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Mitochondrial heat shock protein 90 (mtHsp90), including Tumor necrosis factor

receptor-associated protein 1 (TRAP1) and Hsp90 translocated from cytoplasm,

modulating cellular metabolism and signaling pathways by altering the

conformation, activity, and stability of numerous client proteins, and is highly

expressed in tumors. mtHsp90 inhibition results in the destabilization and

eventual degradation of its client proteins, leading to interference with various

tumor-related pathways and efficient control of cancer cell development.

Among these compounds, gamitrinib, a specific mtHsp90 inhibitor, has

demonstrated its safety and efficacy in several preclinical investigations and is

currently undergoing evaluation in clinical trials. This review aims to provide a

comprehensive overview of the present knowledge pertaining to mtHsp90,

encompassing its structure and function. Moreover, our main emphasis is on

the development of mtHsp90 inhibitors for various cancer therapies, to present a

thorough overview of the recent pre-clinical and clinical advancements in

this field.

KEYWORDS

mtHsp90, TRAP1, molecular chaperone, mitochondria, gamitrinib
Abbreviations: mtHsp90, mitochondrial heat shock protein 90; TRAP1, Tumor necrosis factor receptor-

associated protein 1; NTD, N-terminal domain; MD, middle domain; CTD, C-terminal domain; SDHB, B

subunit of succinate dehydrogenase; SDH, succinate dehydrogenase; OXPHOS, mitochondrial oxidative

phosphorylation; NSCLC, non-small cell lung cancer; gamitrinib–TPP, gamitrinib-triphenylphosphonium;

GBM, glioblastoma multiforme; TMZ, temozolomide; CRC, colorectal cancer; ROS, reactive oxygen species.
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1 Introduction

Heat shock protein 90 (Hsp90) is a highly conserved family of

molecular chaperones that serves a pivotal function in the processes

of protein folding, stabilization, and degradation. With several

hundred protein clients, Hsp90 is involved in various cellular

processes, such as signal transduction, protein trafficking, and

DNA repair (1). It functions as an ATP-dependent molecular

chaperone, and it’s the crucial role of facilitating the appropriate

folding, conformational alteration, activation, and regulation of

client proteins. During its functional process, it combines and

hydrolyzes ATP, while also involving client proteins and co-

chaperones, which are proteins responsible for regulating the

activity and function of Hsp90 (2). Hsp90 exhibits distinct

localization patterns inside diverse cellular compartments, each

associated with specific functional tasks.

In mammalian cells, the Hsp90 family consists of four highly

conserved isoforms: the endoplasmic reticulum-localised Grp94,

the cytoplasmic Hsp90a and Hsp90b, and TRAP1, which was

found in mitochondria (3). These different members exhibit a

common molecular chaperone activity pattern, but they

selectively bind to diverse client proteins, which is influenced in

part by their cellular localization (4). TRAP1 is a Hsp90 homolog

and the predominant chaperone in the mitochondria of cancer cells

(5). Particularly, Hsp90 compartmentalized in mitochondria is

essential regulator of bioenergetics in tumor cells but not normal

cells (6). Though many evidences indicated mtHsp90 could be a

new potential antitumor target, there is not a review updating its

antitumor mechanism and the newest advancements in clinical

therapy development.

Due to the increasing number of members of various human

heat shock protein (HSP) families, inconsistencies in their

nomenclature often result in ambiguity and confusion. In 2009,

Kampinga et al. proposed Guidelines for the nomenclature of the

human heat shock proteins (7). Among them, the Hsp90 family was

renamed as the HSPC family, with the original Hsp90 referred to as

HSPC1, Hsp90a and Hsp90b as HSPC2 and HSPC3, respectively,

and GRP94 renamed as HSPC4 whereas TRAP1/Hsp75 was

renamed as HSPC5. We have summarized the agreement of

different scholars on the name of Hsp90 through extensive

literature review, and hereby we would like to define the concept

of Hsp90 mentioned in the article.

Broadly, Hsp90 can refer to all proteins in the Hsp90 family,

whereas narrowly, Hsp90 refers to the classical Hsp90a and

Hsp90b. Hoter et al. (8) in 2018 summarized, based on available

studies, that Hsp90 has been customarily used for Hsp90a and

Hsp90b (9, 10). We have reached the same conclusion through an

extensive review of the literature from earlier years. Throughout the

discovery history of the Hsp90 family, sequence information for

Hsp90a and Hsp90b was first revealed in 1984 (11), whereas grp94

was first sequenced in 1986 (12), and TRAP1 in 1995 (13). Since

Hsp90a and Hsp90b in the cytoplasm were first identified, they

have been referred to as Hsp90 by researchers in the subsequent

literature, whereas Hsp90 homologous proteins in the endoplasmic

reticulum and mitochondria are denoted by grp94 and TRAP1,
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respectively. Typically, without specific indication, Hsp90 is

referred to as narrowly defined Hsp90, i.e., Hsp90a and Hsp90b
in the cytoplasm.

In 2007, Kang et al. (14) showed that Hsp90 and its related

molecule TRAP1 were abundantly present in the mitochondria of

tumor cells, and that Hsp90 was not present in normal

mitochondria but was prevalent in the cytoplasm of both normal

and tumor cells. However, the exact mechanism of how Hsp90 is

imported into mitochondria remains to be fully elucidated. In

addition, Boucherat et al, in their study of mitochondrial Hsp90

accumulation and vascular remodeling in pulmonary arterial

hypertension, also mentioned that Hsp90 is present in tumor cell

mitochondria in addition to being highly expressed in the

cytoplasm. Boucherat referred to Hsp90 in mitochondria

uniformly as mtHsp90 in his paper [9]. Taken together, we refer

to Hsp90 in mitochondria as mtHsp90 for short in our paper,

including TRAP1 as well as Hsp90 imported from the cytoplasm.

In this review, our primary focus is on mtHsp90, given its

unique subcellular location and potential applications in the

development of cancer treatments. In the context of cancer cells,

mtHsp90, specifically TRAP1, has the potential to function as either

a proto-oncogene or an oncogene (15), though it is commonly

observed to be overexpressed in various cancer types, including

prostate, breast, lung, and leukemia (16). In addition, we will

introduce the basic molecular structure and interaction

mechanisms of mtHsp90. Subsequently, we will mainly focus on

the application of mtHsp90 inhibitors in cancer treatment.
2 The structure and function
mechanisms of mtHsp90

2.1 The structure of mtHsp90

In eukaryotes, Hsp 90 (90 kDa) is a three-domain molecular

chaperone protein with a highly conserved biological structure. It

contains three domains (Figure 1): an N-terminal domain(NTD)

includes an ATP-binding site in a deep pocket on its helical face

(17); a middle domain (MD), docking some client proteins and

auxiliary protein; and a C-terminal domain(CTD), which contains

unique motifs MEEVD or KDEL, depending on its isoform and

cellular location and is in charge of binding multiple cochaperones

and includes dimerization domain (8, 18). There are also certain

inhibitors for each domain. ATP-competitive inhibitors targets

NTD, Hsp90-client protein and Hsp90-co-chaperone PPI

inhibitors targets MD, while allosteric Hsp90 CTD inhibitors

targets CTD (19).

However, in comparison with Hsp90 (or Grp94), the first 59

amino acids in NTD of TRAP1, a mitochondrial targeting sequence

at NTD that is cleaved after mitochondrial translocation (20–22);

TRAP1 also lacks a highly charged elastic region (CR) between the

NTD and MD for regulating chaperone function (23, 24). Among

other Hsp90 families, the N-terminal domain contains highly

conserved amino acid sequences, such as the MEEVD (Met-Glu-

Glu-Val-Asp) sequence, that can interact with other proteins.
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Nevertheless, TRAP1 does not have this sequence, indicating it has

no cochaperones (25). Besides, TRAP1 and bacterial chaperone

high-temperature protein G (HtpG) can form tetramers as a dimer

of dimers, which are related to mitochondrial metabolic

regulation (26).

The structure of TRAP1 is not as same as other HSP90 proteins,

but the interaction mechanisms with other client proteins are

varied. Hsp90 must extensively interplay with cochaperones to

coordinate their cycle and recruit clients following the structural

changes between open and closed conformations (27, 28). TRAP1

acts as a similar conversed mechanism, but the TRAP1

cochaperones have yet to be reported. Moreover, unlike other

Hsp90 proteins, TRAP1 does not need steroid receptors to

support signaling protein folding and maturation (28). The

amphipathic helix section in Hsp90, which contains E466R,

W467R, N470D, M546T, M550A, L553A and F554A, is a client

interacting region (29). Furthermore, the clients likely directly

interact with open-conformation TRAP1, and the interplay can

maintain stably even without ATP contribution (30–32). Therefore,

TRAP1 has a certain degree of autonomy. The clients may load into

the open-form TRAP1 through a protein-protein way, leading to
Frontiers in Oncology 03
ATP hydrolysis, changing the conformation, and enhancing the

TRAP1 activity (25).
2.2 Mechanism of interaction with
client proteins

In comparison to other chaperone protein-requiring Hsp90

(28), TRAP1 is unable to form complexes with known

cytoplasmic Hsp90 co-chaperones or to promote maturation of

Hsp90 client proteins, suggesting a unique mechanism for TRAP1

(33). The major interactors of TRAP1 are the mitochondrial

chaperones mtHSP70 and HSP60 (26). Furthermore, the TRAP1-

client interaction itself is unaffected by ATP-mimetic inhibitors that

favour the open form and remains stable even in the absence of

ATP, indicating that its clients are likely to be loaded by direct

interaction with the open conformation TRAP1 (30–32).

Mitochondrial contact site and cristae organizing system subunit

60 (MIC60) is a core protein of the mitochondrial cristae, and

TRAP1 can directly interact with MIC60 to reduce ubiquitin-

dependent degradation in extracellular acidosis. TRAP1 can
FIGURE 1

Structure of TRAP1. The structure of TRAP1 is similar as other HSP90 proteins (Hsp90a, Hsp90b, and Grp94): 1) they have three sections: NTD; MD;
CTD. 2) they have an ATP-binding site in a deep pocket on the helical face of NTD, targeted by ATP-competitive inhibitors; and client protein
binding sites in MD for interplaying with some client proteins and auxiliary proteins or nucleotides, targeted by Hsp90-client protein and Hsp90-co-
chaperone PPI inhibitors. CTD is in charge of binding multiple cochaperones and includes dimerization domain, and allosteric Hsp90 CTD inhibitors
targets the domain. However, unlike other HSP90 proteins, TRAP1 did not contain a conversed amino acid sequence, which is crucial for
interactions with modulators at the end of CTD.
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directly interact with MIC60 to reduce ubiquitin-dependent

degradation in extracellular acidosis, thereby attenuating acidosis-

induced mitochondrial and cardiac injury (34). Clients load into the

open form of TRAP1 through direct protein-protein interactions,

triggering the binding and hydrolysis of ATP, which changes the

conformation and enhances the chaperone activity of TRAP1 (25).

Therefore, TRAP1 is an autonomous molecular chaperone that

functions through interactions with clients and ATP.

Generally, TRAP1 has two different chaperone activities, which

are called foldase and holdase. The difference lies in the necessity of

ATP hydrolysis in chaperone function (35). Foldase-type activation

requires ATP hydrolysis, mainly conformationally remodeling

clients and stabilizing, activating, or inactivating them. Eventually

may help in the formation of large protein complexes. Holdase-type

activity functions independently of ATP hydrolysis and primarily

regulates the enzymatic activity of clients and in some cases

influences the stability of clients (36). Under normal

circumstances, TRAP1 functions in the form of dimers, but

recently a tetrametric form of TRAP1 was observed in the

response of dysregulated oxidative metabolism (26). It is the most

stable stoichiometric TRAP1 complex, the level of which varies with

decreasing and increasing OXPHOS (26).The foldase activity of

TRAP1 enables it to refold unfolded clients with energy from ATP

hydrolysis. Based on broad analyses of the structure of TRAP1

binding its client proteins, it was demonstrated that the unfolded

clients’ binding surface is usually hydrophobic (37, 38). It was

shown that the interaction between TRAP1 and clients is not based

on ATP, instead unfolded clients directly bind to a hydrophobic

client binding pocket between protomers (30, 31). After clients bind

to TRAP1, a conformational transition will be triggered, and

TRAP1 turns from an open-form (“apo” state) into a closed state,

followed by ATP binding (25). Then an asymmetric homodimeric

TRAP1 was formed, in which one protomer was buckled compared

to the other. The buckled protomer is better at hydrolyzing ATP,

and a subsequent flip in the MD and CTD asymmetry positions the

other protomer in the buckled conformation. So, the hydrolysis of

two ATP is sequential, and after their hydrolysis, TRAP1 completed

the cycle and returned to its symmetric, open state (39). So, in

conclusion, it was presumed that the loading of the client triggers

the binding of ATP and enhances the ATPase activity of TRAP1

(40). Sequential hydrolysis of two ATPs on TRAP1 helps to remodel

the client conformation to release folded or activated clients

(25, 41).

To date, the first TRAP1 complex structure with SDHB (B

subunit of succinate dehydrogenase) (Figure 2) has been detected

(PDB: 7KCM) by cyro-EM (33). In detail, an unfolded SDHB

segment interacted with the nonpolar residues located in the

TRAP1 MD, such as F531 and F353, and was accommodated into

a lumen generated between protomers (25). Actually, F353A and

F531A played important roles in the interaction of TRAP1 and

other clients, and mutations of these residues would reduce binding

and compromise the chaperone functions of TRAP1 (32).

Moreover, as a post-translational modification of TRAP1, deletion

of TRAP1O-GlcNAcylation impairs TRAP1 binding to ATP and

TRAP1 interaction with succinate dehydrogenase (SDHB) (42).
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Contrary to the foldase activity, TRAP1 exerts its holdase

function in other cases, which means that TRAP1 may not induce

client folding, but stabilized clients by binding. In this case, TRAP1

may not need its ATPase activity (26). For example, the major

mitochondrial deacetylating enzyme sirtuin-3 (SIRT3) showed

increased enzyme activity after binding to TRAP1 in the absence

of ATP (30). It is worth noting that SIRT3 binding also increases the

ATPase activity of TRAP1, which may subsequently (after the

holdase function) operate toward SIRT3 and activate it.

Therefore, we can conclude that the holdase and the foldase

activities likely operate sequentially or synergetically (25).
2.3 Mechanism of interaction
with inhibitors

Tumors are ubiquitously dependent or “addictive” to a heightened

protein folding environment (43), which is vital in buffering the

proteotoxic stress accompanying in vivo tumor growth (44). Drugs

inhibiting or antagonizing mitochondrial Hsp90 and its homolog

TRAP1 may have great potential and specificity in treating cancer.

Currently, there are several strategies targeting TRAP1. TRAP1 N

terminal domain (NTD) inhibition is one of them. NTD is responsible

for nucleotide binding and ATPase activity (45). Most inhibitors that

have undergone clinical trials as anticancer drugs target the NTD and

bind competitively to its ATP binding site to date (46), and

representative drugs are Geldanamycin derivatives, guanidine

derivatives, and benzamide derivatives. They function by binding

the polar residue Asn171 in the middle of the helix of TRAP1

NTD, which locates in the ATP-lid and rotates in to drug binding

site (25, 47). Then the foldase activity of TRAP1 is disrupted.

Sheperdin is another classical drug targeting TRAP1 by interacting

with the ATP-binding pocket in NTD and has cell-penetrating

properties (48). However, these competitive inhibitors did not show

satisfactory effect in vivo, which may be due to their insufficient

concentration in mitochondria (5). Some improvements have been

made, like conjugating mitochondrion-targeting moieties with ATP-

competitive inhibitors or increasing mitochondrial permeability (49).

SMTIN is one of those drugs. It contains a triphenylphosphonium

(TPP) vehicle that targets mitochondria. SMTIN-C10 (a derivative of

SMTIN containing C20 linker) was shown to interact strongly with

the ATP binding pocket of TRAP1, while its TPPmoiety spread out to

interact with allosteric sites in the NTD andMD near the ATP binding

pocket, enhancing the antitumor activity (31). Electron microscope

structural analysis also found that SMTIN-C10 interaction with

TRAP1 induced TRAP1 to a tightly packed closed form (31).

Another hotspot ATP-mimic inhibitor under research is gamitrinib-

TTP (GA mitochondrial matrix inhibitor-TTP), which has shown

feasibility and safety in preclinical trials (50), and phase I clinical trial

is ongoing(NCT04827810).

As discussed above, the holdase activity of TRAP1 is

independent of ATP binding, and client binding was shown to

increase ATPase activity (30). Thus, the holdase activity cannot be

inhibited by ATP-binding pocket-targeted inhibitors, and these

inhibitors become ineffective in blocking the chaperone function
frontiersin.or
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of TRAP1 when it binds to certain client proteins. In these

circumstances, the holdase function primarily mediating TRAP-

client interaction appears to be essential for the chaperone

mechanism. As a result, holdase inhibitors were developed to

solve the problem. MitoQ mimics the client and binds to the

client-binding site of TRAP1, inhibiting other clients to interact

with the chaperone. F353 and F531 residues were shown to

participate in the interaction. Although the ATPase activity of

TRAP1 is elevated through MitoQ binding, its chaperone

function could be fully blocked as other clients were replaced by

MitoQ (25).

In addition to the several relatively mature TRAP1 inhibitors

mentioned above, many novel compounds have been synthesized

and developed with favorable outcomes in recent years. Recently,

Merfeld et al. showed a compound 36 that is more than 250 times

more selective for TRAP1 than Grp94. In addition, it inhibits

OXPHOS, alters cellular metabolism toward glycolysis,

destabilizes TRAP1 tetramers, and disrupts mitochondrial

membrane potential (51). Kim et al. synthesized a series of

pyrazolo[3,4-d] pyrimidine derivatives, in which X-ray diffraction

results showed that compounds 47 and 48 interacted with the ATP-
Frontiers in Oncology 05
binding pocket of TRAP1 protein, and they were shown to exhibit

excellent anticancer efficacy in various cancer cells. Moreover, 47

and 48 significantly reduced tumor growth in a mouse PC3

xenograft model (52). Yang et al. developed a series of purine-8-

one and pyrrolo[2,3d] pyrimidine derivatives based on the TRAP1

structure, of which 5f was 65-fold more selective than Hsp90a and

13-fold more selective than Grp94, and 6f was 78-fold and 30-fold

more selective than Hsp90a and Grp94, respectively (47). The lead

compound synthesized by Sanchez-Martin et al. inhibits TRAP1,

but not HSP90 ATPase activity, demonstrating the efficacy of using

conformational dynamics to expand the chemical space of

molecular chaperone antagonists to TRAP1-specific inhibitors

with broad therapeutic opportunities (53).
3 The functions of mtHsp90 in
tumor cell

MtHsp90, including Hsp90 and its homologue TRAP1 were

abundantly present in the mitochondria of tumor cells (14). TRAP1

performs different functions in different cancer cell types (54). It can
FIGURE 2

TRAP1 binding with SDHB. The two interplay sites between TRAP1 and SDHB allocates in F531 and F353, respectively. This structure improved ATP
hydrolysis and ATP activity, and the binding surface of an unfolded client is conversed and hydrophobic.
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act as a proto-oncogene or an oncogene (15). It is highly expressed

in hepatocellular carcinoma (HCC) (55), prostate cancer (56), small

cell lung cancer (57, 58), nasopharyngeal carcinoma (59), high-

grade glioma (60), and breast cancer (61), but it acts as a tumour

suppressor in patients with cervical, bladder, and clear cell renal cell

carcinomas (62).

TRAP1 is indispensable in the performance of mitochondrial

functions and maintenance of structure (Figure 3). It has been

suggested that TRAP1 plays an essential role in reprogramming the

mitochondrial pathway to critically support tumor growth (63, 64). It

interacts with key mitochondrial enzymes (32) and has important roles

in shaping mitochondrial function, protecting against apoptosis (14)

and oxidative stress (65) to critically support cancer cells. It was also

shown to control mitochondrial protein quality (66). Specifically,

TRAP1 binds mitochondrial and cytoplasmic ribosomes as well as

translation elongation factors and facilitates localized translation in the

vicinity of mitochondria (67). Moreover, it has pivotal function in

mitochondrial homeostasis and bioenergetics (68). The

downregulation or depletion of TRAP1 in cancer cells impairs ATP

generation and mitochondrial membrane potential, disturbs

mitochondrial function (69), reduce proliferation, and has variable

effects on apoptosis (57). Not only dose TRAP1 act on mitochondria,

but it also participates in lysosomal-mitochondrial crosstalk to

maintain cellular homeostasis, and its activation improves the

lysosomal phenotype in the cells of patients with a variety of

lysosomal storage disorders, and may be a potential therapeutic

target for a wide range of lysosomal diseases (70).

MtHsp90 regulate and activate several cancer-related pathways

including metabolic reprogramming (71), tumor cell motility, and
Frontiers in Oncology 06
evasion of apoptosis. These effects enhance tumor cells growth in

low nutrients environment and metastatic dissemination to other

body parts, also arm them with drug resistance. MtHsp90 was

suspected to block drug-induced apoptosis in several tumors (57),

conferring tumor cells resistance against chemotherapeutic

agents (72).

One of the major functions of mtHsp90 is that it played

essential role in tumor cells metabolism reprogramming, which is

an important driver of tumor adaptation, generation, and

progression. One of the hallmarks of tumor cells in energy

metabolism is aerobic glycolysis, which is also called Warburg

effect. MtHsp90 is important in this pathway. TRAP1 was

suggested to inhibit succinate dehydrogenase (SDH) activity to

favor aerobic glycolysis (Warburg effect) and inhibit oxidative

phosphorylation (OXPHOS) in human colon, cervix, ovary and

bone cancers (62, 73). Sciacovelli et al. (74) demonstrated that

TRAP1 binds to and inhibits respiratory chain complex II succinate

dehydrogenase (SDH). The respiratory downregulation induced by

the interaction of TRAP1 with SDH promotes tumorigenesis by

initiating the stabilization of the succinate-dependent oncogenic

transcription factor HIF1a. Current TRAP1 inhibitors targeting

this pathway have achieved promising results in human cells. The

study by Sanchez-Martin et al. demonstrated that honokiol DCA

(HDCA) (a small molecule antitumor agent) binds to a variant site

in TRAP1 and is able to inhibit TRAP1 but not Hsp90 ATPase

activity (75). In Human plexiform neurofibroma 95.6 cells, HDCA

restored TRAP1-dependent SDH down-regulation, decreased

proliferation rate, increased mitochondrial superoxide levels and

eliminated tumorigenic growth (75). Despite the facts mentioned
FIGURE 3

The functions of TRAP1 in tumor cells. TRAP1 binds to and inhibits the activity of complex II succinate dehydrogenase (SDH), complex III core
component UQCRC2; enhances cellular utilization of glutamine via HIF-2a; promotes tumorigenesis by stabilizing HIF-1a via succinate; facilitates
tumor growth and maintenance through stimulation of the TNF, Wnt pathway; promoting tumor metastasis by activating FAK and inhibiting AMPK
and ULK1; modulating apoptosis and autophagy by regulating the release of cytochrome c (Cyt C) and the binding of cyclophilin (CypD) to ATP
synthase; blocking ROS generation to prevent cellular damage from oxidative stress. Created with BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fonc.2023.1296456
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiang et al. 10.3389/fonc.2023.1296456
above, a recent study demonstrated that TRAP1 binds the core

component of complex III, UQCRC2, within the mitochondria and

regulates complex III activity. This reduces respiration rates under

basa l condi t ions , but mainta ins susta ined oxidat ive

phosphorylation during glucose limitation (76). Moreover,

TRAP1 interacts with PINK1(PTEN induced putative kinase 1) to

protect cells from oxidative stress-induced cell death (77).

But it was verified to be insufficient to explain the complexity of

metabolic reprogramming in tumor cells (78, 79). There must be

other metabolism pathways to support high energy demanding of

tumors, such as metastasis and cell proliferation, and that’s where

mtHsp90 also come into play (68). Under unfavorable nutrient

conditions such as nutrient deprivation or amino acid shortage,

tumor cells are able to utilized mtHsp90-directed and TRAP1

directed protein folding (14) to maintain ATP production (6),

thus attenuating the activation of the nutrient-sensing, tumor-

suppressive AMPK pathway (80) and tumor cell autophagy

pathway (6). Tumor cells are conferred with a survival and

proliferation advantages and their progression and invasion under

nutrient deprivation was thus possible then (71). Overexpression of

TRAP1 in cancer associated fibroblasts (CAFs) increases basal

oxygen consumption rate (OCR) and ATP production. In vivo,

overexpression of TRAP1 in CAFs of HSC3 cell xenografts model

inhibited tumor growth (81). The mechanisms behind maintained

ATP production were the retention of hexokinase II to the

mitochondrial outer membrane by regulating cyclophilin D

(CypD) folding (6), keeping the stability of oxidative

phosphorylation complex II subunit (79) and succinate

dehydrogenase. In conclusion, mtHsp90 mediated energetics can

maintain a residual level of oxidative phosphorylation to block the

activation of tumor-suppressive AMPK signaling and autophagy

(6), which are considered vital for tumor progression and drug

resistance in vivo. Although the promotion effects of TRAP1 in

Warburg effect and oxidative phosphorylation (i.e. inhibit or

activate SDH) in cancers seemed to be opposing, it was just a

result of different metabolic plasticity under different tumor

environments (25). Furthermore, it has been suggested that

TRAP1 is essential for malignant transformation of cells but is

dispensable in later stages of tumour development (30, 62).

Although the function of TRAP1 is controversial, the majority of

the literature suggests that TRAP1 is overexpressed in many cancers

and regulates metabolic transformation during tumourigenesis, and

that TRAP1 attenuation is detrimental to tumor cell survival (16,

61, 82–85). The ultimate function of TRAP1 in pathology is still

tumorigenesis. The cellular contexts affecting these contradictory

effects are still poorly understood, but upstream regulators and

clients of TRAP1 may be one of them, such as the bi-directional

interaction between SIRT3 (a NAD+-dependent deacetylating

enzyme) and TRAP1 (25).

MtHsp90 also promote tumor cell motility and metastasis in

vivo, especially in case of scarce nutrients. That may explain why

these chaperones are ubiquitously overexpressed in advanced

tumors. Recent research has found that TRAP1 overexpression

(TRAP1 OE) promotes mitochondrial fission, enhanced in vitro

migration and in vivo metastasis of tumor cells, and altered cellular

homing properties (86). In a study (71), researchers use
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noncytotoxic concentrations of gamitrinib to antagonize the

function of Hsp90 in mitochondria. The result showed a nearly

complete suppression of invasive length and areas of tumor cells.

Next, they use pooled siRNAs to silence TRAP1, the same effect was

reproduced, demonstrating mtHsp90 ‘s importance in tumor cell

motility. Through further investigation, they found that tumor cell

motility was also influenced by cell motility kinases, tumor cell

bioenergetics and tumor cell autophagy. These pathways were

regulated by mtHsp90 to preserve cytoskeletal dynamics through

continuous phosphorylation of multiple cell motility kinases and

releasing FAK from inhibition by ULK1-FIP200 autophagy-

initiating complex (87). All the above contribute to tumor cell

invasion and dissemination, leading to shorted OS in patients. On

the contrary, activation of AMPK, ULK1 or autophagy regulators

suppressed tumor progression and restricted motility (71). In

conclusion, mtHsp90 regulate the crosstalk between bioenergetics

stress, AMPK activation and autophagy to preserve tumor

cell motility.

MtHsp90 also prevents autophagy, another tumor-suppression

mechanism, in cancer cells during nutrient deprivation (71, 88) to

preserve tumor cell motility. Inhibition of TRAP1 in tumor cells

caused marked increase in lysosome content and autophagy

activity (69).

Cancer cells’ evasion of apoptosis is mediated partly by

mtHsp90, too. TRAP1 improve cancer cells’ resistance to various

stresses including anticancer therapies by upregulating cell death

threshold (89, 90). TRAP1 can protect mitochondria against

reactive oxygen species (ROS) and oxidative stress (64) by

blocking ROS production (91)(e.g. suppress SDH activity) or

scavenging noxious ROS (92)(e.g. activate superoxide dismutase 2

through SIRT3 (30)). There are also other anti-death mechanisms

aside from scavenging ROS. For example, it inhibited the release of

cytochrome c (64). It also antagonized cyclophilin D (CypD) (93) to

inhibit the opening of CypD-dependent mitochondrial permeability

transition pores (mPTP) (94, 95), and mPTP opening is directly

related to cell death. Upon cellular stresses, CypD was shown to

irreversibly open mPTP by changing the conformation of complex

V, which is one of the components of mPTP (96). So TRAP1 inhibit

CypD and preserve the integrity and membrane potential of

mitochondria, which is a vital survival mechanism for tumor cells

(63). TRAP1 also ameliorates diabetes-induced kidney injury by

preventing abnormal opening of mPTP and maintaining

mitochondrial structure and function (97).MtHsp90 was reported

to interact with CypD to antagonize mitochondrial permeability

transition process, too (14). It was also showed to be associated with

enhanced DNA repair when patients were treated with cisplatin

(98). A study by Zhang et al. in 2021 demonstrated that TRAP1

inhibits cisplatin-induced apoptosis by promoting ROS-dependent

mitochondrial dysfunction (99). Combined low activity of DNase1

and Trap1 results in impaired chromatin degradation in vitro,

delayed chromatin clearance in vivo, and enhanced immune cell

activation (100). Expression of TRAP1 and HSPD1 correlates with

DNA replication and mitotic inhibitor sensitivity (101).

However, cancer cells differ from normal cells in many aspects,

including altered expression levels and functional states of

mitochondrial Hsp90 and TRAP1 (102, 103). Many cancer cells
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express higher levels of mitochondrial Hsp90 and TRAP1, up-

regulate the associated signaling pathways and depend on them for

survival, (e.g. TRAP1 promotes neoplastic growth through

inhibiting succinate dehydrogenase (104)) making them

vulnerable to drugs that inhibit these molecules, normal cells have

lower expression levels of mtHsp90, thus less susceptible to drugs

targeting mtHsp90. Additionally, some targeted drugs have good

tissue distribution and pharmacokinetic properties, which allow

them to enter tumor tissues and exert their effects more easily (105).

MtHsp90 inhibitors have high affinity and specificity for cancer

cells, and the reason may lie in the unique chaperone level,

localization (69) and metabolism of cancer cells compared to

normal cells. Tumor cells rely far more on Hsp90 than normal

cells, leading to their vulnerability to Hsp90 inhibitors. TRAP1 is

even more special. It functions only in response to cellular stress

instead of maintains housekeeping protein homeostasis, and when

this stress-adaptive machinery goes dysregulated, human diseases,

such as cancer, may arise (25). TRAP1 is highly expressed in tumors

such as glioblastoma, colon, breast, prostate and lung cancers (106),

but is low or even undetectable in normal cells (64). As a result,

TRAP1 deletion was shown to have no or minimal effect on normal

development of mice (68), but can effectively inhibit growth of

tumor cells. In another study, TRAP1-depleted tumor cells

exhibited decreased cell viability, but the same negative impact of

TRAP1 depletion was not observed in normal cells (69). For

example, glutamine metabolism is dysregulated in various types

of cancers, which are termed “glutamine auxotrophic cancer”. They

became to rely mainly on glutamine-dependent metabolism for

ATP production, and the process was regulated by TRAP1.

Dharaskar et al. in a recent research demonstrated that in tumor

cells TRAP1 maintains mitochondrial integrity during glucose

deprivation and enhances cellular utilization of glutamine for

cellular energy requirements via the HIF2a-SLC1A5-GLS axis

(107). So TRAP1 inhibition will only influence these addictive

cells, posing no threats to normal cells, i.e. glutamine-

independent cells (108). Therefore, cancer cells show differential

sensitivity to Hsp90 inhibition based on drug metabolism compared

with normal cells (109).

In addition to its significant role in the development, metastasis,

and maintenance of cancer, aberrant expression of TRAP1 has been

associated with a number of diseases, including but not limited to

the following: TRAP1 overexpression protects motor neurons from

mitochondrial dysfunction and death under conditions of oxidative

stress caused by amyotrophic lateral sclerosis (ALS) (110). Ramos

Rego et al. describe the role of TRAP1 in CNS cells under

physiological and pathological conditions (111). TRAP1 regulates

hypoxia-induced cardiomyocyte apoptosis through the COXII-

mediated mitochondria-dependent apoptotic pathway (112). And

in the human renal proximal tubular epithelial cell line HK2, Lin

et al. found that TRAP1 is important for the maintenance of

mitochondrial function in HK2 cells under pathological

conditions and the activation of TRAP1 may be useful in the

treatment of renal fibrosis (113).
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4 MtHsp90 inhibitors in cancers

Compared to other Hsp90 inhibitors, many new small molecule

drugs that target TRAP1 or mitochondria show better performance

in controlling cancer cells and reducing cellular toxicity. Extensive

safety and effectiveness tests in vitro and in vivo have been

conducted, further demonstrating the potential of mtHsp90

inhibitors in cancer treatment.
4.1 Lung cancer

Lung cancer is one of the most common types of cancer and is

responsible for the highest number of cancer-related deaths

worldwide. It is a malignant tumor that starts in the cells of the

lungs and can quickly spread to other parts of the body. The non-

small cell lung cancer (NSCLC) is the most common type of lung

cancer, accounting for approximately 85% of all cases. The advent of

tyrosine kinase inhibitors (TKIs) has profoundly impacted the clinical

outcomes of patients with NSCLC that exhibit EGFR-activating

mutations, which is one of the most common contributing factors

in NSCLC (114, 115). However, despite the initial success of EGFR

TKIs, resistance eventually develops in many patients (116).

Moreover, patients with NSCLC who harbor other mutation types,

such as KRAS mutation, still lack effective treatment options and are

more susceptible to developing resistance for current therapies (117).

Drug resistance always arises from the evolutionary pressure exerted

on NSCLC cancer cells by TKIs, which leads to insensitivity and

failure in clinical treatment. Therefore, to induce this drug resistance

of TKIs, many different methods have been tried and some of them

showed a prospective result for NSCLC control, such as the combined

EGFR/Hsp90 inhibition (118).

This special advantage of mtHsp90 inhibitors has been

evaluated in many studies and demonstrated its ability to control

the development of NSCLC. Tumors collected from Gamitinib-

treated animals showed extensive apoptosis in situ and release of

cytochrome C in the cytoplasm, while organs collected from non-

tumor regions showed no significant changes in histology, no

change in overall structure, and no evidence of inflammation or

hepatic steatosis (119). In another study focused on NSCLC, G-TPP

has been shown to increase glutamine synthetase activity and

induce cell death in glutamine-dependent NSCLC cells by causing

an energy shortage, as evidenced by the phosphorylation of AMP-

activated protein kinase (AMPK) (108). Furthermore, due to the

specific mitochondrial localisation of TRAP1, TRAP1 selectivity at

the cellular level can be achieved by attaching mitochondria-

targeted portions to pan Hsp90 inhibitors. Gamitrinib-

triphenylphosphonium (Gamitrinib-TTP) and SMTIN-P01 were

demonstrated to have cytotoxic effects associated with

mitochondria l membrane depolar isa t ion in the lung

adenocarcinoma cell line H460 (5, 119). And they also had no

effect on Hsp90 client protein levels, suggesting its TRAP1

selectivity. Moreover, Hsp90 inhibitor-mitochondria targeting
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indocyanine dye conjugate (IR-PU) has high apoptosis-mediated

cytotoxicity in the NCI-H460 cancer cell line (120).

Preclinical studies in cell lines and animal models have shown

promising results for the use of mtHsp90 inhibitors in

NSCLC treatment.

These findings also suggest that combining mtHsp90 inhibitors

with other drugs targeting tumor-related pathways may be an

option to improve treatment outcomes for NSCLC patients in the

future. Recently, gamitrinib-TPP has successfully completed

preclinical evaluation and is currently in a Phase I clinical trial in

advanced cancer. This study was last updated on February 8, 2023,

and it is estimated to be completed initially in December 2028

(ClinicalTrials.gov NCT04827810) (121). Additionally, A recently

published article reveals the mechanism of TRAP1-associated

cancer treatment with CVM-1118 (foslinanib), a phosphoric ester

compound selected from 2phenyl-4-quinolone derivatives. In the

NSCLC cell line A549, CVM-1125 reduces cytosolic succinate levels

and causes destabilization of HIF-1a by targeting TRAP1, thereby

blocking its downstream signaling and ultimately inducing

mitochondrial apoptosis, inhibiting tumor cell growth, and

suppressing angiogenic mimicry (122). The drug has completed

clinical Phase I (NCT04336124) and is currently recruiting for

clinical Phase II (NCT05257590), with an expected primary

completion date of September 2025.
4.2 Prostate cancer

Prostate cancer is a prevalent cancer type among men, with over

1.4 million cases diagnosed worldwide annually, which is the second

most common solid tumor in men and the fifth cause of cancer

mortality over the world (123, 124). It originates in the prostate

gland, a small walnut-shaped organ responsible for the production

of seminal fluid in males. In its initial stages, prostate cancer

frequently manifests no symptoms, but as the cancer progresses

and metastasizes, it can cause a range of symptoms, including

urinary difficulty, dysuria, hematuria, hematospermia, and pain in

the lower back, hips, or thighs (125). Lisanti et al. (82) demonstrated

that TRAP1 increases cell proliferation, decreases apoptosis, and

promotes cell invasion in prostate cancer without changes in

mitochondrial bioenergetics through a common altered Pten +/-

context in human prostate cancer.

In the prostate tumor, the mtHsp90 homologous TRAP1 is

substantially and differentially expressed in human local and

metastatic prostate cancer. In contrast, TRAP-1 is largely

undetectable or poorly expressed in normal prostate (56). The

treatment of Gamitinib can result in the rapid and complete

killing of androgen-dependent or non-androgen-dependent

prostate cancer cell types without affecting untransformed

prostate epithelial cells. With the loss of organelle membrane

potential, release of cytochrome c, and caspase activity, gamitrinib

can induce acute mitochondrial dysfunction and then lead to

apoptosis in prostate cancer cells (126). In the study of Kang

et al., the systemic administration of gamitrinib-G4 was shown

inhibition effects on the development of tumor cells in mice with

localised and metastatic prostate cancer (127). Furthermore, they
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found no significant animal weight loss or organ toxicity was

observed in response to the continuous gamitrinib-G4 treatment,

which confirmed the safety and feasibility of the mtHsp90

inhibitors in vivo.

While the results of these preclinical studies are promising,

there is still much more research that needs to be done to fully

evaluate the potential of mtHsp90 inhibitors for the treatment of

prostate cancer in the future. One of the biggest challenges is

identifying the most appropriate patient populations and

treatment regimens for these inhibitors. Moreover, it is necessary

to carefully evaluate the potential adverse events of mtHsp90

inhibitors in humans, as there still is a lack of clinical trial results.

However, despite these challenges, the development of mtHsp90

inhibitors represents an exciting new approach to the treatment of

prostate cancer in the future. By targeting a critical protein involved

in the survival and growth of prostate cancer cells, these inhibitors

have the potential to offer a new and effective treatment option for

patients with advanced prostate cancer.
4.3 Glioblastoma

Glioblastoma is an aggressive form of brain cancer that arises

from the glial cells that support the neurons in the brain. It is the

most common primary brain tumor in adults, accounting for

approximately half of all malignant brain tumors (128). Despite

recent advances in multimodal therapy for glioblastoma, including

surgery, radiation therapy, and immunotherapy, the overall

prognosis remains poor, with a 5-year survival rate of less than

5% and a median survival of fewer than 2 years, and there is

currently no effective drug to prolong median overall survival or

control recurrence (129, 130). However, the use of mtHsp90

inhibitors may be one promising area of research in glioblastoma,

as it will influence lots of tumor-related pathways.

TRAP1 is a major chaperone of the respiratory complex of the

electron transport chain, therefore interfering with TRAP1

disintegrates oxidative phosphorylation (131). Besides, TRAP1 is

upregulated in Glioblastoma multiforme (GBM) compared with

normal brain cells. The high expression of TRAP1 can affect the cell

glycolysis in the tumor microenvironment (132). TRAP1 might take

a role in maintaining the stemness of glioblastoma stem cells.

TRAP1 protects mitochondrial integrity and prevents apoptosis

(133), thus induces the resistance to temozolomide (TMZ), the

standard chemotherapy drug for glioma. Therefore, TRAP1 is a

promising target for drug design in glioblastoma therapy (134).

Gamitrinib has been reported in glioblastoma that through

suppressing TRAP1, gamitrinib can sensitize the GBM cells to

temozolomide treatment (134). It inhibits cell proliferation and

induces apoptosis and death in 17 primary glioma cell lines, 6 TMZ-

resistant glioma cell lines, 4 neurospheres and 3 PDOs

(135).Another research showed that by inducing mtUPR and the

subsequent ROS burst, TRAP1 function was inhibited and GBM

cells were sensitised to TMZ lysis after gamitrinib treatment (136).

Moreover, in cell line–derived xenografts and patient-derived

xenografts models implanted with subcutaneous or intracranial

tumors, gamitrinib could also significantly delay tumor growth
frontiersin.org

https://doi.org/10.3389/fonc.2023.1296456
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiang et al. 10.3389/fonc.2023.1296456
and increased mouse survival. Through integrated analysis of

RNAseq and RPPA data, they revealed that gamitrinib exhibited

anti-tumor activity mainly by (i) inhibiting mitochondrial

biosynthesis, OXPHOS, and cell cycle progression, and (ii)

activating energy-sensing AMP-activated protein kinase, DNA

damage, and stress response. These preclinical findings provide

robust and convincing evidence that supports the potential

therapeutic efficacy of gamitrinib in the management and

treatment of neuroglial tumors.

Combination therapy has also been studied in glioblastoma.

Combining LXR agonist and TRAP1 inhibitor gamitrinib-TPP

resulted in increased levels of Bcl-2 family protein expression and

higher rates of cell death (136). In addition, the combined use of

both gamitrinib and histone deacetylases (HDAC1/2) inhibitors

(e.g., Romidepsin or Panobinostat) can further reduce tumor

growth in model systems of glioblastoma (137). In murine model

systems of patient-derived orthotopic xenografts of human

glioblastoma (PDX), the combination of BH3-mimetics and

gamitrinib-TPP blunted cellular proliferation in a synergistic

manner by massive activation of intrinsic apoptosis (138). These

preclinical findings indicate the potential of gamitrinib in

treating glioblastoma.
4.4 Breast cancer

Breast cancer is a complex and heterogeneous disease that

affects millions of women worldwide. Breast cancer is estimated

to be the most common cancer overall and the top 2 cause of death

in women (123). It is a type of cancer that begins in the breast tissue

and can spread to other parts of the body. Despite the relatively

favorable prognosis and advances in the treatment of breast cancer,

there is still a need for more effective and targeted therapies for

different cancer subtypes. The use of mtHsp90 inhibitors in the

treatment of breast cancer may be one of the promising ways.

Liu et al. suggested that TRAP1 expression promotes cell

proliferation and tumor growth through the TNF pathway, while

its downregulation may lead to reduced proliferation and increased

metastatic potential (139). An Aberrant upregulation of TRAP1 has

been reported in the tumorigenesis of breast cancer (61). Different

from other carsinoma, it has nothing to do with the proliferative

capacity of cancer cell (140). Instead, TRAP1 modulates

mitochondrial dynamics and function, and links these processes

to the tumorigenesis of breast cancer. When TRAP1 is

overexpressed, the mitochondria will be less fragmented and

more tubular network-shaped and the mitochondrial aerobic

respiratory will be upregulated. This suggests that TRAP1 may be

a potential target for breast cancer therapy (61).

Several mtHsp90 inhibitors have been developed and shown to

have promising activity in preclinical models of breast cancer. For

example, gamitrinib has been shown to induce apoptosis in breast

cancer cell lines and to inhibit the growth and spread of tumors in

mouse models of the disease (119). Gamitrinib-TPP, an inhibitor

targeting mtHsp90, increases cell death in MCF7 cells (141).

Similarly, SMTIN-P01 has been shown to selectively accumulate

in the mitochondria of breast cancer cells and induce cell death (5).
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However, although mtHsp90 inhibitors demonstrate significant

advantages in controlling the development of breast cancer cells

and tolerating side effects, there are still some limitations with the

tests in other types of cancer. Further research is still needed to

ensure the feasibility of these inhibitors before human testing.
4.5 Gastric cancer

In 2020, 769,000 people died from gastric cancer (GC)

worldwide (123), ranking as the fourth most common cause of

cancer-related deaths. Targeted drugs for gastric cancer have been

developed, for instance, Trastuzumab, a monoclonal antibody

against HER2. When combined with chemotherapy, it can

improve the survival rate of advanced gastric cancer, but the

resistance remains to be tackled (142).

Hsp90 plays an important role in gastric carcinogenesis by

activating downstream client proteins, including RAF, KIT, EGFR,

HER2, etc. (143).TRAP1 is an important member of mtHsp90 that

inhibits the survival of reactive oxygen species ROS, thus protecting

cells from mitochondrial apoptotic mechanisms and guaranteeing a

sustained proliferative state (144, 145).

A study by Ping Han et al. (146). showed that the mRNA and

protein expression levels of TRAP1 were significantly higher in

cancer tissues than in adjacent normal tissues. In addition, TRAP1

may regulate the malignant biology of cells by increasing the

expression of CyclinB1, CyclinD1, CyclinE, MMP-2, and VEGF,

leading to the development and progression of gastric cancer, which

is an important target for targeted therapy. H. pylori vacuolating

cytotoxin A (vacA) is involved in the regulation of apoptosis in

human gastric epithelial cells by inducing down-regulation of

TRAP1 via the P38MAPK pathway (147). In esophageal cancer

(EC) TE-1 cells, shikonin promotes apoptosis and attenuates

migration and invasion through inhibition of TRAP1 expression

and AKT/mTOR signaling, suggesting that shikonin may be a novel

drug for the treatment of EC (148).

Nevertheless, no more targeted drugs are developed for TRAP1

in gastric cancer until now, and the therapeutic field for gastric

cancer targeting mtHsp90 remains blank.
4.6 Colorectal cancer

Bowel cancer consists of large bowel cancer and small bowel

cancer. Most bowel cancer begins in the colon (149). The colon and

rectum make up the large intestine. Cancer that starts here is called

colorectal cancer (CRC). Colorectal cancer is the second and the

third most commonly occurring cancer in women and men,

respectively (150), and one of the most common causes of cancer

deaths (151).

According to the investigation, in colorectal cancer samples,

Hsp90 expression is highly increased compared with normal

epithelial tissues. Hsp90 might take a pathological role in

colorectal cancer in vivo (103). Particularly, in colorectal cancer,

over-expression of TRAP1 might encourage tumor cell invasion

(152). TRAP1 is up-regulated in ulcerative colitis associated
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colorectal cancer (102). TRAP1 has been suggested as a predictive

marker for prognosis in colorectal cancer (153), human metastatic

colorectal carcinoma (104) and ulcerative colitis-associated

colorectal cancer (102).

TRAP1 is possibly involved in the regulation of colorectal

cancer through a variety of mechanisms. TRAP1 regulates

stemness through Wnt/b-catenin pathway in human colorectal

carcinoma (154). Upregulated in 60-70% of human colorectal

cancers (CRC), TRAP1 regulates the Wnt/b-Catenin pathway and

prevents b-Catenin phosphorylation/degradation by modulating

the Wnt ligand receptors LRP5 and LRP6, which facilitates stem

cell maintenance (155). Condelli report that TRAP1 can participate

in the progression of colorectal cancer through regulating the

synthesis and ubiquitination of BRAF (156). In human colorectal

cancer cells and tissues, with high TRAP1 background, the protein

expression and phosphorylation of p70S6K is reduced (157). When

colorectal cancer is under oxygen deprivation, TRAP1 regulates the

response of cells to hypoxia and inhibits ribosome biogenesis (158).

It is involved in regulating hypoxia-induced HIF-1a stabilization

and glycolytic metabolism. Moreover, glucose transporter protein

expression, glucose uptake and lactate production were partially

impaired in TRAP1-silenced CRC cells under hypoxic conditions

(158). TRAP1 also cooperate with soluble resistance-related

calcium-binding protein (sorcin) in human colorectal carcinoma

in a survival pathway, which is responsible for inducing multi-drug

resistance (72).

For patients with Hsp90-positive rectal cancer, the application

of suitable Hsp90 inhibitors would be highly beneficial (103). Since

broad spectrum inhibitors of Hsp90 family have demonstrated

negative efficacy on TRAP1 inhibitory effect due to its poor

mitochondrial permeability, researchers have paid attention to

TRAP1 isoform-selective inhibitors. Shepherdin is the first

peptidomimetic with the ability to permeate into the

mitochondria and target TRAP1 (105). Novel compounds, for

example mitochondrial permeating SMTIN-P01 (64) and the

most selective TRAP1 inhibitor DN401 (5) are also developed.

Clinically, Hsp90 inhibitors are often combined with

chemotherapy to treat with CRC. A previous study revealed that

after combined use of AUY-922 with 5-FU, CRC cells exhibited a

lower multi-drug resistance (159). Targeting TRAP1 by gamitrinib

induces BRAF-driven apoptosis and inhibits colony formation in

CRC cells (160). Gamitrinib-TPP, inhibiting TRAP1 signaling

pathways in colon cancer, can disrupt redox homeostasis and

induce cell death. Under oxidative stress, inhibition of TRAP1 by

gamitrinib-TPP induced metabolic reprogramming and heat shock

factor 1 (HSF1)-dependent transactivation, with enhanced

induction of DNA damage and cell death (161). Combining with

BH3-mimetics, gamitrinib-TPP actives intrinsic apoptosis (138).

Moreover, combination of LXR agonists and gamitrinib-TPP

induces elevation of pro-apoptotic Bcl-2 family and Noxa in

HCT116 cells (136). However, colon cancers can induce variable

ER stress responses and ROS accumulation to resist gamitrinib-TPP

treatment. Tsai report that treatment with both an NRF2 inhibitor

and a TRAP1 inhibitor may potentially overcome colon cancer

resistance by raising cellular ROS level (162).
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Undoubtedly, targeted drugs are becoming more and more

important in the field of clinical oncology. However, considering

the cytotoxicity and induced multi-drug resistance, there is still a

long way to go before drugs targeting mtHsp90 can take a role in the

therapy of colorectal cancer.
4.7 Liver cancer

Liver cancer is the third leading cause of cancer-related deaths

worldwide. Hepatocellular carcinoma (HCC) is the most common

liver cancer, accounting for 90% of liver cancer. It is predicted that

1.3 million people could die from liver cancer in 2040. Traditional

treatment methods for liver cancer mainly include: surgery, liver

transplantation, ablation therapy, interventional therapy, radiation

therapy, and chemotherapy. The new therapies can be mainly

divided into the following three categories: targeted drug therapy,

immunotherapy, combined treatment strategies, etc. (163).

The study found that the high expression of Heat Shock

Protein-90 (Hsp90) was related to the low survival rate of

hepatocellular carcinoma (164). Experiments have found that

Hsp90 is highly expressed in liver cancer patients (165–168).

TRAP1 can regulate mitochondrial integrity, prevent oxidative

stress and inhibit cell death (169). Ramos Rego et al. examined

the TRAP1 interactome using the tandem affinity purification

system and identified 255 unique proteins, which can regulate a

variety of cellular processes, including energy metabolism,

suggesting that TRAP1 maintains mitochondrial integrity in

addition to metabolic rewiring (170).

It is possible that the expression of TRAP1 is associated with

autophagy in liver cancer; HepG2 cells exhibited the highest basal

level of autophagy and TRAP1 expression with medium invasive

ability. Moreover, hepatitis B (HBV) infection of HepG2 cells

suppressed autophagy activity and the expression of TRAP1.

Treatment with rapamycin also greatly increased autophagy in the

4 liver cancer cell lines and enhanced the expression of TRAP1 in

HepG2, Hep3B2.1-7 and Sk-hep1 cells. Therefore, TRAP1 may be

related to autophagy in liver cancer, as cell invasiveness, HBV

infection and autophagy induction have different effects on TRAP1

expression (171). Another study showed that S-nitrosylation of the

mitochondrial chaperone TRAP1 sensitises hepatocellular

carcinoma cells to succinate dehydrogenase inhibitors.

Chromosomal deletion of GSNOR leads to pathological protein S-

nitrosylation implicated in human hepatocellular carcinoma (HCC).

This study identifies and exploits a metabolic hallmark of aberrant S-

nitrosylation in HCC, demonstrate that GSNOR deficiency in

hepatocytes is characterised by mitochondrial alterations and

marked increases in levels and activity of succinate dehydrogenase

(SDH). This is dependent on selective S-nitrosylation of Cys501 in

the mitochondrial chaperone TRAP1, mediating its degradation. As

a consequence, cells and tumours which are GSNOR-deficient are

extremely sensitive to SDH inhibition, namely to a-tocopheryl
succinate, a molecular targeting SDH, which induced RIP1/

PARP1-mediated necroptosis and inhibited the growth of the

tumour (171).
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4.8 Leukemia

Leukemia refers to a set of heterogenous hematological

malignancies, including acute myeloid leukemia (AML), acute

lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML)

and chronic lymphocytic leukemia (CLL) (172). It is characterized

by the rapid growth and accumulation of abnormal, immature

white blood cells (173), which consequently interfere with the

production of normal blood cells (174). Treatment may involve

chemotherapy, radiotherapy, stem cell transplantation, targeted

therapy (175), or a combination of these approaches (176).

Studies have found that Hsp90 is overexpressed in leukemia and

its expression has been linked to poor prognosis (177). In particular,

TRAP1 is prominently upregulated in pediatric AML patients

according to bioinformatics analysis of public databases (178).

The overexpression of TRAP1 can promote neoplastic growth

through a variety of mechanisms, including inhibiting succinate

dehydrogenase (104) and reducing ROS (179). Therefore, targeting

mtHsp90 may be a potential strategy for treating leukemia.

Currently, some drugs targeting at mtHsp90 have been developed.

Gamitrinibs (GA mitochondrial matrix inhibitor) is a class of small

molecule compound that selectively inhibit the activity of mtHsp90,

including gamitrinib-G1–G4 and gamitrinib-TPP (119). Gamitrinibs

inhibit AML cells both in vitro and in vivo preclinical trials. With

systemic administration of gamitrinib-G4 to mice, the growth of

established human leukemia is inhibited, The lead compound

gamitrinib-TPP also shows significant anti-cancer activity against

hematologic malignancies (119). Recently, Mathieu et al. designed

and synthesized a series of 6BrCaQ-Cn-TPP conjugates as a novel

class of TRAP1 inhibitors, among which compound 3a exhibited

excellent antiproliferative activity in a variety of cancer cell lines,

including human leukemia cells K562 (180).

Overall, there have been several drugs that specifically inhibit

mtHsp90. These drugs have shown promising results in leukemia in

preclinical studies. However, more research is in need to fully

understand the role of these drugs in leukemia and to determine

their efficacy and safety.
4.9 Pancreatic cancer

Pancreatic cancer (PC) affects the pancreas, a glandular organ in

the abdomen behind the stomach, which plays an essential role in

digestion and regulating blood sugar levels. Pancreatic cancer

occurs when cells in the pancreas start to grow and divide

uncontrollably, forming a tumor. Pancreatic cancer can be

challenging to diagnose in its early stages, as symptoms may not

appear until it spreads to other body parts. Treatment for pancreatic

cancer may include surgery, radiation therapy, chemotherapy, or a

combination of these therapies, depending on the stage and location

of cancer. The prognosis for pancreatic cancer can be poor, mainly

if the cancer has spread to other body parts.

TRAP1 can upgrade the tumor cell death threshold and give

them resistance to antineoplastic therapy by scavenging harmful
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ROS (89, 90, 181, 182) and suppressing mitochondrial permeability

transition pore (mPTP) cyclophilin D (CypD; PPIF), which is en

essential survival mechanism (14).

Hsp90 inhibitors may enhance pancreatic cancer cells’ cytotoxic

sensitivity by causing client protein degradation (183). Lang et al.

reported that blocking Hsp90 can cause growth-inhibitory by

obstructing insulin-like growth factor-I (IGF-I) and interleukin-6

(IL-6), proangiogenic signaling cascades (184). Besides, IPI-504, an

Hsp90 inhibitor, showed an anti-proliferative effect on PC growth

(185). Moreover, Xianhua Cao introduced a combination therapy of

geldanamycin and 3BrPA that enhances efficacy and reduces dose-

limitation toxicity to treat chemotherapy-resistant PC (186, 187).

Tarik Ghadban et al. demonstrated that Hsp90 inhibitors (17-AAG

and 17-DMAG) could disrupt gemcitabine and 5- fluorouracil

signal cascades in PC, which can promote tumor cell apoptosis

(188). These studies showed promising prospects, but few clinical

trials assessed them. To date, only one phrase II trial reported that it

is not warranted to study targeting Hsp90 inhibiting drugs with

gemcitabine in PC treatment (183).

Though there is not enough targeting TRAP1 inhibitors for PC

treatment, the ATPase in NTD of other Hsp90 inhibitors have

similar structure with TRAP1, one has proved that these Hsp90

inhibitors can competitively inactive TRAP1 ATPase in vitro (189),

which can be used to develop TRAP1 selective inhibitors in future.
5 Discussion

Despite the increasing maturity of our understanding of mtHsp90,

there are still unresolved concerns that require further investigation.

Firstly, it is imperative to evaluate the potential relevance of ATPase

activity to the function of TRAP1. That’s because previous studies have

demonstrated that TRAP1, even in a catalytically inactive state, is

capable of carrying out its role and reversing mitochondrial

dysfunction (26). Secondly, as for how mtHsp90 regulate

tumorigenesis and therapy resistance of various cancers at the

molecular level, our cognition is still limited. In the future, we may

focus more on the molecular functional mechanisms and related

signally pathways with mtHsp90. Furthermore, given the lack of

clinical success observed in numerous cytosolic Hsp90 inhibitors, it

may be prudent to explore the possibility of devising a strategy to

concurrently disrupt the mtHsp90 pool in order to evaluate their

combined efficacy. MtHsp90 inhibitors have demonstrated the ability

to effectively control cancer cell growth both in vitro and in vivo. There

are several mtHsp90 inhibitors, such as gamitrinib, SMTIN-P01,

SMTIN-C10, and DN401, that have been successfully designed to

target mitochondria (Table 1) (5, 31, 119, 191). We have reviewed the

research progress of mtHSP90 inhibitors for the treatment of relevant

cancers according to the cancer types, which will be helpful for the

development of therapeutic drugs for different cancers. Meanwhile, the

synthesis and exploration of new Hsp90 drugs are also ongoing, as

explained in the reviews by Dernovsěk et al. (19) and Xie et al. (85).

Moreover, mtHsp90 inhibitors have the potential to selectively

accumulate in the mitochondria of cancer cells and limit toxicity to

normal tissues. This effectively addresses the primary challenge of other
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TABLE 1 Model systems in which mtHsp90 inhibitors were applied successfully, resulting in cell death or growth inhibition.

Cancer
type

Cancer cell line in vitro Animal models
Inhibitors
tested

Ref.

Prostate
cancer

DU145 gamitrinib (119)

22Rv1 and PC3 22Rv1 xenograf gamitrinib (90)

PC3 PC3 Superficial prostate cancer
xenograft model, PC3 Orthotopic bone
metastatic prostate cancer model

gamitrinib (126)

RM1 TRAMP mice gamitrinib (127)

PC3 gamitrinib (190)

PC3, LNCaP TRAMP mice gamitrinib (6)

22Rv1 and PC3 SMTIN-P01 (5)

PC3 DN401 (191)

PC3 PC3 xenograft Model SMTIN-C10 (31)

DU-145 CVM-1118 (122)

PC3 PC3 xenograft model pyrazolo[3,4-d]
pyrimidine
derivatives

(52)

PC3 6BrCaQ-Cn-
TPP conjugates

(180)

Lung cancer

H460, H1975 H460 lung xenograft mouse model gamitrinib (119)

H1299, H2122, H358, H2073, H460, H2347, H1975, H1395 and H2085 gamitrinib (108)

NCI-H460 gamitrinib (90)

H1299, A549, H1437, and H1650 gamitrinib (6)

NCI-H460 SMTIN-P01 (5)

NCI-H460 SMTIN-C10 (31)

A549 CVM-1118 (122)

NCI-H460 pyrazolo[3,4-d]
pyrimidine
derivatives

(52)

NCI-H460 IR-PU (120)

Breast
cancer

MDA-MB-231, MCF-7 MDA-MB-231 breast cancer xenograft
mouse model

gamitrinib (119)

MDA-MB-231 MDA-MB-231 xenograf mouse gamitrinib (90)

MCF-7 gamitrinib (6)

MDA-MB-231 SMTIN-P01 (5)

MDA-MB-231 DN401 (191)

BC MCF7 gamitrinib (160)

MDA-MB-231, MDA- MB-435, MCF-7 CVM-1118 (122)

MDA-MB-231 pyrazolo[3,4-d]
pyrimidine
derivatives

(52)

MDA-MB-231 6BrCaQ-Cn-
TPP conjugates

(180)

Glioblastoma
U87MG gamitrinib (119)

LN229 gamitrinib (190)

(Continued)
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drugs that target the entire Hsp90 in mammals. Another promising

area of research is the combination of mtHsp90 inhibitors with other

cancer therapies. Recent studies have demonstrated that mtHsp90

inhibitors can enhance the efficacy of other drugs, such as

chemotherapy, radiation therapy, and immunotherapy. Combining

these therapies could result in more effective treatment regimens with

lower toxicity and better patient outcomes. However, despite the

preclinical trials continually demonstrating the feasibility and

universal validity of mtHsp90 inhibitors, there is still a lack of
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clinical trials in humans (Table 2). Further research is needed to

ensure the feasibility of these inhibitors before human testing.

We anticipate further testing of mtHsp90 inhibitors in a

broader range of cancer types beyond those mentioned in this

review. While the efficacy of inhibitors targeting the other Hsp90

protein, such as Ganetespib (STA-9090) and luminespib (AUY922),

has been demonstrated in certain cancers, including hepatocellular

carcinoma (HCC) (192), pancreatic cancer (PC) (193), gastric

cancer (GC) (194, 195).

However, there is a lack of research on the use of mtHsp90

inhibitors in hepatocellular carcinoma, pancreatic cancer, gastric

cancer (188, 196, 197). Thus, further testing focused on mtHsp90

inhibitors may prove valuable in identifying new strategies for

controlling these cancers. In addition, some studies found that

the combination of mtHsp90 inhibitors with other available

drugs may represent a promising approach to enhance the

anticancer activity of different therapies, while minimizing

their undesirable side effects. Hence, the combination of

mtHsp90 inhibitors with other drugs may unlock their full

potential as anticancer agents and expand their use to a wider

range of cancer types.
TABLE 1 Continued

Cancer
type

Cancer cell line in vitro Animal models
Inhibitors
tested

Ref.

LN229 gamitrinib (6)

U251MG, A172, M059K, H4, Hs683, M059J, LN18, LN229, U87MG,
U118MG, U138MG, DBTRG-05MG, and T98G; D2363PXA, D645PXA,
D2159MG, and D2224MG

gamitrinib (135)

U87MG, LN229, U251 and T98G xenograft mouse model gamitrinib-tpp (138)

U87, LN229, T98G, U251, GBM12, GBM14 and GBM43 GBM12 and GBM43 xenograft
mouse model

gamitrinib (137)

LN229、U87、T98G、GBM12、GBM22 gamitrinib (136)

SHG44, U251−MG and U87−MG gamitrinib-tpp (134)

U118MG CVM-1118 (122)

Colorectal
cancer

HCT116 gamitrinib (136)

DLD1, RKO, SW48, HT29 and HCT116 gamitrinib (162)

RC HCT116, HT29, COLO320, COLO205 and CaCo2 gamitrinib (160)

HT-29, HCT-116, COLO205 CVM-1118 (122)

HCT116 Gamitrinib-TPP (161)

HT-29, HCT-116 6BrCaQ-Cn-
TPP conjugates

(180)

Leukemia

HL60 leukemia xenograft mouse model gamitrinib-tpp (191)

K562, Raji, THP-1, HL-60 HL60 leukemia xenograft mouse model gamitrinib-g4 (125)

K562 6BrCaQ-Cn-
TPP conjugates

(180)

Liver cancer
SK-HEP-1 pyrazolo[3,4-d]

pyrimidine
derivatives

(52)

Gastric
cancer

AGS vacA (147)
frontier
TABLE 2 Clinical trials for mtHSP90 inhibitors.

Drug Date Phase
Clinical
trials.gov

gamitrinib-
TTP

Estimated Primary Completion
Date: December 2028

PhaseI NCT04827810

CVM-1118

Actual Study Completion Date:
April 8, 2022

PhaseI NCT04336124

Estimated Primary Completion
Date: September 2025

PhaseII NCT05257590
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In summary, the prospective therapeutic application of

mtHsp90 inhibitors in the treatment of cancers is highly

promising. Nevertheless, further investigation is needed to

comprehensively ascertain their effectiveness and safety in

further studies.
6 Conclusion

This review presents a concise summary of the involvement of

mtHsp90 in the progression of cancer. The investigation and

development of mtHsp90 inhibitors have exhibited their capacity to

significantly revolutionize the field of cancer therapy and enhance the

overall prognosis of patients. Researchers have demonstrated

promising results in utilizing gamitrinib and other mtHsp90

inhibitors as a novel approach to combat cancer, both in vitro

animal models including prostate cancer and breast cancer, as well

as in vivo cancer cell lines. Nevertheless, it is important to recognize

that there exist numerous obstacles that require resolution. Further

investigation in this field has the potential for making breakthroughs

in the realm of cancer treatment, leading to the creation of more

secure and effective therapeutic approaches in years to come.
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