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Quantitative melanoma diagnosis
using spectral phasor analysis
of hyperspectral imaging
from label-free slices
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Introduction: Melanoma diagnosis traditionally relies on microscopic examination

of hematoxylin and eosin (H&E) slides by dermatopathologists to search for specific

architectural and cytological features. Unfortunately, no single molecular marker

exists to reliably differentiate melanoma from benign lesions such as nevi. This study

explored the potential of autofluorescent molecules within tissues to provide

molecular fingerprints indicative of degenerated melanocytes in melanoma.

Methods: Using hyperspectral imaging (HSI) and spectral phasor analysis, we

investigated autofluorescence patterns in melanoma compared to intradermal

nevi. Using UV excitation and a commercial spectral confocal microscope, we

acquired label-free HSI data from the whole-slice samples.

Results: Our findings revealed distinct spectral phasor distributions between melanoma

and intradermal nevi, with melanoma displaying a broader phasor phase distribution,

signifying a more heterogeneous autofluorescence pattern. Notably, longer wavelengths

associated with larger phases correlated with regions identified as melanoma by expert

dermatopathologists using H&E staining. Quantitative analysis of phase and modulation

histogramswithin thephasorclustersoffivemelanomas (withBreslow thicknesses ranging

from 0.5 mm to 6 mm) and five intradermal nevi consistently highlighted differences

between the two groups. We further demonstrated the potential for the discrimination of

several melanocytic lesions using center-of-mass comparisons of phase andmodulation

variables. Remarkably, modulation versus phase center of mass comparisons revealed

strong statistical significance among the groups. Additionally, we identified the molecular

endogenous markers responsible for tissue autofluorescence, including collagen, elastin,

NADH, FAD, and melanin. In melanoma, autofluorescence is characterized by a higher

phase contribution, indicating an increase in FAD and melanin in melanocyte nests. In

contrast, NADH, elastin, and collagen dominate the autofluorescence of the nevus.

Discussion: This work underscores the potential of autofluorescence and HSI-

phasor analysis as valuable tools for quantifying tissue molecular fingerprints,

thereby supporting more effective and quantitative melanoma diagnosis.

KEYWORDS

skin cancer, melanoma, fluorescence microscopy, hyperspectral imaging, phasor
analysis, spectral phasor, nevus, cancer
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Introduction

In recent decades, there has been a remarkable rise in the global

incidence of melanoma skin cancer (1–5). This alarming trend has

resulted in an elevated risk of one in 50 individuals in various

Western societies. Melanoma, classified as a malignant melanocytic

proliferation, can originate from melanocytes in the skin, mucosal

tissues, or nervous system (3). Cutaneous melanoma is the most

common form of melanoma and is characterized by aggressive

behavior, propensity for metastasis, and significant impact on the

patient’s overall prognosis, particularly when early detection proves

elusive (6–9).

When suspicious skin lesions are detected, standard clinical

practice involves removing the lesion with a small margin for

histological studies to confirm or rule out melanoma (10, 11).

Although clinical evaluation is the initial diagnostic approach for

cutaneous melanoma, the gold standard for diagnosis has

consistently relied on histological examination under a

microscope, depending on the architectural and cytological

criteria (12). This process demands the expertise of a skilled and

dependable professional and involves a notable waiting period. In

cases of suspicion, additional immunohistochemical staining is

typically performed (13). Nevertheless, dermatologists currently

lack specific markers that would enable reliable differentiation

between benign common nevi and malignant melanocytic lesions,

such as melanomas. Consequently, false-positive and undetected

malignant lesions showed notable prevalence (12, 14). The new

diagnostic criteria for melanocytic lesions introduce a distinct

category for lesions that defy classification, aiming to address this

challenge (15). Far from this being a solution, there is an urgent

need for measurable and objective criteria to assist dermatologists in

the melanoma diagnostic (12, 16, 17). Hence, we propose the use of

hyperspectral imaging and phasor plot analysis as valuable tools to

address this problem. This approach enables the evaluation of

structural characteristics and allows for the identification of

biochemical fingerprints, all in a label-free manner, through tissue

autofluorescence fingerprinting (18).

Autofluorescence offers a non-invasive means to monitor

metabolic shifts within cells, avoiding the necessity of applying

extrinsic fluorophores (19–23). Flavin adenine dinucleotide in its

oxidized form (FAD+) and nicotinamide adenine dinucleotide in its

reduced form (NADH) are natural fluorophores present in human

cells (24). The combination of NADH and FAD+ fluorescence

intensity and lifetime describes the shifts in cellular energy

metabolism between oxidative phosphorylation and glycolysis

(25–27). The application of NADH, being well studied for

fluorescence lifetime imaging microscopy (FLIM), combined with

FAD+ as an endogenous marker, opens the possibility of

distinguishing cell populations such as in cancer and

neurodegenerative diseases (24, 28–30). The most abundant

studies have been performed on live cell imaging with time-

resolved fluorescence (lifetime measurement), including one study

by Seidenari et al. conducted on melanocytic lesions (31). While the

translation of the metabolic significance of autofluorescence from in

vivo to fixed samples is currently limited (32, 33), its potential for
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the development of novel label-free imaging techniques as

molecular fingerprints for medical applications, particularly in the

field of oncology, holds significant promise (23).

Studies focusing on the skin have revealed the presence of

additional autofluorescent molecules including melanin and elastin

(34–36). Various investigations have examined their presence

within melanocytic lesions using diverse imaging techniques,

primarily morphological assessments (37). The main endogenous

fluorosphore of melanocytes is melanin, a pigment synthesized by

melanocytes inside special intracellular structures called

melanosomes. This pigment has different forms, mainly

eumelanin and pheomelanin (38). Melanin synthesis favors

pheomelanin in malignant melanocytic lesions. This shift has

been associated with increased fluorescence emission in

melanomas in the red spectrum, and has been explored by other

authors as a potential indicator of malignancy in vivo (39–41).

However, studies investigating the autofluorescent properties in

fixed tissues have not yet been conducted in melanocytic lesions.

Hyperspectral imaging (HSI) is a powerful tool for studying

autofluorescence because of its unique ability to capture the

spectrum of single fluorophores (42–44). In contrast to more

complex techniques, such as FLIM, it is simple to use and

available in almost all commercial microscopes in the market

(45). Nonetheless, data analysis from autofluorescence could be

challenging and knowledge-demanding when proposing a proper

unmixing approach (43). Spectral phasor analysis for HSI is a novel

tool that can be used to study tissue autofluorescence owing to its

model-free approach (23, 46). Phasor analysis allows spectrum

transformation to a complex number, the G and S coordinates (x

and y, respectively) (45, 47). This transformation enables the

differentiation of autofluorescent molecules according to their

emission spectrum characteristics, namely, the center of mass and

bandwidth (45). Owing to its vector properties, it is possible to

identify specific phasor fingerprints in the phasor plot for each

autofluorescent molecule, and linear combination rules enable the

identification and quantification of the component fraction in a

simple manner (23, 45). Moreover, the principle of reciprocity can

be used to generate images of skin tissues regarding the molecular

fingerprints identified in the phasor plot (48). All these properties

point to HSI-phasor analysis as an excellent tool to provide new

parameters that can support dermatologists in identifying

molecular markers for melanoma diagnosis.

Our study aimed to recognize autofluorescence fingerprints

using HSI and phasor analysis in melanocytic lesions that can

enable nevi and melanoma differentiation. First, we developed an

HSI acquisition pipeline that enables label-free whole-slide imaging

using a commercial microscope. Using phasor analysis of HSI data,

we compared melanoma and nevus molecular fingerprints and

identified the key features at the phasor to quantify the

differences. Using skin molecular markers, we confirmed the

identity of the autofluorescent fingerprints shown in the nevi and

melanomas in the phasor plot. Finally, we performed a statistical

analysis to compare the numbers obtained by the molecular

signatures in the phasor plot (modulation and phase),

underscoring the significance and potential of our new approach.
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Materials and methods

Dataset collection

Skin tissue sample
Samples were provided by the Unidad Academica de

Dermatologıá at the Hospital de Clıńicas “Dr. Manuel Quintela”

in Montevideo-Uruguay. Benign and malignant melanocytic lesions

of patients of any age, females and males, biopsied between 2015

and 2018, were selected. Since nevi biopsies were considerably more

frequent, we selected 10 nevi per year. Either junctional, compound,

or intradermal nevi were included in cases of benign lesions. The

exclusion criteria were the presence of dysplasia in the case of nevi

and extensive regression (>25%) in situ melanomas, melanomas

arising within a nevus, and amelanotic melanomas. A number was

assigned for each lesion from each dataset, and five benign lesions

and five malignant lesions were randomly selected using an online

randomizer selector. Five melanomas were included, two of which

were ulcerated with a mean Breslow thickness of 1.4 ± 2.22. Five

nevi were included and their histological subtypes are listed in

Table 1. In all cases, histological diagnosis was established by an

experienced dermatopathologist, members of the Unidad

Academica de Dermatologıá at the Hospital de Clıńicas “Dr.

Manuel Quintela,” and then supervised by one of the

Assistant Professors.

Skin biomolecular components
The molecular pure components used for hyperspectral

fingerprint identification were collagen from human placenta

Type IV (C7521), collagen from human placenta Type III

(C4407), collagen from chicken sternal cartilage Type II (C9301),

collagen from rat tail Type I (C7661), elastin (E7402) from human

skin, and synthetic melanin (M8631). All samples were acquired

from Sigma-Aldrich. b-Nicotinamide adenine dinucleotide

(NADH) disodium salt, approximately 100% (N8129); and grade

I, Roche Diagnostics. Flavin adenine dinucleotide (FAD+) disodium

salt hydrate 95% (F6625), from Sigma Aldrich.
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Samples preparation

Skin biomolecular components preparations
Approximately 1 mM of NADH or FAD was prepared in

phosphate buffer (PBS), 100 mM pH 7.4. Melanin is difficult to

prepare in several solvents; therefore, powdered melanin was

prepared in 1N ammonium hydroxide, which enabled us to reach

a final concentration of 10 mg/mL (49). Elastin was solubilized in

Tris buffer 0.05 M pH 8.8 to obtain a 1 mg/mL solution. Collagen

was prepared according to the procedure described by Aguilar et al.

(50). Briefly, 1 mg/mL collagen stocks were prepared in 0.5M acetic

acid. To generate the collagen matrix, 200 μL of stock solution was

mixed with 10 μL of 10× PBS containing phenol red as a pH

indicator. Using NaOH 0.5M, collagen was titrated until the red

phenol turned pink. After alkaline pH, the dish containing the

collagen was incubated at 37°C for 1 h to enable gelation.

Skin tissues
The nevus and melanoma tissues were stored in paraffin blocks.

Consecutive 5 mm-thick sections were prepared for label-free

analysis and hematoxylin–eosin (H&E) staining. For the label-free

samples, the sections were placed on slides and heated to 60°C for

30 min in an oven to adhere to the glass. Subsequently, a drop of

Canada Balsam from Biopack was applied to the sample to attach a

coverslip and match the refractive index (51). For H&E staining, the

sections were initially removed from the oven and cooled with

xylene to remove paraffin. The samples were then returned to the

oven for 30 min. Then, xylene was removed and the sections were

rehydrated. Rehydration involved two dips in isopropyl alcohol,

followed by two dips in 95% alcohol, and finally a dip in distilled

water. Next, the sections were incubated in hematoxylin (Biopack)

for 8 min, followed by a 10-minute water wash. Subsequently, the

sections were incubated in yellow eosin (Biopack) for 5 min, and

excess dye was washed out under running water. To complete the

staining process, the sections were dehydrated with increasing

concentrations of ethyl alcohol (up to 95%), followed by two dips

in isopropyl alcohol. The slides were washed once with xylene and

then sealed with Canada Balsam (Biopack).

Data acquisition
Label-free hyperspectral images from the nevus and melanoma

slides were acquired using an LSM 880 laser confocal microscope

(Zeiss). We used a 20× 0.5NA EC Plan-Neofluar air objective from

Zeiss. Detection was performed using a Gallium-Arsenide

Phosphodine (GaAsP) photomultiplier tube (PMT) set with a

gain between 520 V and 550 V, collecting a spectral range from

423 nm to 723 nm in 30 steps of 10 nm each. A 405 nm laser was

used for illumination, and a −405 dichroic mirror was included in

the optical path to reflect the excitation light. The image size used

was 1,024 × 1,024 pixels, with a pixel size of 668 nm × 668 nm, using

an 8-bit dynamic range. The pixel dwell-time was 2.86 ms, and an

average of two lines was used. An overlap of 5% was set for tiling

to ensure data acquisition at the borders. Ten slices from patients

were imaged, five intradermal nevus and five invasive melanomas.
TABLE 1 Number of skin samples included and their histological diagnosis.

Melanocytic Nevus Invasive Melanoma

Lesion Histological subtype Lesion
Breslow
Thickness

IN1 Intradermal IM1 0.9 mm

IN2 Intradermal IM2 1.4 mm

IN3 Intradermal IM3 6.0 mm

IN4 Intradermal IM4 2.5 mm

IN5 Intradermal IM5 0.5 mm
Histological subtype is included for melanocytic nevi, and Breslow thickness is included for
melanomas. IN, intradermal nevus; IM, for invasive melanoma.
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We used a 63× 1.4NA oil immersion objective EC Plan-

Apochromat from Zeiss for increased resolution of HSI images of

melanocytic nests. The microscope configuration (excitation

wavelength, laser power, spectral range, and PMT gain) was the

same as that before. The pixel size used for the ×63 objective was

132 × 132 nm, and the pixel dwell time was 0.51 ms, with four times

line average. Hematoxylin–eosin images were acquired with a Motic

Easyscan One commercial scanner, using a ×20 objective and 0.52

mm/pixel resolution.

Spectral phasor analysis
The phasor transform was used for HSI image analysis. Given

an HSI stack, each pixel contains an intensity emission spectrum

I(l) as a function of wavelength (l) (44, 52). The phasor transforms

turn I(l) into a phasor, which is a complex number that represents

a sinusoidal function with a related phase and modulation. This

representation can be plotted as a single point in the plane with an

associated pair of Cartesian coordinates, G and S, as defined in

Equations (1) and (2).

x   =  G(l)   =  

Z lmax

lmin
I(l)   cos(

2pn(l − lmin)
lmax  −   lmin

)   dl
Z lmax

lmin
I(l)   dl

(1)

y   =   S(l)   =  

Z lmax

lmin
I(l)   sin(

2pn(l − lmin)
lmax   −   lmin

)   dl
Z lmax

lmin
I(l)   dl

(2)

Where I(l) is the intensity at each spectrum step, l (min) and l
(max) the beginning and the end of the spectrum, and “n” is the

number of harmonic, in our case, 1. The phasor transform satisfies

several properties inherited from Fourier Transform. Three are

fundamental for our spectral phasor analysis: the uniqueness

property, linear combination, and reciprocity principle (see

Figure 1) (47). The uniqueness property refers to the fact that, for

every spectrum, there is a unique transform and a pair of G and S in

the spectral phasor plot (Figure 1B). This property is fundamental

for two reasons: 1) it allows one to characterize and analyze every

spectrum by analyzing their pair of G and S; 2) it allows one to select

regions in the phasor plot according to their spectral shape because

since similar spectra have their points close to each other. The linear

combination property means that by having two components, any

combination will fall on the line that joins the pure components (see

Figure 1B). A second characteristic of this property enables the

quantification of each component’s fraction as the distance between

the position in the phasor plot from the mixture of two components

and the pure components. The reciprocity principle enables the

selection of regions of interest (ROI) at the spectral phasor and

highlights the pixels with this selector (cursors) back to the original

image (see Figure 2A). A pseudocolor image can be created using

the phase shift of each pixel (angular shift). It is assigned a color

from 0° to 180°, where 0 corresponds to red and 360 corresponds to

violet. The segmentation of an ROI in the original image also

provides a secondary phasor only for selected pixels. The method
Frontiers in Oncology 04
described above allows us to analyze, segment, and characterize

regions of the sample without the need to know a priori the

spectroscopic components. Hence, this is a label- and model-

free approach.

The modulation (M) is defined as S/G and the phase (alpha) is

the arctangent of (G/S). These two variables contain inherent

information about the spectrum center of mass and full width at

half maximum (FWHM), as shown in Figure 1B. The modulation

retains the spectrum width and the phase retains the spectrum

center of mass. The broader the spectrum, the closer to the (0,0)

phasor position will appear. While the spectrum is redder, its

position will appear further in the counterrevolution starting

from (1,0).

All phasor transforms, denoising, tailing, and phasor-related

calculations were performed using Python-based code developed by

our group. The script and materials are provided in reference (53).

We used the k-means algorithm from the cluster module of the

Scikit Learn Python library to obtain the cluster center of mass in

the phasor plot. In our case, the sample considers the entire cluster

(phasor plot) and computes the centroid, thus minimizing the

inertia of the distribution (54). The implementation of these

methods is presented in (53).
Statistical analysis

The nevus and melanoma slices were compared by measuring

the center of mass for the modulation and phase histograms. A

dermatopathologist defined the region of interest for quantitative

comparison. The center of mass of the phase and modulation

histograms were calculated using Equation (3), where f (x)

corresponds to the data distribution.

CM = o   f (x)   x

o   f (x)
  (3)

A T-test was performed to evaluate the relationship between the

modulation and phase groups for nevus and melanomas. A p-value

of 0.01 was considered the threshold to refuse or not the null

hypothesis. It was calculated in Python 3.10, using the ttest_ind

function of the scipy.stats module. A graph of modulation vs. phase

was constructed to cluster the data. A confidence ellipse was then

obtained for the distribution of melanomas and nevi. Three

confidence ellipses were built considering a standard deviation of

s = 68.5%, 2s = 95.5%, and 3s = 99.7%, corresponding to the

standard deviation used to build the ellipses’ axis.
Results

Figure 3A shows the hematoxylin–eosin images of an

intradermal nevus and an invasive melanoma (Figure 3E), which

contain the injured regions formed by melanocytes. The label-free

HSI images in Figures 3B, F show the entire sample; the scale bars

represent 500  mm. The tiles of the lambda stacks form these

images. Figures 3C, G show the phasor plots obtained for both
frontiersin.org
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samples. A color scale was created to illustrate the phase changes in

the phasor distribution, ranging from 45° to 180°, corresponding to

460 nm to 573 nm, related to the spectral center of mass. The

spectral phasor showed differential spectral components compared

to the nevus and melanoma. Note that the phasor-plot distribution

from the nevus presented two main trajectories, whose components

ranged from 75° to 135°. The calibration od the wavelength to the

phase is provided in Figure S1.

However, the phasor distribution obtained for melanoma

(Figure 3G) is different from that of the nevus. The phase range

starts from 45° to 180°, indicating a redder component on its

phasor, corresponding to a fluorescent emitter with a wavelength

beyond 573 nm. The pseudocolor image obtained by the phase
Frontiers in Oncology 05
(Figures 3D, H) shows a bluish region of interest in melanoma slides

that coincides with the H&E purple region identified as the lesion by

an expert dermatologist.

An analysis of the phase and modulation variables from the

region of injury for both cases is shown in Figure 4. The phasor plot

contains only the spectral components for the region of interest

identified in Figures 4A, B. Notice that both phasor distributions are

significantly different, while Figure 4C presents the main component

at 90° (498 nm), and the melanoma distribution was widely

distributed, ranging from 90° to almost 180° (498 nm to 573 nm).

The modulation and phase histograms for each distribution are

plotted separately (Figures 4E, F). The phase and modulation

quantification for the ROI showed that the melanoma presents a
B

A

FIGURE 1

Phasor analysis pipeline. Images of increasing lambda steps from the HSI stack. If the image dimension is d = m� n, where d is a positive integer,
then there are d spectra in the HSI stack. After we apply the phasor transform (represented by T ), there are d pairs of coordinates (G,  S) in the
phasor plot. In (A), it is possible to see that a single pixel in the lambda stack has an associated spectrum, which is transformed and represented in
the phasor. The phasor plot allows us to identify how fluorescent components are distributed over the phasor space. Similar spectra have (G,  S)
coordinates close to each other, whereas different spectra are separated. Using the reciprocity principle, it is possible to select regions of interest
(ROI) in the phasor plot, such as the blue circle, and color the related pixels of the ROI over a gray image. Selecting an ROI in the gray image also
enables us to obtain phasor coordinates for this ROI. Each (G,  S) pair has an associated pair of phase and modulation (ϴ, ϱ); based on that, we can
create a color scale and obtain a pseudocolor image. An example is shown in the figure on the right side, where we implemented a color scale
where low phases correspond to green and high phases correspond to blue. (B) Simulation of spectral phasor properties (changes in the spectrum
center of mass, phase shift, spectrum width (modulation), and linear combination).
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higher phase component that does not exist in the nevus. Figure 5 was

constructed using the samples listed in Table 1. Note that the images

for all sample studies can be found in Figures S2–S11 in the

upplementary material. Half of the patients were diagnosed with
Frontiers in Oncology 06
intradermal nevus, and the other half with invasive melanoma.

Figures 5A, B showed more heterogeneous results than those

described previously. To quantify the many samples, we calculated

the center of mass for both magnitudes (modulation and phase
FIGURE 3

Comparison of nevus and melanoma anatomo-pathology using H&E and label-free HIS-phasor plots. (A, E) Hematoxylin–eosin images of the nevus
and invasive melanoma samples. (B, F) Label-free average intensity of HSI obtained from the previous two tissue blocks (A, E, respectively).
(C, G) Phasor plots obtained from the HSI images in (B, F) respectively. The inserted color scale represents the color scheme used to generate a
pseudocolor image based on the phase of each pixel. (D, H) Pseudocolor images obtained by using the color scale shown in (C, G). Scale bars
represent 500 mm.
FIGURE 2

Pipeline for the evaluation of skin melanocytic lesions. (A) A minimal margin was used to excise the pigmented lesion, and then the sample was split
using the “loaf bread” technique for the traditional and new HSI protocols. The black dashed lines represent the line of lesion excision, and the red
dashed lines are the “loaf bread” cut. (B) The current standardized diagnosis of melanoma is based on histological studies aided by
immunohistochemistry. (C) We propose a novel approach based on label-free slices and HSI images using spectral phasor analysis. H&E,
hematoxylin and eosin; IHQ, Immunohistochemistry; HSI, Hyperspectral imaging.
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histograms) (Figures 5C, D). The nevi group had an average and

standard deviation of 0.47 ± 0.03 for the modulation and 108 ± 6 for

the phase. In contrast, the melanoma group had a modulation of 0.58

± 0.02 and 88 ± 3 for the phase. The p-value for the modulation group

was 0.0003, whereas that for the phase group was 0.0008. Finally, we

generated a scatter plot combining both magnitudes to generate a

histogram comparison of these numbers (Figure 5E).

The confidence ellipses in E have a standard deviation of s =

68.5%, 2s = 95.5% and 3s = 99.7%. There is a solid difference

between the nevus and melanoma phasor components. It would be

interesting to compare the phasor fingerprints of nevus and

melanoma with those of the normal skin. However, using normal

skin for this purpose is ethically unjustifiable. We analyzed “healthy”

ROIs at the nevus slices to characterize their autofluorescence

fingerprints to overcome this limitation. We analyzed ROIs from

different nevi and calculated each sample’s modulation and phase

histograms (Figures S12–S15). The results indficated a similar phase

and modulation distribution in the nevus tissue.
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We obtained the HSI of the autofluorescent molecules described

in the skin to identify the autofluorescent component responsible

for the nevus and melanoma phasor plot clusters. Figure 6 shows

the phasor position for the most abundant fluorophores in the skin,

namely collagen, elastin, NADH, FAD, and melanin. Note that

collagens have similar spectral fingerprints (and are bluer

fluorescence), and NADH and elastin are greener. The two

autofluorescent molecules responsible for the redder fingerprint

are FAD+ and melanin. Interestingly, all autofluorescent

biomolecules studied showed unique fingerprints that could be

identified in the nevus and melanoma samples.

Figure 7 shows high-resolution images of the nevus and

melanoma nests. To identify autofluorescence in nevus and

melanoma nests, the centroid of the pure components obtained in

Figure 6 was overlaid with the phasor distribution from the tissue.

Note that both clusters overlap with the species studies. NADH,

collagen, and elastin dominate the nevus fluorescence fingerprints.

In contrast, melanoma showed strong linear combinations of FAD
B

C

D

E
A

FIGURE 5

Study of the modulation and phase distribution obtained from the patients in Table 1 with intradermal nevi or invasive melanomas. (A, B) Histograms of
modulation and phase, respectively, for nevus and melanomas. (C, D) present the center of mass of each distribution. Those groups are statistically
described with the average and standard deviation as follows: the nevi group has x = 0.47 ± 0.03 for the modulation and x = 108 ± 6 for the phase. In
comparison, the melanoma group has x = 0.58 ± 0.02 for the modulation and x = 88 ± 3 for the phase. A p = 0.0003 was obtained for the modulation
group, while p = 0.0008 was obtained for the phase group. (E) presents two groups of data obtained when plotting the modulation vs. phase. It also has
the confidence ellipses obtained for each group, built with a standard deviation of s = 68.5%, 2s = 95.5%, and 3s = 99.7% each one.
E F

FIGURE 4

Analysis of phasor distribution in the region of interest associated with injuries. (A, B) Regions segmented where melanocytic injuries were present.
An expert dermatologist identified the regions of interest. (C, D) Phasor plots corresponding to these regions. (E) shows the modulation distribution
for the nevus and melanoma regions, whereas (F) represents the distribution of the phase.
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and melanin. However, the redder component in melanoma

remains elusive to the molecules studied here. The histograms for

phase and modulation of the nests showed substantial differences

between the nevus and melanoma (Figures 7G, H).
Discussion

Melanoma is a malignant neoplasm that originates from

melanocytes (15). If an early diagnosis is missed, its aggressiveness

and metastatic potential result in a highmortality rate (37). Diagnosis

relies on conventional methods, primarily histopathology, based on

architectural and cytological criteria (2). Recent studies have revealed

an important issue in melanoma diagnosis owing to discord among

experts, with up to a 25% difference in opinion when distinguishing

between melanoma and nevi through histological examination (55).

In suspicious cases, additional immunohistochemical stains are

typically requested; nonetheless, no single method currently can

confirm or rule out melanoma. Therefore, there is a particular

interest among researchers in developing new diagnostic tools to

assess this diagnostic problem and define the boundaries between

melanomas and nevi (16, 56).

The use of novel techniques, such as multiphoton and FLIM,

demonstrates enormous potential for the quantitative assessment of

skin lesions (31). However, these technologies are expensive and require

expertise to realize their full potential. This study aims to offer a new

toolkit that relies on commercial microscopes using single-photon

excitation and a method for analysis that does not require an a priori

assumption as to which endogenous fluorescent molecules are present

in the tissue. Hyperspectral imaging using confocal microscopes has

been widely implemented inmany commercial brands. Therefore, it is a

great tool for approaching autofluorescence from unlabeled skin slides.

Spectral phasor analysis of HSI data from melanoma regions

demonstrated the occurrence of a molecular fingerprint due to the

specific biochemical composition of degenerated melanocytes

(Figures 3, 4). The use of autofluorescence fingerprints has limited

relations with the metabolic states of fresh tissue, and different

fixation procedures can modify the outcome obtained by the
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phasor plot (32, 33). However, there was value in the remaining

tissue autofluorescence to discriminate between nevus and melanoma

(Figure 5E). The evaluation of melanoma versus nevus phasor

modulation and phase center of mass showed a 95.5% confidence

interval when these two groups were compared. The molecular

fingerprint identified in each group showed robust characteristics,

such as increasing phase (longer wavelength fluorescence molecules)

and smaller modulation, indicating a strong influence of redder

components partially identified as FAD and Melanin (Figures 4, 7).

However, melanoma tissue has a strong shift to longer wavelengths

that move the phasor trajectory further than melanin used as a

standard (Figure 7E). One possible explanation is the existence of

different amounts of eumelanin and pheomelanin, which have

different fluorescence lifetimes and spectral emissions (57–59).

These considerations point to eumelanin as the longer-wavelength

component with an approximately broad maximum at 640 to 680

nm, and pheomelanin emission peaks around 615 nm to 625 nm

(57). A previous study by Fereidouni et al. described the value of

spectral information to identify key molecular fingerprints within the

skin (44). However, multiphoton excitation was used in this case,

which, while more appropriate for broad excitation of

autofluorescence, limits the adoption of this technology in clinical

environments. UV excitation is limited by its penetration and

capability to excite a wide range of autofluorescent molecules (60).

Our rationale for the use of 405 nm excitation was to answer a simple

question. Was there any value in the autofluorescence fingerprints

from tissue at this excitation to develop a method that can be adopted

by any user with access to a regular confocal microscope with

standard laser lines? The 405 nm excitation is a valuable

wavelength for the excitation of most endogenous autofluorescent

molecules and does not require expensive lasers such as multiphoton

systems. The broad phasor cluster obtained in our melanocytic

samples supports the value of 405 nm excitation, showing its

capability to separate melanoma and nevus (Figure 3). Other

single-photon excitation lines, such as 440 or 488, can be added to

provide novel phasor fingerprints with longer acquisition times.

To compare fingerprints obtained from nevus and melanoma

with normal skin, phasor plots from “healthy ROIs” in the nevus
BA

FIGURE 6

Spectral phasor fingerprints for autofluorescent biomolecules in the skin. (A) Pure component centroid obtained with the k-means algorithm using
HSI data acquired experimentally from independent samples listed in (B). (B) Average emission spectrum for collagen I, II, III, IV, elastin, NADH, FAD,
and melanin.
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slices were analyzed (see Figures S12–S15). ROI selection was

performed by our anatomopathology experts. Interestingly, the

fingerprints are similar to those found in the nevus, confirming

the distinctive fingerprint of malignant melanocytes in melanoma

versus benign nevus. The same experiment cannot be extrapolated

to melanoma lesions because of dermal modification caused by the

tissue during melanoma progression.

Phasor differences between melanoma and nevus also showed a

substantial contribution from NADH and FAD fluorescence. The

FAD/NADH ratio has been used as a metabolic index in in vivo

experiments (61). In our fixed tissue, the metabolic significance of this

ratio was poor; nonetheless, this fingerprint can reflect a picture of the

pre-fixation melanoma metabolic cellular state. Interestingly,

malignant and dysplastic lesions display differences in histological

appearance and biological characteristics (62). Carcinogenesis

involves a dedifferentiation and transformation process that enables

the proliferation of genetically unstable cells. Even primary

melanomas exhibit extreme heterogeneity in cell subsets and

mutational profiles (63, 64). Melanoma metabolic rewiring and

phenotype-switching are interconnected events that dictate the

tumor microenvironment distribution of endogenous molecules,
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such as fluorophores (64). This literature supports the idea of a

melanoma autofluorescence fingerprint judged by its spectral phasor

plot signature, which can relate to the metabolic shift in the lesion.

Hyperspectral imaging and phasor analysis of the tissues examined

(10 melanocytic lesions, five of which were benign and five were

malignant) provided positive values for quantitative assessment of the

correlative evaluation of the phase and modulation center of mass

(Figure 5E). Despite the relatively small sample size, this study

identified a robust statistically significant difference in modulation

and phase between both groups, indicating that this analysis is a

potentially reliable indicator for differentiating between malignant and

benign melanocytic proliferation. The most remarkable feature of this

approach is the opportunity to support dermatopathologists with

numbers based on molecular fingerprints, which does not require

individual training, such as in H&E histopathological analysis.

Introducing the HSI-phasor-based melanoma diagnosis

(Figure 2C) into the dermatologist workflow (Figure 2B) should

be feasible because of the low complexity of the instrumentation

and analysis required. In addition, preparing label-free paired slides

for regular H&E staining will not affect the standard dermatology

procedures but will add a new quantitative layer to the
B
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G H
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FIGURE 7

Nests of melanocytes were imaged at ×63 from a nevus and an invasive melanoma. It shows the phasor analysis for these regions and the
distribution of the previously obtained pure components. (A, D) Images show the label-free average intensity image of the HSI stack; it can
appreciate nests of benign and atypical melanocytes, respectively. Images (B, E) show the corresponding phasor plot and the centroid of each
molecular fingerprint overlaid. Scale bars are 50μm. (C, F) present pseudocolor images of the nevus and melanoma, respectively. (G) shows the
modulation histogram, and (H) shows the phase histogram for both samples.
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anatomopathology to support their sample report. The lack of laser

scanning microscopy in hospitals or dermatology clinics could be a

limitation. However, this issue can be overcome by preparing

samples to be sent to a confocal microscope center where HSI

can be performed. Phasor plot analysis may be an obstacle to

adopting our approach in the dermatology department.

Nevertheless, we believe that the experience gained from remote

digital pathology diagnosis (65) can be applied to this approach.

Our straightforward analysis can be performed remotely, providing

results using simple and quantitative numbers. This approach

avoids the need for complex interpretations that require in-house

expertise in spectroscopy and phasor analyses.

Our method has some technical limitations that need to be

addressed. Owing to the large average size of skin lesions, using a

laser scanning microscope requires tiling to cover the whole slice.

Spectral collection can extend the imaging time by the number of

spectral steps defined if the spectral configuration of the microscope

is used. As in our case, the spectrum was collected in 30 steps,

increasing the time needed for the complete x/y/lambda acquisition

by 30 times. However, spectral detectors with an array or spectral

camera can speed up acquisition time. To reduce the acquisition

time, we rely on averaging twice the spectrum in each pixel and

using the median filter at the phasor to decrease phasor noise and

improve phasor cluster distribution. The average time for HSI in

our samples was around 2 h–3 h; however, considering that there is

no urgency for melanoma anatomo-pathology diagnosis, as there is

in carcinoma assessment during Mohs surgery, this approach

matches the average time for H&E staining. In contrast, the HSI

acquisition and phasor analysis are fully automated and can be run

in parallel with H&E preparation and observation.
Conclusion

Our results demonstrate the value of HSI in combination with

spectral phasor analysis for label-free identification and quantification

of melanomas. This technology can support dermatologists in skin

diagnosis, in addition to the traditional H&E quantitative information

from molecular autofluorescent fingerprints in melanocytes from

melanoma. Further research is needed to understand their value in

the stratification of different melanoma and nevi lesions.
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