic of the workflow performed in the review. Once the commonly accepted classifications of breast cancer have been described, the
biomarkers identified by different omics techniques are described.
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more precise, and personalized therapeutic decisions in both

primary and recurrent cancers (Figure 1).

Genomics collectively characterizes and quantifies all the genes

of an organism. Genomic analysis includes techniques such as

microarrays, gene expression profiling, serial analysis of gene

expression (SAGE), comparative genomic hybridization (CGH),

array-based CGH (array-CGH), whole genome amplification

(WGA), and high-throughput sequencing or next-generation

sequencing (NGS). Different genomic studies have focused on the

search for markers with predictive or prognostic value, for patient

stratification and for determining the appropriate therapy (15, 16).

Transcriptomics studies the set of all RNA transcripts of an

organism. The most commonly used techniques to study the

transcriptome are microarrays and RNA sequencing (RNA-seq)

using high-throughput sequencing or NGS. Transcriptomic analysis

allows the measurement of differential gene expression, often

presented as hierarchical clustering (17, 18). Proteomics detects

and quantifies the presence of proteins produced or modified by an

organism. Proteomic analysis is performed by using separation

techniques (gas chromatography, liquid chromatography, ultra-

h igh per formance l iqu id chromatography , cap i l l a ry

electrophoresis) combined with mass spectrometry (MS, resulting

in GC-MS, LC-MS, UPLC-MS, CE-MS, respectively), nuclear

magnetic resonance spectroscopy (NMR), reverse phase protein

arrays (RPPA), and sequential windowed acquisition of all

theoretical fragment ion mass spectra (SWATH-MS) (19).

Glycomics provides insight into the biological significance of N-

glycosylation of plasma proteins in cancer (20). Metabolomics

approaches based on NMR, LC-MS, GC-MS and desorption

electrospray ionization mass spectrometry imaging (DESI-MSI)

enable the linking of genotype and phenotype thanks to the

knowledge generated by dynamic metabolism (21, 22).

Epigenomics (study of gene modifications through the

aggregation of chemical compounds, with no changes in the DNA

sequence), lipidomics (study of lipids in the biological system), and

microbiomics (study of microorganisms present in the human

body) are branches that use some of the mentioned above.

Due to the complexity that governs carcinogenesis and tumor

progression, recent years have seen efforts to integrate data from

different omics into a computational approach that allows for more

complex reconstruction of biochemical connections (23). This review

aims to summarize the existing knowledge on the advances made

thanks to omics studies in human breast cancer. In particular, we

focus on 1) the discovery of markers that can be used for diagnosis, 2)

molecular and/or signaling pathway alterations in onset, progression,

and metastasis, and 3) resistance to therapies and attempts to

establish personalized treatments (Figure 1).
2 Implication of omics in the
identification of cancer-specific and
prognostic biomarkers

A cancer biomarker, found in tissues or body fluids, is used to

detect the presence of cancer (differences between tumor and
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healthy samples or between tumor subtypes) and provides

information on prognosis/prediction, cancer progression, and

cancer medicine/treatment guidance, among others (24). In this

review, we provide an overview of cancer-specific molecules and/or

pathways that have been identified as biomarkers in breast cancer

using different omics technologies.
2.1 Diagnostic biomarkers

One of the first uses of omics has been to identify biomarkers

that differentiate tumor tissue from healthy tissue, as well as to

identify biomarkers specific to different subtypes of breast cancer. In

addition, the last decade has seen efforts to develop minimally

invasive techniques to predict breast cancer subtypes, such as

identifying biomarkers in human plasma, saliva, and urine.

The presence, copy number alterations, mutations, or

amplifications of various genes are markers of breast cancer in

tissue. Table 1 summarizes the most commonly mutated genes (27,

44). Copy number alterations have been observed in PIK3CA,

ERBB2, TP53, MAP2K4, MLL3, CDKN2A, PTEN, and RB1 (44).

Approximately 35-40% of primary breast cancers harbor mutations

in TP53 and PIK3CA, as well as amplification of ERBB2, FGFR1,

and CCND (~15%), and mutations in MUC16, AHNAK2, SYNE1,

KMT2C, AKT1, and GATA3 genes (10%) (25, 45). In 2012, the

Cancer Genome Atlas Network (CGAN) identified novel

significantly mutated genes (SMGs), including TBX3, RUNX1,

CBFB, AFF2, PIK3R1, PTPN22, PTPRD, NF1, SF3B1, and

CCND3 (26).

A proteomic analysis has identified canonical up- and

downregulated pathways in breast cancer. Pathways upregulated

in breast cancer include glycolysis; metabolic pathways such as

pyruvate fatty acid, arginine and proline, and valine, leucine and

isoleucine catabolism; protein ubiquitination; RhoA, PI3K/AKT,

ILK, 14-3-3-mediated, RAN, aryl hydrocarbon receptor, integrin,

clathrin-mediated endocytosis, IGF-1, VEGF, EIF2, actin

cytoskeleton, ERK5, GABA receptor, and HER-2 signaling

pathways; NRF2-mediated response to oxidative stress; Rho-

mediated regulation of actin-based motility; and LPS/IL-1-

mediated inhibition of RXR function. Downregulated pathways

include the citrate cycle, acute phase response signaling, P53

signaling, primary immunodeficiency signaling, urea cycle and

amino group metabolism, Cdc42 signaling, glyoxylate and

dicarboxylate metabolism, and autoimmune thyroid disease

signaling (46).

A fucosylated triantennary glycan containing three a2-3 sialic

acids (also called H6N5F1L3) and a non-fucosylated triantennary

glycan containing a combination of a2-3 and a2-6 sialic acids

(H6N5L2E1) are found at lower levels in breast cancer patient

samples (28), although other studies have reported conflicting data

for H6N5F1L3 (47). In addition, a fucosylated tetraantennary

glycan containing a combination of a2-3 and a2-6 sialic acids

(H7N6F1L1E3) is significantly elevated in breast cancer patients

(28). Similarly, elevated levels of other trisialylated triantennary

fucosylated glycans (termed H6N5F1S3, consisting of H6N5F1E3,

H6N5F1L3, H6N5F1L2E1, H6N5F1L2E1, H6N5F1L1E2, and
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H6N5F1E3) have been observed (28, 30). Glycomic analysis have

identified seven glycosylated proteins with O-linked b-D-N-

acetylglucosamine (O-GlcNAc), an important post-translational

modification involving reversible and highly dynamic covalent
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binding of b-N-GlcNAc to Ser/Thr residues in proteins (48), such

as vimentin, keratin 7, enolase 2, pyruvate kinase isozyme M 2

(PKM2), protein disulfide isomerase (PDI) A6, TP, and voltage-

dependent anion selective channel protein in breast cancer

(31) (Table 1).

Eight pathways have been implicated in breast cancer: protein

digestion and absorption, central carbon metabolism in cancer,

neuroactive ligand receptor interaction, ABC transporters, mineral

uptake, inositol phosphate metabolism, glutathione metabolism,

and cysteine and methionine metabolism (49). A combinatorial

study of metabolomic and proteomic profiles in human plasma

samples has identified metabolic signatures for breast cancer

diagnosis. The most abundant metabolites in breast cancer

patients include mainly primary and secondary compounds of

bile acid metabolism, compounds of fructose, mannose, galactose,

tyrosine and glycerolipid metabolism. Critical metabolic pathways

in breast cancer include alanine, aspartate and glutamate pathways,

glutamine and glutamate metabolic pathways, and arginine

biosynthesis pathways. The specific metabolites are listed in

Table 1. In addition, thanks to the combined study with the

proteome, aspartate aminotransferase (GOT1), L-lactate

dehydrogenase B-chain (LDHB), glutathione synthetase (GSS)

and glutathione peroxidase 3 (GPX3) have been found to be

closely involved in these metabolic pathways (34).

On the other hand, metabolomic analysis of polyamines in

saliva before and after surgical treatment has shown a decrease in

N1-Ac-SPD and an increase in N8-Ac-SPD in patients after surgical

treatment. Thus, the ratio (N8-Ac-SPD)/(N1-Ac-SPD+N8-Ac-

SPD) could be an index of health status after surgical treatment

(32) (Table 1). A metabolomic study of urine and breast tissue

samples has identified dysregulation of lactate, valine, aspartate and

glutamine pathways in breast cancer. In addition, five metabolites

(acetone, 3-hexanone, 4-heptanone, 2-methyl-5-(methylthio)-

furan, and acetate) allow correlation between urine and tissue

samples (33). Inositol triphosphate receptor (IP3R) type 2 and 3

expression is increased in breast tumor tissue compared to adjacent

healthy tissue. Increased lipoproteins, increased levels of

metabolites such as lactate, lysine and alanine, and decreased

levels of pyruvate and glucose in the serum of patients with high

IP3R expression compared to healthy individuals (35).

The combination of metabolic profiling with tissue protein

expression increases the accuracy in characterizing breast cancer

patients (35). Lipidomic analyses have shown that the levels of

sphingosine-1-phosphate (S1P), ceramides, and other sphingolipids

are significantly higher in breast tumors than in normal breast

tissue (36). In addition, sphingomyelin phosphodiesterase (SMase),

which converts sphingomyelin to ceramide phosphate, is

downregulated in 60% of breast tumors (37). An increase in fatty

acids such as palmitate-containing phosphatidylcholines (PC) has

also been found, especially in ER− and grade 3 tumors compared to

healthy breast tissue. Phospholipids may have diagnostic potential

as they have been associated with cancer progression and patient

survival (38). When plasma samples from breast cancer patients

and healthy controls were compared, significantly lower levels of

lysophosphatidylcholines (LysoPC) and higher levels of

sphingomyelins have been observed in plasma samples from
TABLE 1 Diagnostic molecular biomarkers of breast cancer detected by
different omics.

Omic Molecular Biomarkers Sample REF

Genomic PIK3CA, TP53, GATA3, PTEN, AKT1,
CDH1, ARID1B, CASP8, BRCA1/2,
RB1, MLL3, MAP3K1, MAP3K13,

NCOR1, SMARCD1, CDKN1B, TBX3,
RUNX1, CBFB, AFF2, PIK3R1,

PTPN22, PTPRD, NF1, SF3B1, CCND1,
CCND3, MAP2K4, CDKN2A, BARD1,
CHECK2, CTLA4, CYP19A1, FGFR1/2,
H19, LSP1, MUC16, AHNAK2, SYNE1,

CDKN1B, RUNX1, CBFB, AFF2,
PTPN22, PTPRD, CCND3, MRE11A,

RAD51C, STK11, TERT, TOX3,
XRCC2, XRCC3, ERBB2, ARID5B,
CTCF, HDAC9, KDM5B, NCOR2,
SETD1A, SXL2, ARID1A, CTNND1,
NUP107, CHD8, FANC1, CHD9,

KEAP1, PCDH18, LAMA2, HDAC9,
ARFGEF1, MILT4, FOXO3, GPS2.

Tissue (20,
21,
25,
26,
27)

Glycomic H6N5F1L3, H6N5L2E1, H7N6F1L1E3,
H6N5F1S3, Vimentin, keratin 7,

enolase 2, pyruvate kinase isozyme M
2 (PKM2), protein disulfide isomerase
(PDI) A6, TP and voltage-dependent
anion selective channel protein in

breast cancer

Tissue (28,
29,
30,
31)

Metabolomic N1-Ac-SPD, N8-Ac-SPD Saliva (32)

Metabolomic Acetone, 3-hexanone, 4-heptanone, 2-
methyl-5-(methylthio)-furan

and acetate

Urine
tissue

(33)

Metabolomic
Proteomic

taurocholate, taurochenodeoxycholate,
glycocholate, allantoin,
taurodesoxycholate,

glycodesoxycholate, ursodeoxycholate,
mannose and fructose,
tyramine O-sulfate, N-

formylphenylalanine, dopamine 4-
sulfate,

glycerol, glycerol 3-phosphate, GOT1,
LDHB, GSS, GPX3

Plasma (34)

Metabolomic Lactate, lysine, alanine, pyruvate
and glucose

Serum (35)

Lipidomic S1P, ceramides, sphingomyelin
phosphodiesterase, palmitate-

containing phosphatidylcholines

Tissue (36,
37,
38)

Lipidomic Lysophosphatidylcholine, lysoPC a
C16:0, PC ae C42:5 and PC aa C34:2

Plasma (39)

Microbiomic Thermus scotoductus, E. coli, Bacillus
cereus, Shewanella, Corynbacterium,

Bacillus, Staphylococcus,
Enterobacteriaceae, Comamondaceae,

Bacteroidetes, Mycobacterium
fortuitum, Mycobacterium phlei,
Fusobacterium, Atopobium,

Gluconacetobacter, Hydrogenophaga
and Lactobacillus

Tissue (40,
41,
42,
43)
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cancer patients. In addition, three metabolites (LysoPC a C16:0, PC

ae C42:5 and PC aa C34:2) differentiate breast cancer patients from

healthy controls (39) (Table 1).

Lastly, the bacteria found on the skin have direct access to the

breast ducts through the nipple, so the breast tissue contains a wide

variety of bacteria, such as Staphylococcus epidermidis andMicrococcus

luteus (50, 51). Different species of bacteria perform different functions.

For example, Lactobacillus triggers protective mechanisms that include

immune activation, competitive inhibition of pathogenic strains, and

synthesis of signaling intermediates. In contrast, E. coli and

Staphylococcus induce DNA damage (40). Changes in the

microbiota of breast and intestinal tissues have been associated with

the development of breast cancer (50). Several studies even describe

correlations between dysbiosis of the tissue microbiome and the

development of breast cancer. When characterizing the microbiome

of tumor tissue and adjacent non-tumor tissue from different patients, a

higher abundance of taxa belonging to the phylum Actinobacteria was

observed in the non-tumor samples. In contrast, Firmicutes and Alpha-

Proteobacteria were significantly overrepresented in tumor tissue (52).

Healthy individuals show a significantly higher abundance of

Lactobacillus, Thermoanaerobacterium thermosaccharolyticum,

Candidatus Aquiluna sp., IMCC13023, Anoxybacillus, Leuconostoc,

Lactococcus, Geobacillus, Methylobacterium, Turicella otitidis (40),

Prevotella, Lactococcus, Streptococcus, Corynebacterium and

Micrococcus (41). In cancer patients, there is an abundance of

Thermus scotoductus, E. coli, Bacillus cereus, Shewanella,

Corynbacterium (40), Bacillus, Staphylococcus, Enterobacteriaceae,

Comamondaceae, Bacteroidetes (41), Mycobacterium fortuitum, and

Mycobacterium phlei (42). The breast tissue microbiome of women

with enrichment in lower abundance taxa, including the genera

Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga and

Lactobacillus, compared to that of women with benign breast disease

(43) (Table 1).
2.2 Stratification biomarkers

Genomic alterations have been found in the different molecular

subtypes of primary breast cancer. In general, approximately 5-10%

of breast cancers are hereditary, mostly due to pathogenic variants

or mutations in the BRCA1 and BRCA2 genes (53). Mutations in

BRCA1 are associated with ER− and PR− tumors (54, 55), while

mutations in BRCA2 are associated with ER+ and PR+ tumors (56).

SMGs are more diverse and recurrent in both luminal subtypes,

particularly in luminal A (26), and the heat shock protein (HSP)

family has been specifically associated with different cancer types

(18). In the luminal subtype A, the most common SMG is PIK3CA

(45%), followed by MAP3K1, GATA3, TP53, CDH1, and MAP2K4

(26). Copy number gains of CCND1, FGF3, and FGFR1 have also

been identified (25). The heat shock protein (HSP) genes DNAJB4,

DNAJC18, HSPA12A, HSPA12B, HSPB2, HSPB6, HSPB7, CRYAB,

and SACS are downregulated, whereas DNAJC5B, DNAJB13,

DNAJC1 , DNAJC22 , HSPB1 , HSPA6 , and DNAJC12 are

upregulated (18). The luminal subtype B is characterized by TP53

and PIK3CA SMGs (29% each) (26), as well as increased copy

number of CCND1, FGF3 and FGFR1 (25); downregulation of HSP
Frontiers in Oncology 05
genes such as DNAJB4, DNAJC18, HSPA12A, HSPA12B, HSPB2,

HSPB6, HSPB7, CRYAB and SACS and upregulation of DNAJC5B,

DNAJB13, DNAJC1, DNAJC22, HSPB1, HSPA6, CCT5, CCT3,

HSPE1, DNAJC9, HSPD1, DNAJC12, DNAJA4, HSPH1, CCT2,

and DNAJA3 (18). The HER2-enriched subtype presents with

HER2/ERBB2 amplification (80%), high frequency of mutations

in TP53 (72%) and PIK3CA (39%) (26). PTEN and INPP4B have

also been identified as genes of interest. Deletions in PPP2R2A,

MTAP, and MAP2K4 genes have been reported (45). Among the

HSP genes, CRYAB, SACS, DNAJB4, DNAJC18, HSPA12A,

HSPA12B, HSPB2, HSPB6, HSPB7, HSPB8, DNAJC5G and BBS12

are downregulated, while the upregulated genes are DNAJC5B,

DNAJB13, DNAJC1, DNAJC22, HSPB1, CCT5, CCT3, HSPE1,

DNAJC9, HSPD1, DNAJA4, HSPH1, HYOU1, DNAJB11, CCT6A

and DNAJB3 (18). Finally, mutations in TP53 are observed in 80%

of TNBC cases, followed by alterations in PIK3R1 and NF1 (26).

INPP4B is another gene of interest in TNBC, and deletions in

PPP2R2A,MTAP andMAP2K4 genes have also been reported (45).

Among the downregulated HSP genes in TNBC, we found DNAJB4,

DNAJC18, HSPA12A, HSPA12B, HSPB2, HSPB6, HSPB7, HSPB8,

DNAJC12 and DNAJC27. As for the upregulated genes, DNAJC5B,

HSPA6, CCT5, CCT3, HSPE1, DNAJC9, HSPD1, HYOU1,

DNAJB11, CCT6A, HSPA5, HSPA14, CRYAA, DNAJC2 and

DNAJC6 were found (18) (Table 2).

MicroRNAs (miRNAs) are small non-coding RNAs that

modulate gene expression to regulate various cellular processes,

including those involved in breast cancer (66, 67). miR-206 is highly

expressed in ER− tumors and also targets the ERa receptor, as do

miR-221 and miR-222 (57). In addition, DCIS and LCIS are

characterized by the upregulated expression of several miRNAs,

which are listed in Table 2 (57).

Through an integrated study combining genomics and

epigenomics, pathways unique to TNBC and non-TNBC were

identified. The most significant pathways for TNBC are retinal

biosynthesis, BAG2, LXR/RXR, EIF2, and P2Y purinergic receptor

signaling pathways, whereas in non-TNBC they are UVB-induced

MAPK, PCP, endothelial apelin, endoplasmic reticulum stress, and

host viral egress mechanisms (68). Based on the genomic and

transcriptomic landscape, Xie et al. have established a new

classification of immune subtypes of ER+/PR−/HER2− breast

cancer, termed clusters 1 to 5. Cluster 1 is characterized by an

activated but suppressive immune microenvironment, immune

infiltration, increased stromal content, and an elevated TGF-b
response signature. Cluster 2 has an inactivated immune

phenotype. Cluster 3 has an activated immune phenotype

enriched in innate, adaptive, and immunosuppressive cells, as

well as interferon (IFN)-g response, inflammation, macrophage

upregulation, and cytolytic signatures. Cluster 4 is characterized

by an immunologically inactive phenotype and low infiltration of

the microenvironment. Finally, cluster 5 lacks immunologic

properties but presents a phenotype associated with hormonal

responses (69) (Table 2).

Several studies have investigated the classification of breast

cancers using proteomic technologies. By analyzing differential

protein expression in tissues, they identified the expression of

proteins that characterize luminal subtypes, HER2-enriched
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TABLE 2 Stratification biomarkers of breast cancer detected by different omics.

Omic Biomarkers Sample Subtype
of BC

REF

Genomic BRCA1, miR-206 Tissue ER− (54, 57)

Genomic BRCA1 Tissue PR- (47)

Genomic BRCA2 Tissue ER+, PR+ (56)

Genomic BRCA1, INPP4B,
PPP2R2A, MTAP, MAP2K4 TP53, PIK3R1, NF1, DNAJC12, DNAJC27, DNAJC2, DNAJC6, DNAJC9,
DNAJB11, CCT5, CCT3, CCT6A, HSPE1, HSPD1, HYOU1, HSPB8, HSPA6, HSPA5, HSPA14, CRYAA

TNBC (18, 25,
26, 45,
54, 55)

Genomic PTEN, INPP4B,
PPP2R2A, MTAP, MAP2K4, HER2, ERBB2, TP53, PIK3CA, CRYAB, SACS, HSPB1, HSPB8, DNAJC5G,
DNAJB13, DNAJC1, DNAJC22, DNAJA4, DNAJC9, DNAJB11, DNAJB3, BBS12, CCT5, CCT3, HSPE1,

HSPD1, HSPH1, HYOU1, CCT6A

Tissue HER2-
enriched

(13,
21, 23)

Genomic PIK3CA, MAP3K1, GATA3, TP53, CDH1, MAP2K4, CCND1, FGF3, FGFR1, CRYAB, SACS, DNAJC12,
DNAJB13, DNAJC1, DNAJC22, HSPB1, HSPA6

Tissue Luminal A (18,
25, 26)

Genomic TP53, PIK3CA, CCND1, FGF3, FGFR1, CRYAB, SACS, HSPB1, HSPA6, CCT5, CCT3, HSPE1, DNAJC9,
HSPD1, DNAJC12, DNAJA4, DNAJB13, DNAJC1, DNAJA3, DNAJC22, HSPH1, CCT2

Tissue Luminal B (18,
25, 26)

Transcriptomic miR-21, miR-200c, miR-361-5p, miR-374a, miR-93, miR-182, miR-183, miR-210, miR-221, miR-7b, miR-
125b, miR-127-3p, and miR-320

Tissue DCIS (57)

Transcriptomic miR-375, miR-182, miR-183, miR-96, miR-203, miR-425-5p, miR-565 Tissue LCIS (57)

Proteomic PPIaseB, Rho-GDI a, TPM4, Thymosin a1, PGRMC1, Liprin-a1, b-arrestin-1, fascin, DAP5, superoxide
dismutase, Ral A binding protein, Galectin-1, uridine phosphorylase 2, cellular retinoic acid-binding

protein 1, protein S100-A11, nucleoside diphosphate kinase A, a1-antitrypsin

Tissue HR+ (58)

Proteomic HSP90a, laminin, GSTP1, FASN, HSP27, PGK1, GLO, CK19, HNRNPH1, BiP, RKIP CK7, GAPDH,
PGK1, FUT8, HEXA, HEXB, MAN2B2, MAN1B1, MAN2A1, GALNT 2,3,6, ADH, ALDH, ACAD,

PYCR1,2, PYCRL, PRODH, HNMT, KMO

Tissue HER2-
enriched

(58, 59)

Proteomic STAT1, PTEN, pMAPK, P38, P27, P21, MASPIN, CD10, FAK, EGFR, Caveolin, CD74, CK14, RCL1,
MCM complex proteins, DNA polymerases, DNA damage response proteins, CDK1, CDK2, CDK6,

PCNA, PTEN

Tissue TNBC (58)

Proteomic FBP2, FBP1, NDUF, UQCR, SDH, COX subunits, ATP5, ATP6 subunits, CA1, CA2 Tissue Luminal (59)

Proteomic EZH2 Tissue DCIS (15)

Genomic
Transcriptomic

Proteomic

CDH1, TGFBR2, IL11RA, TNFRSF17, CCL15, CCL14, CCR2, CD27, XCL2, IFNAR2 CD40LG, PDCD1
(PD-1), CD274 (PD-L1), CTLA4

Tissue ILC (60)

Metabolomic b-alanine, xanthine, isoleucine, glutamate, taurine Tissue ER+ (61)

Metabolomic Glycochenodeoxycholic acid, alanine, LysoPC (16:1), valine, 2-octenedioic acid Plasma ER+ (60)

Metabolomic Carnitine, LysoPC (20:4), proline, valine, 2-octenedioic acid Plasma HER2+ (60)

Metabolomic L-Tryptophan, LysoPC(14:0), Glycoursodeoxycholic acid, Lysophosphoethanolamines (LysoPE)(18:2) Plasma Luminal A (62)

Metabolomic LysoPE(18:2), LysoPE(18:1(11Z/9Z)), LysoPC(20: 3), Biliverdin, LysoPE(16:0) Plasma Luminal B (62)

Metabolomic LysoPE(18:1(11Z)/9Z), LysoPC(0:0/16:0), Biliverdin, L-Tryptophan, LysoPE(18:2) Plasma HER2-
enriched

(62)

Metabolomic LysoPE(18:1(11Z)/9Z), LysoPC(0:0/16:0), Biliverdin, L-Tryptophan, LysoPE(18:2) in HER2+; and L-
Tryptophan, LysoPC(16:0/0:0), LysoPE(18:1(11Z)/9Z)

Plasma TNBC (62)

Lipidomic taurine (m/z 124.0068), uric acid (m/z 167.0210), ascorbic acid (m/z 175.0241) and glutathione (m/
z 306.0765)

Tissue IBC (61)

Lipidomic fatty acids (341.2100 and 382.3736 m/z) and glycerophospholipids (PE (P-16:0/22:6, m/z 746.5099, and PS
(38:3), m/z 812.5440)

Tissue DCIS (61)

Lipidomic glycerol-3-phosphate acyltransferase Tissue HR-
associated

(63)

Lipidomic GM2 Plasma ER- (64)

(Continued)
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breast cancers, and TNBC. In addition, proteomic profiling of these

three breast cancer types revealed functional differences.

Cytoskeletal remodeling as well as alterations in the cell adhesion

process are found in all BC types. Luminal tumors are characterized

by increased “energy metabolism” as indicated by an elevated

expression of key proteins in gluconeogenesis, electron transport

chain and ATP synthase complex. “Immune response” is altered in

both luminal A and luminal B subtypes, while “cell cycle regulation”

is important in luminal B tumors. On the other hand, luminal

tumors show decreased expression of proteins related to metabolic

pathways, including glycolysis, serine synthesis, and glutamine

consumption. The HER2-enriched subtype is characterized by

decreased “amino acid and energy metabolism”, reduced “cellular

community” and increased “glycan biosynthesis and metabolism”.

Finally, the TNBC subtype is characterized by increased “replication

and repair”, “cell growth and death” and “translation” pathways.

Other relevant processes are “immune response” and “blood

coagulation”. The most relevant proteins involved in these

pathways are listed in Table 2 (58, 59, 70). Besides that, the

expression of the protein enhancer of zeste homolog 2 (EZH2) is

elevated in premalignant atypical ductal hyperplasia (ADH) and

even higher in DCIS compared to normal epithelium (15).

Luminal tumors have been classified into 3 proteomic clusters.

Luminal cluster-1 is enriched for RNA processing and splicing

processes but depleted for immune-related proteins including the

ones involved in antigen processing and presentation, and type I

and type II IFN signaling. Luminal cluster-2 is enriched for stromal

proteins and extracellular matrix (ECM) components. Luminal

cluster-3 has high expression of proteins for DNA replication, cell

cycle, response to DNA damage, and immune response, while

depleted for ECM components, blood coagulation, epithelial cell

differentiation, and response to estrogen and steroid hormones

compared to luminal clusters-1 and -2. In addition, significantly

higher expression of Ki67 is found in luminal cluster-3 compared to

luminal cluster-1 and -2 (71). On the other hand, 4 TNBC

subgroups have been identified according to 4 proteomic clusters.

TNBC cluster-1 has the most favorable survival and is characterized

by immune response, antigen processing and presentation, and IFN

type I and II signaling processes. TNBC cluster-2 has intermediate

survival and is enriched for ECM components, coagulation, and

humoral immune response processes. TNBC cluster-3 has

intermediate survival and is enriched for lipid metabolism,

catabolism, and oxidation-reduction processes. TNBC cluster-4
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exhibits the poorest survival and is enriched for DNA replication

and cell cycle proteins (71).

A comprehensive genomic, transcriptomic and proteomic

analysis of patients with ILC has identified mutations in

cadherin-1 (CDH1) and the phosphatidylinositol 3- kinase (PI3K)

pathway as the most common molecular alterations in ILC. In

addition, two major subtypes of ILC have been identified: an

immune-related (IR) subtype and a hormone-related (HR)

subtype: The IR subtype is characterized by upregulation of PD-

L1 mRNA, PD-1 and CTLA-4, increased sensitivity to DNA

damaging agents, and upregulation of lymphoid signaling

molecules at the mRNA level (TGFBR2, IL11RA, TNFRSF17,

CCL15, CCL14, CCR2, CD27, XCL2, IFNAR2, and CD40LG). In

addition, the IR subtype shows upregulated genes in the cytokine-

cytokine receptor interaction pathway, suggesting alterations in the

composition or functional activity of immune cells within these

tumors. Interestingly, the negative regulators of the immune

response PDCD1 (PD-1), CD274 (PD-L1) and CTLA4 are

expressed at higher mRNA levels in the IR subtype. The related

HR subtype is associated with epithelial-to-mesenchymal transition

(EMT). Moreover, the HR subtype shows higher levels of estrogen

receptors (ESR1) and progesterone receptors (PGR) and

upregulation of cell cycle genes and estrogen receptor (ER) target

genes (60) (Table 2).

Differential metabolites have been identified when comparing

HER2+ with HER2− patients, as well as when comparing ER+ with

ER− patients. Plasma samples from HER2+ patients are

characterized by increased aerobic glycolysis, gluconeogenesis and

fatty acid biosynthesis and decreased Krebs cycle. Specifically,

HER2+ is characterized by overexpression of carnitine, LysoPC

(20:4), proline, valine, and 2-octenedioic acid. Strong metabolic

differences correlate with hormone receptor status. Plasma samples

from ER+ patients reflect increased alanine, aspartate, and

glutamate metabolism, decreased glycerolipid catabolism and

increased purine metabolism. ER+ is characterized by

overexpression of glycochenodeoxycholic acid and decreased

expression of alanine, LysoPC (16:1), valine, and 2-octenedioic

acid. Many glycolytic and glycogenolytic intermediates,

components of the glutathione (GSH) pathway, the

oncometabol i te 2-hydroxyglutarate (2-HG), and the

immunomodulatory tryptophan metabolite kynurenine are

elevated in ER− compared to ER+ cancers (72, 73). Using deep

learning techniques, metabolites, and pathways have been identified
TABLE 2 Continued

Omic Biomarkers Sample Subtype
of BC

REF

Microbiomic Bordetella, Campylobacter, Chlamydia, Chlamydophila, Legionella, and Pasteurella Tissue Luminal B (65)

Microbiomic Arcanobacterium, Bifidobacterium, Cardiobacterium, Citrobacter, and Escherichia Tissue Luminal A (65)

Microbiomic Streptococcus Tissue HER2-
enriched

(65)

Microbiomic Aerococcus, Arcobacter, Geobacillus, Orientia, and Rothia Tissue TNBC (65)
front
DCIS, ductal carcinoma in situ; ER, estrogen receptor; HR, hormone receptor; IBC, invasive breast cancer; ILC, invasive lobular cancer; LCIS, lobular carcinoma in situ; PR, progesterone receptor;
TNBC, triple negative breast cancer.
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that can discriminate between ER+ and ER− patient samples.

Among the identified metabolites, five have been proposed as

breast cancer biomarkers: b-alanine, xanthine, isoleucine,

glutamate, and taurine (49). Studies performed on plasma

samples from breast cancer patients have allowed the

identification of specific metabolomic profiles for each cellular

subtype: L-tryptophan, LysoPC(14:0), glycoursodeoxycholic acid,

lysophosphoethanolamine (LysoPE)(18:2) in luminal A; LysoPE

(18:2), LysoPE(18:1(11Z/9Z)), LysoPC(20: 3), biliverdin, LysoPE

(16:0) in luminal B; LysoPE(18:1(11Z)/9Z), LysoPC(0:0/16:0),

biliverdin, L-tryptophan, LysoPE(18:2) in HER2+; and L-

tryptophan, LysoPC(16:0/0:0), LysoPE(18:1(11Z)/9Z) in TNBC

(62) Table 2. When plasma samples from patients with mutated

BRCA1 and non-mutated BRCA1 were compared, the levels of

adenine, N6-methyladenosine, and 1-methylguanine were found to

be significantly lower in patients with BRCA1 mutations (74).

The lipidomic profiles of invasive breast cancer (IBC), DCIS

and benign surrounding tissue (BAT) have been investigated. IBC is

characterized by the presence of polyunsaturated fatty acids,

deprotonated glycerophospholipids and sphingolipids. IBC can be

distinguished from BAT by the presence of highly saturated lipids

and antioxidant molecules. DCIS differs from IBC by lipids

associated with cell signaling and apoptosis (61). Lipidomics have

allowed the identification of glycerol-3-phosphate acyltransferase

(GPAM), an enzyme involved in triacylglycerol and phospholipid

biosynthesis, which shows increased cytoplasmic expression in HR-

associated breast cancer and improved OS (63) (Table 2).

Finally, Benarjee et al. have identified a local microbial signature

associated with each type of breast tumor. Actinomyces, Bartonella,

Brevundimonas, Coxiella, Mobiluncus, Mycobacterium, Rickettsia,

and Sphingomonas are common in all types of breast cancer. In the

luminal A subtype, Arcanobacterium , Bifidobacterium ,

Cardiobacterium, Citrobacter, and Escherichia are detected.

Bordetella, Campylobacter, Chlamydia, Chlamydophila, Legionella,

and Pasteurella are associated with the luminal B subtype. The

HER2-enriched subtype is characterized by the presence of

Streptococcus, whereas Aerococcus, Arcobacter, Geobacillus,

Orientia, and Rothia are associated to with TNBC (65) (Table 2).
2.3 Prognostic biomarkers

The various omics technologies have allowed the identification

of prognostic biomarkers in both solid and liquid samples. Gene

expression analysis have identified genes associated with good and

poor prognosis in breast cancer (18). In addition, using data from

breast cancer databases (TCGA-BRCA and CMI-MBC), a 45-gene

optimal prognostic gene signature has been constructed from genes

regulated by tumor-associated macrophages (TAMs). All these

genes are listed in Table 3 (75).

Not only genomic but also epigenomic differences have been

found. By applying a powerful integrative network algorithm to

paired DNA methylation and RNA-Seq data from ER+ breast

cancer and adjacent healthy tissue, it has been shown that

increased levels of DNA methylation and alterations in mRNA

expression can predict poor prognosis. In particular, epigenetic
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silencing of WNT signaling antagonists and bone morphogenetic

proteins (BMPs) has been observed in both luminal subtypes, but

predominantly in luminal B breast cancer (76). Davalos et al.

identified hypermethylation of RASSF1A and PITX2 associated

with poor prognosis in early stage of breast cancer (77).

Various proteomic analyses have validated proteins related to

apoptosis, cell cycle arrest, cell adhesion, cytokeratins, cell

metabolism and lipid binding as prognostic biomarkers of breast

cancer OS (78 , 79 ) . E l eva t ed expre s s ion o f s e r ine

hydroxymethyltransferase 2 (SHMT2) correlates with poor OS

and relapse-free survival (RFS), the amino acid transporter

ASCT2 (SLC1A5) correlates with poor RFS (80), endoplasmin

(HSP90B1) has been associated with distant metastasis and worse

OS, and decorin (DCN) has been associated with lymph node

metastasis, increased number of positive lymph nodes and worse

OS; and (81). Finally, increased levels of E-cadherin and b-catenin
correlate with poor survival in invasive breast cancer but not in

lobular carcinoma (82) (Table 3).

An analysis of breast cancer transcriptomic and proteomic data

from the Clinical Proteomic Tumor Analysis Consortium (CPTAC)
TABLE 3 Prognostic biomarkers of breast cancer detected by
different omics.

Omic Biomarkers Prognosis REF

Genomic HSPA2, DNAJB5,
HSCB, HSPA12B

Good (18)

Genomic CCT6A, DNAJA2, HSPA14,
CCT7, HSPD1, CCT2, HSPA4,
DNAJC6, CCT5, SEC63, HSPH1,
CCT8, CCT4, HSP90AA1, HSPA8,

DNAJC13, HSPA9, TCP1

Poor (18)

Genomic CS, SMARCE1, IGSF9B, SYTL4,
CEMIP, EMC2, FHL2, RAMP3,
CISD1, PAICS, TTI2, FIBCD1,

ZCCHC9, VAV3, LIMD2, TANK,
PAK6, ETFA, PRDM16,

ADAM15, NFKBIZ, DDAH1,
CC2D1B, SH2B2, ACYP2,

ENDOV, KBTBD11, AL162595.1,
PCED1B, LYSMD4, TRMT2B,
SLC6A9, NOS1AP, LINC01291,
PSMB10, RPL12P38, ZNF888,

AL391845.1, LINC02585,
LINC01431, AC099520.2, CEP95,

MIR4713HG,
RBM15B, AC061992.2

- (75)

Epigenomic Increased levels of DNA
methylation, alterations in

mRNA expression,
hypermethylation of RASSF1A

and PITX2

Poor (76,
77)

Proteomic BCL2, CDH1, CLDN3, CLDN7,
NADP, IDH2 CRABP2, SEC14L2

- (78,
79)

Proteomic SHMT2, SLC1A5, decorin,
endoplasmin, E-cadherin,

b-catenin

Poor (75,
76,
80)

Proteomic
Transcriptomic

FLT1, FADD, ALDOA, CXCL,
FGFR1, PLCB3, PPP2R2A, RPA1

Poor (78)
frontier
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resource has identified 2 candidates associated with survival: Fms-

related receptor tyrosine kinase 1 (FLT1) in TNBC, Fas-associated

death domain (FADD) protein with the luminal type, while 8

candidates: Fructose-bisphosphate aldolase A (ALDOA), C-X-C

motif chemokine (CXCL)16, fibroblast growth factor receptor 1

(FGFR1 ) , 1 -pho spha t i d y l i no s i t o l 4 , 5 -b i spho spha t e

phosphodiesterase beta-3 (PLCB3), serine/threonine protein

phosphatase 2A 55 kDa regulatory subunit B alpha isoform

(PPP2R2A), and replication protein A1 (RPA1) are clearly

associated with poor survival in the HER2-enriched type (83). Of

note, protein glycosylation correlates with increased tumor burden

and poor prognosis in breast cancer (84) (Table 3).
3 Omics data on the onset of
breast cancer

Early-stage breast cancer lesions are so small that there may be

insufficient material for analysis and it is difficult to obtain

accurate data.

The onset of breast cancer is characterized by abnormal

paracrine and autocrine signaling, as genes that are highly

expressed in healthy breast epithelium are lost in carcinomas,

including genes encoding cytokines such as LIF, IL-6, and HIN-1,

also known as SCGB3A1, and chemokines such as IL-8, GROa,
GROb, and MIP3a, also known as CCL20 (85). In addition, genes

silenced by hypermethylation have been identified as responsible

for mammary carcinogenesis, including TWIST, RASSF1A, CCND2,

HIN1, BRCA1, APC, GSTP1, BIN1, BMP6, ESR2, CDKN2A,

CDKN1A, TIMP3 and CST6, as well as the WNT-negative

regulators WIF1 and DKK3 (77). In addition, two methylated

modifications (H3K9 me2 and me3) of the DNA packaging

protein histone H3 decrease during cancer transformation, and

the demethylase KDM3A/JMJD1A gradually increases (86). On the

other hand, methylated genes such as ITIH5,DKK3, RASSF1A, SFN,

CDKN2A, MLH1, HOXD13 and PCDHGB7 have been proposed as

potential markers for early detection of breast cancer.

Hypermethylation of RASSF1A, CCDN2, HIN1 and APC

corre la tes mainly wi th HR+ breas t cancer , whereas

hypermethylation of CDH1 and CDH13 is more frequent in

TNBC patients (77) . Furthermore, the expression of

olfactomedin-4 (OLFM4) is higher in non-invasive breast tumors

than in invasive breast cancer. Therefore, OLFM4 may also be a

biomarker for early breast cancer (87) (Figure 2A).

Alterations in circulating metabolites have been identified in

premenopausal women that may predict the development of breast

cancer. In fact, ten metabolites listed in Figure 2A have been

associated with breast cancer risk (88). Metabolomic signatures of

the taurine and hypotaurine pathways and the alanine, aspartate

and glutamate pathways obtained from the plasma of breast cancer

patients are critical for early diagnosis (89). In addition, six

metabolites and eight metabolic pathways have been identified in

blood samples that can be used in the early diagnosis of breast

cancer. Of the six metabolites, ethyl (R)-3-hydroxyhexanoate,

caprylic acid, and hypoxanthine are noteworthy. Of the eight
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metabolic pathways identified, fatty acid and aminoacyl-tRNA

biosynthesis and inositol phosphate metabolism are the pathways

most implicated in the early diagnosis of BC (90). Alterations in

lipid metabolism favor processes such as growth, proliferation, and

motility of cancer cells, favoring tumor progression (91). The

detection of lipids in human plasma samples has led to the

identification of diagnostic biomarkers that reflect the early stage

of TNBC (ES-TNBC). Diacylglycerol (DG) 34:2 is significantly

downregulated in the TNBC subtype. Furthermore, a panel of 5

lipids (DG 34:2, PC 40:3, PC 39:8, PC 34:0 and PC 38:9) can

differentiate TNBC from non-TNBC and ES-TNBC from ES-non-

TNBC. Finally, in TNBC, ceramides are upregulated, whereas DG

and LysoPC are downregulated and PC fluctuates (92) (Figure 2A).
4 Omics data on the progression of
breast cancer

Genomic evidence suggests that IDC is a consequence of DCIS

progression. Genes and/or signaling pathways are altered during

tumor progression. The most significant changes occur during the

transition from normal tissue to carcinoma in situ. In addition to

the loss of LIF, IL-6, HIN-1, IL-8, GROa, GROb and MIP3a in

carcinomas, glutamine synthase (GS) and desmoplakin (DSP) are

the only two genes specifically upregulated in DCIS, while the

metabolic enzymes 3-phosphoglycerate dehydrogenase and

glyceraldehyde dehydrogenase and mitochondrial NADH:

Ubiquinone dehydrogenase and NADH dehydrogenase 1a, have
been observed in invasive carcinomas (85). Videlicet, cancer cells

have important metabolic alterations (Figure 2B).

Downregulated genes in DCIS include TM4SF1, NFKB1A,

PBEF, RASD1, TNFRSF10B, TNFAIP, CLU, NSEP1, LITAF/PIG7,

BZW1, and CCNL1, as well as genes encoding several cytokines and

chemokines such as ILF2, IL13RA1, LIF, CLC, CCL2, and CXCL1.

Some transcripts are frequently overexpressed in the DCIS such as

PKD1-like, STARD10, EPS8L2, and KIAA0545. Some of these genes

are associated with nuclear factor kappa-light-chain-enhancer of

activated B cells (NFkB) and tumor necrosis factor (TNF) pathways,

resulting in impaired apoptosis and sustained proliferation of breast

cancer cells (93). In IDC, upregulated genes can be grouped into

genes related to cell cycle, extracellular matrix or secreted proteins,

cell adhesion and motility, and signal transduction. Several

underexpressed genes have also been detected in IDC, such as

TM4SF1, TRAF4, PPARBP, AKR1A1, RSRP1, MAP1LC3A and

RBBP6 (93). As for ILCs, they are characterized by CDH1

alterations, as well as dysregulation in the PI3K/Akt pathway due

to mutations in PIK3CA, PTEN alterations, and mutations in AKT1

(94) (Figure 2B).

Transcriptomic analysis of tumor cells and their corresponding

adjacent microenvironment cells [belonging to the Molecular

Taxonomy of Breast Cancer International Consortium

“METABRIC” cohort (95)] have shown that CDH1 mutation may

deregulate immune cells in the tumor microenvironment (96).

Expression of genes encoding the a and b subunits of the

integrins ITGA4, ITGB2, ITGAX, ITGB7, ITGAM, ITGAL and
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ITGA8 correlates positively with the presence of immune cell

infiltrates in the tumor, with markers of T cell activation and

antigen presentation, and with immunosurveillance gene

signatures. Expression of these integrins indicates a favorable

prognosis in TNBC and HER2-enriched breast cancers. In

contrast, expression of IBSP, ITGB3BP, ITGB6, ITGB1 and

ITGAV predict a poor outcome (97) (Figure 2B).

Epigenetic modifications also contribute to breast cancer

progress ion . For example , DNA methyla t ion causes

transcriptional silencing of tumor suppressor genes such as

RASSF1A , RARB , SFN and TGM2 (98). Genome-wide

methy la t ion ana lys i s revea l ed that CpG s i t e s were

hypermethylated and hypomethylated after CRY2 silencing. These

data suggest that the absence of CRY2 causes epigenetic

dysregulation of genes leading to breast cancer progression (99).

The differences in miRNA expression profile are greater in IDC
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than in ILC compared to their respective carcinomas in situ. Thus,

IDC is characterized by upregulation of let-7d, miR-210 and miR-

221 and downregulation of miR-10b, miR-126, miR-143, miR-218,

and miR-335-5p. In contrast, ILC is characterized by upregulation

of miR-9, miR-375, miR-182 and miR-183 (57) (Figure 2B).

Proteomic analysis of plasma samples from hereditary BC

patients carrying a mutation in the BRCA1 gene has shown that

gelsolin, whose loss negatively correlates with tumor progression, is

downregulated in these samples. In addition, its levels are associated

with BRCA1 mutational status (100) (Figure 2B). Furthermore, O-

GlcNAcylation is increased in primary malignant breast tumors,

and this increase is associated with increased expression of O-

GlcNAc transferase in grades II and III breast tumors (31).

Metabolomic and transcriptomic data integration studies have

enabled the identification of genes, pathways, and metabolites as a

part of a cancer prediction model and a better understanding of
B CA

FIGURE 2

Biomarkers of breast cancer at different time points of tumor development detected by omics. Summary of markers observed in breast cancer onset
(A), progression (B) and metastasis/relapse (C) detected by genomic, transcriptomic, proteomic, metabolomics, lipidomic and/or microbiomic. 87
immune gene signature includes LAG3, RELB, CCL2, IFNG, MSH6, ZC3HAV1, CD68, ORM1, LYZ, USP14, SLA2, HERC5, LAMP3, NONO, BATF, FCER1G,
CCR5, REL, DTX3L, HMGB2, C2, CLEC4E, CLEC4D, CLEC7A, IL12A, CXCL10, CXCL11, RASGRP1, HAVCR2, ICOS, ATRIP, TRIM25, RNF166, CCR8, CSF1,
NFAM1, TUBB4B, LYAR, CLEC12A, IL27, PIK3CG, XRCC6, PARP9, DNAJC5, MPEG1, TIFA, TLR1, CD47, EXO1, NCF2, SLAMF7, CTSS, GBP5, GBP4, GBP1,
CREG1, RNF19B, RC3H2, RAB14, SYK, ACTR2, KCNAB2, OPTN, DDX58, IL2RA, JAK2, CLEC6A, LYST, CCL25, CCL8, HLADRA, RAB27A, PTK2B,
PDCD1LG2, IFI30, TLR6, DSN1, HLA-DOB, CXCR6, TNF, IL10, SERPINA1, GSDMD, TRAF3, IL12RB1, CCL5 and LIG4.
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cancer progression. For example, adenosine monophosphate

deaminase 1 (AMPD1) and ribonucleotide reductase regulatory

subunit M2 (RRM2), which are involved in purine metabolism,

have been associated with survival in breast cancer patients.

Therefore, dysregulation of the purine metabolism pathway may

influence breast cancer progression (101). Lipidomic analysis has

identified two biomarkers capable of differentiating benign from

malignant breast tumors: phosphatidylinositol (PI) (16:0/16:1) and

PI (18:0/20:4). In addition, PI (16:0/18:1), phosphatidylglycerol

(36:3) and glucosylceramide (d18:1/15:1) have been identified as

potential biomarkers for assessing the degree of malignancy of

breast tumors (102) (Figure 2B).

Microbiota dysbiosis contributes to breast cancer progression

through its effects on skin and breast tissue. The presence of Listeria

fleischmannii in breast tumor tissue is associated with epithelial-

mesenchymal transition (EMT), whereas Haemophilus influenza

correlates with tumor growth, cell cycle progression, E2F signaling,

and mitotic spindle assembly (51). Alterations in the gut

microbiome alter the production of bacterial metabolites that may

influence tumor progression in breast cancer. Uric acid, glycolic

acid, d-mannitol, 2,3-butanediol and trans-ferulic acid exert

cytostatic effects, while 3-hydroxyphenylacetic acid, 4-

hydroxybenzoic acid and vanillic acid stimulate breast cancer

proliferation in vitro. In addition, 3-hydroxyphenylacetic acid, 4-

hydroxybenzoic acid, 2,3-butanediol and hydrocinnamic acid

inhibit EMT, and 2,3-butanediol has both cytostatic and anti-

EMT properties (103). Gut microbiota may affect tumor

progression by influencing the cancer-immunity dialogue. Gut

bacteria elicit a complex and coordinated set of innate and

adaptive immune responses to maintain tissue homeostasis.

Consequently, when the microbiota-host balance is disrupted and

dysbiosis occurs, increased production of inflammatory mediators

is observed, which is associated with cancer progression. Low

diversity in the gut microbiome is associated with decreased

lymphocyte level and increased number of neutrophils, as well as

decreased survival in breast cancer patients (51) (Figure 2B).
5 Omics data in relapsed and/or
metastatic breast cancer

Between 7% and 11% of early breast cancers recur locally within

5 years after treatment, and 20% to 30% of primary breast cancers

develop distant metastases. According to a study based on

Surveillance, Epidemiology, and End Results Program (SEER)

data for 2010-2013, the most common sites of breast cancer

metastasis are bone (30-60%), lung (21-32%), liver (15-32%), and

brain (4-10%) (104). Different molecular subtypes of breast cancer

are associated with organ-specific metastases. Thus, luminal

subtypes A and B metastasize primarily to the bone, the HER2-

enriched subtype to the brain and liver, and TNBC to the lung

(105). Genomic analyses have shown that metastases retain the

same molecular subtype and prognostic signature as their primary

tumors. These data suggest that metastatic potential is already

determined in the primary tumor. The poor prognostic signature
Frontiers in Oncology 11
consists of genes that regulate cell cycle, invasion, metastasis, and

angiogenesis (106, 107). Common alterations in TP53 (51%) and

PIK3CA (49%), as well as mutations/deletions in NF1 (15%),

mutations in PTEN (10%), and mutations/deletions in ARID1A

(15%) have been identified in metastatic breast cancer tumors (108).

Bone metastases of breast cancer are characterized by increased

expression of the TFF1, TFF3, AGR2, NAT1 and CR1P1 genes, as

well as the chemokine receptors CXCR4 and C-C chemokine

receptor type 7 (CCR7), and upregulation of the zinc finger

protein SNAI1 (SNAI1) (45, 109), which is involved in the

induction of EMT (110). In breast to lung cancer metastasis, a

number of genes such as MMP1, MMP2, CXCL1, PTGS2, ID1,

VCAM1, EREG, SPARC, and IL13RA2 have been identified in breast

to lung cancer metastasis that promote and are clinically correlated;

as well as the mitogen-activated protein kinases (MAPK), NFkB
and vascular endothelial growth factor (VEGF) signaling pathways

(111) (45). Mutations in the ESR1, AKT1, ERBB2, and FGFR4 genes

have been observed in metastatic breast tumors in the liver (45, 112,

113). Transcriptome analysis revealed that the TNF-a pathway is

upregulated in lung metastases compared to liver metastases (114).

ATAD2, DERL1 and NEK2A have been shown to be overexpressed

(115–117), whereas ATM, CRYAB and HSPB2 genes are often

suppressed and/or underexpressed in breast cancer metastases to

the brain (45, 118, 119), (Figure 2C). The AURORA study,

consisting of genomic and transcriptomic profiling in matched

primary tumors and early metastases, has described the key role

of somatic mutations GATA1 andMEN1 in metastasis. In addition,

the enrichment of ESR1, PTEN, and PIK3CA in metastases have

been determined, as well as CDH1 and RB1 mutations, MDM4 and

MYC amplifications, and ARID1A deletions (120). Of note, TP53

mutations and MYC amplification are associated with shorter time

to relapse (25). Eight common genes have been found to have

significant effects on TNBC survival (ELOB, SLC39A7, TIMM13,

BANF1, NDUFS1, NDUFB7, TRAPPC5, and MVD). Finally, a

signature of 87 immune genes has been established that is highly

predictive of pathologic complete response (pCR), which in turn

correlates with improved OS and distant metastasis-free survival

(DMFS) (121). These 87 immune genes are shown in Figure 2C.

The immune system is involved in the development of cancer,

from tumor initiation to metastasis (122). Patients with stage 3 and 4

breast cancer have a higher percentage of immunosuppressive cells

(granulocytic myeloid-derived suppressor cells (MDSCs),

CD14+CD16+ intermediate monocytes, and CD127−CD25highFoxP3+

Treg cells). Inflammation-related genes are differentially expressed in

TNBC. In fact, low expression of CD163 and CXCR4 together with

high expression of thrombospondin 1 (THBS1) correlates with an

increased risk of relapse and poor survival in TNBC (123). The

proinflammatory cytokines serum amyloid A (SAA) and IL-18 are

elevated in the serum of patients with recurrent breast cancer.

Therefore, SAA and IL-18 may be prognostic markers for breast

cancer recurrence (124) (Figure 2C).

miRNAs are also involved in cancer migration and metastasis.

miR-21, miR-10b, miR-373 and miR-520c promote metastasis,

whereas miR-126, miR-335, miR-31, miR-146a, and miR-497

suppress metastasis. miR-9 is associated with local recurrence and

ER+ tumors, whereas miR-10 is involved in cell proliferation,
frontiersin.org

https://doi.org/10.3389/fonc.2023.1292046
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Alvarez-Frutos et al. 10.3389/fonc.2023.1292046
migration, and invasion (57). On the other hand, Cyclin D2, RAR-

beta, Twist, RASSF1A and HIN-1 genes show increased methylation

in bone, brain and lung metastases compared to primary breast

cancer, with HIN-1 and RAR-beta methylation significantly higher

in each group (125). Hypermethylation and downregulation of

genes involved in breast cancer progression or EMT, such as

LYN, MMP7, KLK10 and WNT6 , are associated with a

significantly lower risk of metastatic relapse (126). Furthermore,

H3K4 acetylation has been correlated with breast cancer

progression, estrogen responsiveness, and the oncogenic EMT

pathway. Therefore, H3K4 is a potential biomarker for tumor

progression leading to aggressive metastatic phenotypes

(127) (Figure 2C).

Other biomarkers have been identified using other omics

techniques. As mentioned above, E-cadherin is considered a good

prognostic marker in non-invasive breast cancer, and loss of E-

cadherin protein is one of the main features of EMT (82).

Furthermore, a metabolomic study has identified 9-cis-retinoic

acid as a critical metabolite in breast cancer progression, as it

significantly decreased during breast cancer progression to

metastasis. This suggests that 9-cis-retinoic acid inhibits tumor

progression to metastasis, probably by attenuating cell invasion and

migration (128). Combining lipidomic techniques with

transcriptomic analysis, PI (18:0/20:3) accumulation has been

found to be associated with an increased incidence of lymph node

metastasis and activation of the PD-1-related immune checkpoint

pathway (129).

Finally, alterations in the microbiota have also been observed to

influence breast cancer metastasis. The presence of Bacteroides

fragilis, a gut-colonizing bacterium, can induce epithelial

hyperplasia to promote tumor growth and metastasis via the b-
catenin–Notch1 axis (130). In addition, Fusobacterium nucleatum

promotes tumor progression and metastasis (131) (Figure 2C).
6 Omics and treatment implications

Molecular changes that occur during cancer treatment

determine the response to different therapies and guide the

optimal choice of treatments to reduce local recurrence and

distant metastasis, thereby increasing disease-free survival. The

various omics are key to identifying these molecular changes. In

fact, several clinical trials are based on one or more

omics technologies.

Classically, aromatase inhibitors are recommended for patients

with ER+ metastatic breast cancer because they suppress estrogen

production. Trastuzumab and lapatinib are administered to patients

with HER2-enriched breast tumors, as trastuzumab is a humanized

monoclonal antibody against the extracellular domain of HER2,

and lapatinib is a tyrosine kinase inhibitor that blocks both HER2

and EGFR activation. However, in light of the omics findings, more

refined treatments may be considered according to genomic

alterations. For example, both luminal subtypes frequently harbor

mutations in PIK3CA, so inhibitors of this kinase may be a

therapeutic target; MYC amplification suggests the use of

platinum analogs and taxanes; and, patients with BRCA1/2
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mutations may benefit from poly ADP ribose polymerase (PARP)

inhibitors and/or platinum compounds (44). The RAS/RAF/MEK/

ERK signaling pathway is altered in tumors that overexpress EGFR

and HER2. Since this kinase cascade is critical for survival and

apoptosis, alterations in this pathway could affect sensitivity/

resistance to anticancer therapies. Mutations in KRAS, HRAS,

NRAS, BRAF and NF1 have been observed in all breast cancer

subtypes, although their frequency does not exceed 4%. However,

copy number alterations (CNAs) of KRAS and BRAF have been

observed in TNBC. Therefore, the use of inhibitors of these kinases

in combination with other therapies may delay or induce resistance

to treatment (132). ESR1methylation is considered a good predictor

of survival in tamoxifen-treated patients, whereas ARHI

methylation predicts survival in non-tamoxifen-treated patients.

BRCA1 hypermethylation, in turn, sensitizes TNBC patients to

DNA-damaging chemotherapeutic agents such as cisplatin and

PARP inhibitors (77). The prevalence of the PI3K/AKT/mTOR

signaling axis has been observed in TNBC. The c-Kit protein, a

receptor tyrosine kinase involved in the initiation of this cascade, is

overexpressed in 20-25% of TNBC, hence, the tyrosine kinase

inhibitors (TKIs) such as imatinib or sunitinib are used in the

treatment of these cancers (133) (Table 4).

The endoplasmic reticulum protein KIAA1199, which is

involved in tumor growth and invasiveness, is significantly

overexpressed in breast tumor samples. Therefore, KIAA1199 is

considered a new target for biomarker development and a novel

therapeutic target for breast cancer (134, 135). Similarly, cofilin-1

(CFL-1), interleukin-32 (IL-32), proliferating cell nuclear antigen

(PCNA), syntenin-1 (SDCBP), and riboforin-2 (RPN-2) have been

identified as potential target antigens for HLA-A2+ TNBC

immunotherapy (136), or the proto-oncogene RET and kallikrein

(KLK)8 as antigens associated with breast cancer in general (137).

Metabolic and lipidomic profiling of TNBC samples combined

with transcriptomic and genomic data have identified a number of

metabolites as potential therapeutic targets for different

transcriptomic subtypes of TNBC. The LAR subtype is

characterized by an enrichment of ceramides and fatty acids.

Therefore, sphingosine-1-phosphate (S1P), an intermediate of the

ceramide pathway, may be a promising drug for the treatment of

LAR tumors. In contrast, the basal-like immunosuppressed

transcriptomic subtype (BLIS) is characterized by increased

metabolites related to oxidation reaction and glycosyl transfer and

the lowest level of metabolic dysregulation. In this case, N-acetyl-
TABLE 4 Refined treatments that take into account genomic studies.

Alteration Treatment REF

Mutations in PIK3CA Inhibitors of PI3KA (44)

Myc amplification Platinum analogs and taxanes (44)

Mutation in BRCA1/2 PARP inhibitors and
platinum compounds

(44)

BRCA1
hypermethylation

Cisplatin, PARP inhibitors (77)

c-Kit overexpression Imatinib, sunitinib (133)
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aspartyl-glutamate has been identified as a key tumor-promoting

metabolite and a potential therapeutic target for high-risk BLIS

tumors (138). Furthermore, high levels of sphingomyelins are

associated with improved DFS in patients with TNBC. Therefore,

sphingomyelins and enzymes involved in sphingolipid metabolism

could be considered as prognostic markers and potential

therapeutic targets, respectively (139). Omics studies can also

identify specific pharmacological pathways of resistance and

sensitivity of tumor cells to different therapies. For example, a

combination of TP53 deficiency and silencing of BRCA1, BRCA2, or

BRCA1/2-associated genes results in cisplatin sensitivity (140).

PI3KCA mutations alone or in combination with PTEN appear to

predict worse outcome after trastuzumab monotherapy or in

combination with chemotherapy (141). BRCA1/2-deficient cells

are sensitive to PARP1 inhibitors. In addition, silencing of kinases

such as cyclin-dependent kinase 5 (CDK5), mitogen-activated

protein kinase 12 (MAPK12), polo-like kinase 3 (PLK3),

polynucleotide phosphatase/bifunctional kinase (PNKP), serine/

threonine kinase (STK)22c, and STK36 strongly sensitize to

PARP inhibitors (142). Cyclin-dependent kinase (CDK)10 has

been identified as a determinant of resistance to endocrine

therapies such as tamoxifen, as low CDK10 levels lead to early on

tamoxifen treatment (143) (Figure 3A). The classic treatment for

HR+ breast cancer is endocrine therapy. However, approximately

30% of patients develop resistance to endocrine therapy. A

transcriptomic/proteomic study has identified the set of candidate

genes CEACAM1, KRT19, TMEM81, TMEM119, ESRRA, ERBB3,

SRC, AKT1S1, SGEF, SCG5, ALOX12B, CKB, BID, XRCC1, NSL1,

and CHEK2 that are able to discriminate progression/resistance

(PD) from complete response (CR) and correlate significantly with

survival (144). In addition, 298 differentially expressed genes were

identified between drug-sensitive (DS) and drug-resistant (DR)

breast cancer patients prior to neoadjuvant treatment. Among

them, the peptidyl-prolyl cis-trans isomerase FKBP4 (FKBP4) and

the protein S100-A9 (S100A9) could be putative predictive markers
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to distinguish the DR group from the DS group of breast cancer

patients (145).

Metabolic studies have identified biomarkers that predict

response to treatment. For example, glycohyocholic and

glucodeoxycholic acids can stratify TNBC patients according to

response to neoadjuvant chemotherapy and OS (146). On the other

hand, when comparing patients with large primary breast cancer who

had received neoadjuvant chemotherapy plus bevacizumab with

those who had received chemotherapy alone, higher levels of

leucine, acetoacetate and trihydroxybutyrate and lower levels of

formate were observed 12 weeks after treatment (147).

Furthermore, baseline immunometabolic assessment in

combination with ER status could predict the response to

neoadjuvant targeted chemotherapy (NATC) based on patient

trastuzumab-paclitaxel combination and disease relapse in HER2+

patients. HER2+/ER+ patients have higher levels of T-cell stimulating

factors, but also higher levels of cytokines that might be responsible

for T-cell suppression. The combination of metabolic data with IL-2

and IL-10 cytokine levels has been shown to be prognostic for relapse

(148). In addition, serum metabolites such as leucine, formate, valine,

and proline, along with hormone receptor status, have been shown to

be discriminators of NATC response. For example, formate, proline,

valine, HR+, and HER2− are directly associated with NATC

resistance. In contrast, leucine, HR− and HER2+ are directly

related to NATC sensitivity. In addition, glyoxylate and

dicarboxylate metabolism have been implicated in NATC resistance

(149) (Figure 3A).

Pathologic complete response (pCR) and residual disease have

been correlated with the genome, transcriptome, and tumor

immune microenvironment in patients with early and locally

advanced breast cancer undergoing neoadjuvant therapy (150).

The pCR is associated with overexpression of driver genes such as

CDKN2A, EGFR, CCNE1, and MYC and underexpression of

CCND1, ZNF703, and ESR1, as well as increased immune

activation characterized by enrichment of innate and adaptive
B

A

FIGURE 3

Biomarkers of breast cancer defining treatment outcome detected by omics. Biomarkers identified by different omics can determine drug sensitivity/
resistance (A) or type of response to treatment (B). NATC, neoadjuvant targeted therapy; pCR, pathological complete response; pPR, pathological
partial response; pSD, pathological stable disease. “up arrow” means increase.
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immune cells. However, tumors with residual disease, particularly

HER2− tumors, showed enrichment of EMT and attenuated

immune response due to the enrichment of inhibitory CD56dim

natural killer cells and regulatory T cells, leading to therapy

resistance (150). In transcriptomic profiling, HSP90AA1, EEF1A1,

APP and HSPA4 were associated with recurrence in breast cancer

patients with pCR due to neoadjuvant chemotherapy. TP53, EGFR,

CTNNB1, ERBB2 and HSPB1 may play an important role in the

survival of pCR patients. Patients with tumors expressing high

levels of HSP90AA1, HSPA4, S100A8, and TP53 and low levels of

EEF1A1, EGFR and CTNNB1 showed significantly worse overall

survival (OS) (151) (Figure 3B). A set of genes including AKT1S1,

NSL1, ESRRA, TMEM81, CKB, SGEF, KRT19, SCG5, CEACAM1,

ALOX12B, IDB, SRC, CHEK2, ERBB3 and XRCC1 have been

identified as critical targets of both selective estrogen receptor

modulators (SERMs)/selective estrogen receptor downregulators

(SERDs) and aromatase inhibitors (AIs) of endocrine

resistance (144).

A systemic metabolic study showed that patients with large

primary breast cancers undergoing neoadjuvant chemotherapy with

poor response have higher citrate levels and lower histidine levels

(147). In addition, TNBC patients with pCR had elevated levels of

circulating t-methylhistidine, phenylalanine, p-methylhistidine,

lactic acid, glucose, alanine, glutamic acid, citric acid,

dimethylamine and phosphocholine, whereas patients with or

pathological stable disease (pSD) had elevated levels of valine, 2-

aminobutanoic acid, propionic acid, ethanol, proline, asparagine,

and N,N-dimethylglycine. Finally, TNBC patients with pathologic

partial response (pPR) had high levels of 2-hydroxyisovaleric acid,

acetoacetate, trimethylamine, creatine, myo-inositol and ornithine,

but low levels of five metabolites, namely isoleucine, phenylalanine,

threonine, dimethylamine and glycerophosphocholine (Figure 3B).

Therefore, we can infer that alterations in the pathways of glycine,

serine, and threonine metabolism; valine, leucine, and isoleucine

biosynthesis; and alanine, aspartate, and glutamate metabolism

could be used as potential models to predict whether a patient

with TNBC is suitable to receive neoadjuvant chemotherapy (152).

The relevance of all these biomarkers lies in their translational

potential to identify specific treatments for breast cancer. Several

clinical trials are ongoing. A Phase I program conducted at the

University of Texas MD Anderson Cancer Center demonstrated

that patients who received alteration-matched therapy had a higher

objective response rate (ORR), PFS, and OS compared to

unmatched therapy (153).

One of the most important clinical trials based on genomic

studies is the “Microarray In Node Negative Disease may Avoid

ChemoTherapy” (MINDACT). The MINDACT clinical trial aims

to demonstrate the clinical relevance of the 70-gene prognostic

signature (or MammaPrint™) determined by van’t Veer (106) and

to compare it with the traditional clinicopathologic prognostic

indicators for the assignment of adjuvant chemotherapy in

patients with node-negative breast cancer (154). As a result,

MammaPrint™ was found to be effective as traditional tools in

identifying high-risk patients, but more accurate in identifying low-
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risk patients who could avoid adjuvant chemotherapy (155, 156).

This gene signature outperforms all traditional clinical prognostic

factors and clearly discriminates patients with an excellent

prognosis from those at high risk of recurrence (157, 158). Phase

III results showed that approximately 46% of women with clinically

high-risk breast cancer are unlikely to need chemotherapy (159).

Women with high clinical risk and low genomic risk younger than

50 years had excellent DMFS when treated with endocrine therapy

alone (160). In addition, patients with ER+, HER2− and stage I

lymph node-negative tumors ≤2 cm treated with endocrine therapy

had significantly fewer breast cancer events (161). On the other

hand, no improvement in outcomes was observed with the use of

docetaxel-capecitabine compared with anthracycline-based

chemotherapy (162). Last year (2022), the Austrian Group

Medical Tumor Therapy prospective registry confirmed that the

addition of MammaPrint™ to the routine treatment of early

luminal breast cancer yields clinically useful results (163).

Concurrent with the MINDACT clinical trial in Europe, the

Trial Assigning Individualized Treatment Options Rx (TAILORx)

was conducted in North America with the goal of reducing

chemotherapy overtreatment by integrating molecular diagnostic

testing into the clinical decision-making process. TAILORx is based

on a 21-gene based assay (Oncotype DX™) that calculates a

recurrence score (RS) and reserves chemotherapy for patients

with a low RS (164). Women with a high RS who were treated

with adjuvant chemotherapy regimens containing taxanes and/or

anthracyclines plus endocrine therapy had an estimated 5-year

freedom rate from distant breast cancer recurrence of 93% (165).

In patients with ER+, HER2−, lymph node-negative and

intermediate RS, adjuvant endocrine and chemoendocrine

therapy had similar efficacy, although chemotherapy had some

benefit in some women aged 50 years or younger (166). Among

women with intermediate RS, Hispanic ethnicity and Asian race

were associated with better outcomes. However, Black race was

associated with worse clinical outcomes and did not benefit from

adjuvant chemotherapy (167).

Other studies are the aforementioned AURORA US

Metastatasis project and the TransNEO study. The AURORA US

Metastasis project conducted a multiomic study including

genomics, epigenomics and transcriptomics in primary tumors

and their corresponding metastatic breast cancers (168). In

metastatic TNBC, significantly lower expression of MHC class I

genes (HLA-A, HLA-B, and HLA-C), DNA methylation of HLA-A,

and small focal HLA-A were observed, which were associated with

lower immunity and worse OS. Tumors with DNA-methylated

HLA-A could be targeted for DNA demethylating drugs in

combination with immune checkpoint inhibitors (ICI) (168, 169).

The TransNEO molecular profiling study of patients with early and

locally advanced breast cancer undergoing neoadjuvant therapy.

Genomic, transcriptomic, and tumor immune microenvironment

data were combined with clinical and digital pathology data to

perform machine learning to create a predictive pCR model. This

model is robust and could guide treatment selection in future

clinical trials, including in the context of adjuvant therapy (150).
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7 Conclusion and perspectives

Currently, treatment selection in breast cancer patients is based

on broad clinicopathologic features that fail to accurately classify

patients into risk groups, hence resulting into overtreatment of vast

segments of patients. Data suggest that ORR, DFS and OS can be

improved by the use of tailored therapies. Improved outcomes

depend on the identification of new biomarkers that allow for the

stratification of patients and eligibility for new therapies. Besides,

the identification of biomarkers that predict treatment efficacy will

minimize side effects or cumulative toxicity in patients unlikely to

benefit from such treatments. Clinical trials, which thus far have

mostly been based on genomic, transcriptomic and/or proteomic

studies, have been effective in assigning treatment. It is our

understanding that multiomics studies, including other omics

techniques such as metabolomics, immunomics or microbiomics,

are an important step towards precision medicine and hence refine

the assignment of the best possible treatment for each patient.

Special attention should be paid to the statistical methods used in

the analysis of multiomic data to avoid spurious correlations. In

fact, correlation coefficients should not be used to explain a process,

such as cancer progression, in which multiple variables are

involved. In these cases, the use of regression or multivariate

analysis techniques will be more appropriate. In addition,

validation cohorts will be needed to confirm the reproducibility,

robustness, and validity of the results. It is important that validation

cohorts have a pre-calculated sample size using statistical power

tests and that minimum assay quality criteria have been established.

In conclusion, we anticipate that clinical trials based on high-

dimensional multiomics data interpreted by artificial intelligence

will guide each patient to an optimized and personalized treatment,

that will avoid overtreatment, minimize side effects, and improve

both DFS and OS.
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