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Lung cancer is highly aggressive, which has a high mortality rate. Major types

encompass lung adenocarcinoma, lung squamous cell carcinoma, lung

adenosquamous carcinoma, small cell carcinoma, and large cell carcinoma. Lung

adenocarcinoma and lung squamous cell carcinoma together account for more

than 80% of cases. Diverse subtypes demand distinct treatment approaches. The

application of precision medicine necessitates prompt and accurate evaluation of

treatment effectiveness, contributing to the improvement of treatment strategies

and outcomes. Medical imaging is crucial in the diagnosis and management of lung

cancer, with techniques such as fluoroscopy, computed radiography (CR), digital

radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI),

positron emission tomography (PET)/CT, and PET/MRI being essential tools. The

surge of radiomics in recent times offers fresh promise for cancer diagnosis and

treatment. In particular, PET/CT and PET/MRI radiomics, extensively studied in lung

cancer research, have made advancements in diagnosing the disease, evaluating

metastasis, predicting molecular subtypes, and forecasting patient prognosis. While

conventional imaging methods continue to play a primary role in diagnosis and

assessment, PET/CT and PET/MRI radiomics simultaneously provide detailed

morphological and functional information. This has significant clinical potential

value, offering advantages for lung cancer diagnosis and treatment. Hence, this

manuscript provides a review of the latest developments in PET-related radiomics

for lung cancer.

KEYWORDS

lung cancer, radiomics, positron emission tomography/magnetic resonance imaging,
positron emission tomography/computed tomography, review
1 Introduction
Lung cancer is a highly aggressive form of tumors. According to the Global Cancer

Report 2020, there were 19.29 million new cancer cases worldwide, with lung cancer

accounting for 2.2 million (11.4%), ranking it second only to breast cancer (11.7%). In

2020, cancer-related deaths fatalities 9.96 million, of which 1.8 million (18%) were
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attributed to lung cancer, making it a leading cause of cancer-

related mortality. Particularly affecting men, lung cancer holds the

top position in both incidence and mortality among male patients

(1, 2). The 5-year survival rates after surgery vary significantly

among lung cancer patients at different stages. Stage IIIA~IVA

patients have survival rates as low as 10%~36%, whereas stage I

patients may achieve survival rates ranging from 77% to 92% (3).

Consequently, early detection emerges as the crucial factor in

reducing patient mortality (1–4). Although there has been some

progress in lung cancer survival rates in recent decades, the overall

5-year survival rate remains low, typically ranging between 10% and

20% (2). Personalized treatment represents the pivotal approach to

enhancing survival rates and countering the currently bleak

prognosis. The crux of personalized medicine lies in the early

diagnosis and staging of lung cancer, alongside predicting its

pathological subtypes. Despite needle biopsy retaining its status as

the diagnostic gold standard for lung cancer, its invasiveness, low

reproducibility, potential for false negative outcomes, and risk of

complications have spurred the need for improved methods (5). In

this regard, medical imaging technology, particularly low-dose

computed tomography (CT), was recommended for screening

high-risk lung cancer populations by the 2011 National Lung

Screening Trial and the 2020 Dutch-Belgian Lung Cancer

Screening Trial. This approach aims to elevate early diagnosis

rates and mitigate mortality (6). However, the use of low-dose CT

screening carries the risk of false positive results, erroneously

identifying non-cancerous pulmonary nodules as lung cancer,

thus complicating clinical diagnoses. In recent years, imaging

radiomics has gained prominence, especially the application of

PET-related techniques like positron emission tomography

(PET)/CT and PET/magnetic resonance imaging (MRI)

radiomics. These techniques not only integrate insights into

functional metabolism and anatomical structure insights but also

enable facilitate comprehensive, single-session examinations. This

proves invaluable for various aspects of lung cancer, including

diagnosis, treatment, prediction of pathological subtypes,

evaluation of systemic metastasis evaluation, disease staging, and

assessment of treatment efficacy assessment. In light of this, the

present manuscript aims to delve into the utility of PET-related

traditional imaging methods in lung cancer, the research

surrounding the application of PET/CT and PET/MRI radiomics

in lung cancer diagnosis and treatment, AI-based analysis of PET-

related radiomics, as well as the challenges and prospects of PET-

related radiomics.
2 Application and development of
PET-related traditional imaging
techniques in lung cancer

In the realm of emerging imaging technologies, PET, PET/CT,

and PET/MRI are key tools for assessing tumor metabolism,

evaluating treatment outcomes. A prospective study by Kirchner

et al. (7) involving 84 NSCLC patients found no significant difference

in the precision of tumor (T) and node (N) staging between PET/CT
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and PET/MRI in a prospective study involving 84 NSCLC patients.

Martin et al. (8) similarly established the comparability of PET/MRI

and PET/CT in staging lung cancer, substantiated by imaging results

from 1003 non-small cell lung cancer (NSCLC) patients. Additional

studies by Dahlsgaard-Wallenius (9), Mayerhoefer (10), and Kim (11)

emphasized the enhanced value of PET/MRI over PET/CT in

detecting metastases, particularly in the brain, adrenal glands, liver,

and bone marrow. Notably, PET/MRI showed significantly improved

specificity in identifying metastatic sites. The incorporation of bone

marrow-specific sequences further enhanced the comprehensiveness

of lung cancer staging or restaging. Recent studies have explored the

metabolic aspects of lung cancer. Chandarana et al. (12) examined

pulmonary nodules and closely correlated PET/MRI with PET/CT’s

maximum standardized uptake value (SUVmax) measurements.

PET/MRI’s mean SUVmax was 16.4% ± 13.6% higher than that of

PET/CT. Kohan et al. (13) delved into fluorodeoxyglucose (FDG)

avid lymph node SUVmax in lung cancer patients, revealing a 27.27%

higher value in PET/MRI (5.85) compared to PET/CT imaging

(4.60). This approach also demonstrated a strong correlation (r =

0.93) and improved efficacy in detecting metastases in regions like the

brain, adrenal glands, and bone marrow. PET/MRI excels at

identifying metastases with minimal metabolic activity, which may

go unnoticed using PET/CT.While PET/MRI exhibits 96% sensitivity

for FDG-avid nodules and 89% sensitivity for nodules measuring ≥ 5

mm, its effectiveness diminishes for smaller nodules (< 4 mm), with a

sensitivity of 38%. However, Raad et al. (14) observed that many

nodules measuring less than 5 mm missed in PET/MRI, either

regressed or remained stable, suggesting their benign nature. Yi

et al. (15) highlighted PET/MRI’s advantages in detecting

malignant soft tissue tumors (e.g., brain, bone, muscle, head, neck,

breast, and liver primaries) and lymph node metastasis. The

enhanced sensitivity in NSCLC patients improved preoperative

lymph node staging. PET/MRI also enhanced tumor classification

and staging, thanks to thoracic MRI’s superior tumor delineation and

mediastinal extent detection compared to CT in PET-CT. Advanced

MRI techniques added value by providing molecular imaging

insights, including MR spectroscopy, diffusion-weighted MR, and

perfusion imaging, all without subjecting patients to additional

radiation exposure (16). While conventional imaging remains the

standard for lung cancer screening, it falls short in quantifying tumor

heterogeneity, exhibiting limited reproducibility and stability. To

overcome these limitations, radiomics has gained prominence. By

using automated data characterization algorithms, radiomics

transforms region-of-interest image data into comprehensive spatial

data. This process translates measurements related to the behavior of

unobservable cells and molecules into high-dimensional information,

enhancing diagnostic, monitoring, and prognostic capabilities for

clinical practice.
3 Progress in the application of
PET-related radiomics in lung cancer

PET/CT and PET/MRI, molecular hybrid imaging methods,

offer simultaneous anatomical, metabolic, and functional insights,
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coupled with whole-body scanning capabilities. Radiomics based on

PET/CT and PET/MRI combine morphoanatomical, functional,

and/or metabolic details. This approach facilitates quantitative or

semi-quantitative analysis of internal tumor heterogeneity and

metabolic characteristics. It introduces a novel perspective and

technique for the early detection and characterization of tumors,

including their molecular traits. In recent years, there has been a

surge in studies exploring the utility of PET-related radiomics in

various aspects of lung cancer, including diagnosis, prediction of

pathological subtype prediction, assessment of metastasis, receptor

and molecular forecasts, as well as prognosis and treatment efficacy

evaluations (17–57).
3.1 PET-related radiomics in the diagnosis
of lung cancer

Effective disease management and prognosis in lung cancer

rely on early diagnosis. The role of PET-related radiomics in lung

cancer diagnosis has significantly expanded. Liu et al. (17)

leveraging PET/CT radiomics features, effectively distinguished

peripheral lung cancer from inflammatory pseudotumor. In a

retrospective study involving 545 lung cancer patients, Kirienko

et al. (18) demonstrated the potential of PET textural features to

differentiate primary lung cancer from metastatic tumors, and to

identify primary lung cancer’s pathological subtypes. Kang et al.

(19) developed a hybrid nomogram that incorporated PET/CT

radiomics features and manual diagnosis, resulting in reduced

false positive rates (FPR), enhanced diagnostic accuracy, and

improved net clinical benefits. Notably, PET/CT radiomics have

shown superiority over conventional PET/CT in distinguishing

primary tumors from metastatic tumors, assessing tumor

recurrence after radiotherapy, and detecting radiation-induced

inflammatory reactions (18, 20, 21).
3.2 PET-related radiomics predicts different
pathological subtypes of lung cancer

The inherent heterogeneity of lung cancer necessitates distinct

treatment approaches, highlighting the importance of early

identification of pathological subtypes for tailored precision

therapy. PET/CT radiomics have demonstrated the capability to

differentiate between lung adenocarcinoma and lung squamous cell

carcinoma. Furthermore, the disparities in PET radiomics traits

between these subtypes vary across different stages (20–25).

Effective models based on PET/MRI images have also been

established for predicting lung adenocarcinoma versus squamous

cell carcinoma (2, 26). Meng et al. (27) developed a model for

predicting noninvasive small cell lung cancer (SCLC) versus

NSCLC, alongside distinguishing epidermal growth factor

receptor (EGFR) mutation type and wild-type NSCLC, based on

PET/MRI images, amide proton transfer weighted imaging

(APTWI), and diffusion-weighted imaging (DWI) in 99 lung

cancer patients. Zhou (28) demonstrated that 18F-FDG PET/CT

radiomics features, in conjunction with machine learning
Frontiers in Oncology 03
techniques, can differentiate primary from metastatic lung lesions

and identify lung cancer’s histological subtypes. Dunn et al. (29)

emphasized the potential of artificial intelligence-based computer-

aided diagnostic tools, integrating radiomics analysis image

segmentation with supervised classification, to autonomously

diagnose lung cancer subtypes. Shen et al. (30) effectively

classified lung adenocarcinoma (ADC) and squamous cell

carcinoma (SCC) by employing subregion-based radiomics

features extracted from 18F-fluorodeoxyglucose (18F-FDG) PET/

CT images of 150 ADC and 100 SCC patients. The all studies

(Table 1) indicated that PET related radiomics had significant

significance in non-invasive and conveniently prediction of

pathological subtypes of lung cancer. So then, PET related

radiomics can assist clinical decision-making earlier.
3.3 PET-related radiomics assessment of
metastasis and lung cancer stage

Lung cancer, one of the most lethal malignancies (1, 31),

constitutes over 85% of NSCLC cases. For NSCLC patients,

surgical resection is the primary treatment, significantly

improving prognosis. However, those with lymph node or distant

metastases require systematic lymph node dissection and additional

metastatic treatment alongside lesion resection (32, 33). These

comprehensive approaches markedly enhance patient outcomes.

Therefore, precise and early assessment of metastasis holds

profound implications for lung cancer prognosis. Alongside CT

and MRI radiomics, PET-related radiomics play a crucial role in

evaluating metastasis. Giesel et al. (34) utilized volumetric CT

histograms, in conjunction with PET/CT radiomics models, to

analyze CT values of lymph nodes in 148 lung cancer patients,

totaling 1022 nodes. The study integrated their SUVmax values and

identified lymph node density as a crucial parameter for

distinguishing between benign and malignant nodes. Huang et al.

(35) predicted mediastinal lymph node metastasis in 155 NSCLC

patients using 18F-FDG PET/CT imaging radiomics. Similarly,

Ouyang et al. (36) demonstrated that models incorporating 18F-

FDG PET/CT and CT images effectively predicted mediastinal-hilar

lymph node metastasis (LNM) true and false positives in NSCLC

patients. This insight aids clinicians in formulating personalized

treatment strategies. Comparing PET/MRI radiomics staging with

CT radiomics staging, Kajiyama et al. (37) observed better

consistency with pathological staging in PET/MRI radiomics

staging (59/82 cases). PET/MRI, CT, and pathological staging

(stage I or less vs. stage II or more) revealed distinctions as

prognostic factors for recurrence or metastasis. Preoperative PET/

MRI radiomics staging demonstrated superior survival prediction,

surpassing CT prediction models in diagnosing hilar and

mediastinal lymph node metastasis. Zhang et al. (38) confirmed

the effectiveness of 18F-FDG PET/MRI radiomics in forecasting

pleural invasion in lung adenocarcinomas smaller than 3 cm. These

studies showed that PET-related radiomics was highly effective in

predicting lung cancer stage and metastasis of whole body.

Although histopathology is the gold standard for diagnosis of

lung cancer, it is invasive, and the sample is local which may lead
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to false negative results. However, PET-related radiomics can

dynamically and comprehensively reflect the tumor features and

metastasis of the patients with lung cancer, and it can reflect the

tumor metabolism, which is noninvasive and reproducible.
3.4 PET-related radiomics predicts
receptors and molecular
tumor microenvironment

As immunotherapy gains momentum in cancer treatment,

understanding an individual’s tumor immune microenvironment

(TIME) phenotype, especially the tumor immune types (TMITs)

associated with immunotherapy effectiveness, becomes crucial.

Profiling the TIME phenotype aids in patient selection for

immunotherapy. Agüloğlu (39) and Chang (40) predicted anaplastic

lymphoma kinase (ALK) rearrangement and EGFR mutation status in

NSCLC via radiomics models based on 18F-FDG PET/CT images,

assisting in targeted therapy decisions. Numerous studies have
Frontiers in Oncology 04
demonstrated the capability of 18F-FDG PET/CT radiomics models

to predict programmed death ligand-1 (PD-L1) expression in NSCLC

(41–44). Aide et al. (45) developed a model based on clinical features

and pretreatment 18F-FDG PET images to detect alterations in key

molecular targets in lung adenocarcinoma, opening new possibilities

for patient selection for molecular targeted therapy. Tong et al. (46),

analyzing data from 1145 NSCLC patients, demonstrated the

superiority of PET/CT radiomics in predicting CD8 expression

compared to the CT model (area under the curve (AUC): 0.907 vs.

0.861, P = 0.0314). Moreover, the combined PET/CT radiomics-clinical

model (AUC = 0.932) outperformed the PET/CT radiomics

model (AUC = 0.907, P = 0.0326) and the clinical model (AUC =

0.868, P = 0.0036) in predicting CD8 expression. Zhou et al. (47)

similarly demonstrated the efficacy of 18F-FDG-PET/CT-based

radiological features in predicting TMIT-I in NSCLC, offering a

promising approach for immunotherapy selection. Meng et al. (48)

conducted a prospective collection of 18F-FDG PET/MRI image data

from 76 NSCLC patients to develop a predictive model. Their findings

highlighted the value of 18F-FDG PET/MRI for the non-invasive
TABLE 1 The references collection of PET-related radiomics predicting different pathological subtypes of lung cancer.

Author Cases
Type
of
model

Imaging
methods

Verification Classifiers
Model
evaluation

Result
Optimal model (AUC values)

Xin
Tang (2)

80 combined
PET/MR
CT

10-fold
cross-validation

GP 9 models PET/MRI + CT + Clinical model (0.965)

Xin
Tang (26)

61 single PET/MR
5-fold
cross-validation

mRMR,
LASSO

1 model PET/MRI radiomics model (0.886)

Nan
Meng
(27)

99 combined PET/MR NA Logistic regression 6 models
Combination of MTV, ADC, and MTRasym
model (0.953)

Yi
Zhou
(28)

769 combined PET/CT
10-fold
cross-validation

SVM,
LDA,
DT,
RF,
KNN,
GBDT,
AdaBoost,
LR,
GaussianNB

45 models
Combination of GBDT feature selection
method with GBDT classification
model (0.897)

Bryce
Dunn
(29)

355 combined PET/CT
5-fold
cross-validation

decision tree,
discriminant,
naïve Bayes,
support vector
machine,
k-nearest neighbors,
ensemble,
narrow
neural network

7 models Support vector machine model (0.97)

Hui
Shen (30)

250 combined PET/CT
5-fold
cross-validation

SVM linear,
SVM RBF,
RF,
LR,
GP,
Lincar discriminant,
Adaboost classifier

4 models
PET/CT radiomics with SVM-RBF
classification model (0.9155)
AUC, Area under the curve; GP, Gaussian process; RMR, Maximum relevance and minimum redundancy; LASSO, Least absolute shrinkage and selection operator; NA, Not available; MTV,
Metabolic tumor volume; ADC, Apparent diffusion coefficient; MTRasym, Magnetization transfer ratio asymmetry; GBDT, Gradient boosting decision tree; SVM, Support vector machine; RBF,
Radial basis function; LDA, Linear discriminant analysis; DT, Decision tree; RF, Random forest; KNN, K-nearest neighborhood; AdaBoost, Adaptive boosting; LR, Logistic regression;
GaussianNB, Gaussian Naive Bayes.
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assessment of PD-L1 status in NSCLC. The combination of

magnetization transfer rate asymmetry (MTRasym 3.5 ppm),

diffusion coefficient (D), and SUVmax at 3.5 ppm exhibited robust

predictive capacity for PD-L1-positive and PD-L1-negative NSCLC

(AUC: 0.946 (0.869 – 0.985); sensitivity: 0.853; specificity: 0.916; P <

0.001). Receiver operating characteristic curve (ROC) and calibration

curves confirmed the accuracy and consistency of their findings.
3.5 Prognostic efficacy assessed by
PET-related radiomics

Lung cancer treatment is intricate, involving challenging

prognostic predictions. Due to the patient-tumor heterogeneity,

achieving a balance between clinical efficacy, side effects, and costs

necessitates personalized and adaptable treatment approaches. Current

clinical practice often relies on genomic and proteomic techniques to

analyze tumor biological traits, guiding tailored treatments. However,

these techniques often involve invasive procedures and offer limited

real-time and comprehensive insights due to the temporal-spatial

heterogeneity of tumors. In contrast, radiomics, particularly PET-

related radiomics, offers non-invasive and repeatable advantages. It

combines metabolic function insights, gaining traction for real-time

prognosis monitoring in cancer treatment. Hoekstra et al. (49), utilizing
18F-FDG PET/CT imaging before and after chemotherapy in 47 non-

small cell lung cancer patients, identified a 50% or more decrease in

standardized uptake value (SUV) values as an indicator of a favorable

prognosis. Christie et al. (50) developed a predictive model based on

postoperative CT and PET/CT images of 135 NSCLC patients,

stratifying patients into low and high recurrence/progression risk

groups. Preoperative 18F-FDG PET/CT radiomics, as discovered by

Onozato et al. (51) could predict highly invasive lung cancer. Kirienko

et al. (52) revealed that 18F-FDG PET/CT radiomics features predicted

postoperative NSCLC recurrence, positioning these features as useful

biomarkers for prognosis and risk stratification enhancement. Yang

et al. (53) and Mattonen et al. (54) established models combining 18F-

FDG PET/CT images with clinicopathological data, successfully

assessing overall the survival rate and enhancing NSCLC recurrence

prediction. Dissaux et al. (55) identified two features from an 18F-FDG

PET/CT image model that independently associated with local control

in NSCLC patients receiving SBRT, providing insights into local

recurrence and aiding clinical decisions. Ahn et al. (56) constructed a

PET-based imaging model with radiomics features, aiding risk

stratification and validating NSCLC recurrence risk classification

through machine learning methods. Kirienko et al. (57) further

demonstrated that CT, PET, or PET/CT image-based model

characteristics could predict disease-free survival (DFS) in surgically

treated NSCLC patients.
4 AI-based analysis of PET-
related radiomics

Artificial intelligence (AI), represented by machine learning (ML)

and deep learning (DL) algorithms, can discern patterns and

relationships in training data and employ these insights to make
Frontiers in Oncology 05
predictions about new data. There are two primary types of AI:

supervised learning and unsupervised learning. Supervised learning

uses labeled data to train models that establish mappings between

features and categories, whereas unsupervised learning uncovers natural

groupings or categories within unlabeled data. AI-based radiomics

involves extracting quantitative features from extensive medical

images and constructing predictive models that correlate image

features with clinical endpoints, all of which fall under supervised

learning. The radiomics workflow can be divided into five parts (as

depicted in Figure 1): [1] image labeling, [2] feature extraction, [3]

feature selection, [4] model construction, and [5] performance

evaluation. Traditional ML algorithms are involved in [2] through [5],

while the DL strategy primarily plays a role in [1] and [2], offering

potential to enhance the automation and efficiency of radiomics analysis.
4.1 ROI delineation

The initial and most critical step is to accurately identify the

region of interest (ROI), typically displaying morphological or

metabolic abnormalities. Manual delineation is often considered

the gold standard, but it is burdened by being laborious, time-

consuming, and prone to errors, making it challenging to achieve

high-quality and efficient labeling. In light of this, semi-automatic

and fully-automatic methods based on DL segmentation algorithms

have emerged. These methods not only maintain high segmentation

accuracy but also significantly enhance efficiency. It’s worth noting

that PET imaging is affected by a partial volume effect due to its

relatively low spatial resolution. This effect results in the merging of

multiple small nodules into a single large nodule or the

segmentation of one large nodule into multiple smaller nodules,

compromising the accuracy of DL segmentation algorithms. To

address this issue, a registration algorithm can be employed to align

the functional PET image with the structural image (i.e., MR or CT).

Utilizing anatomical information from MR or CT images allows for

effective localization and segmentation of lung nodules in PET

images, improving accuracy in lung nodule segmentation.

Furthermore, various processes like dilation and erosion can be

applied to manual, semi-automatic, and fully-automatic ROIs to

focus on the most significant region. Notably, splitting the dataset is

necessary for the subsequent evaluation of model performance,

where the model is trained on the training dataset and evaluated on

the testing dataset. Since radiomics features are sensitive to

variations in gray level, pixel size, and slice thickness of images,

image preprocessing (e.g., normalization and resampling) should be

performed before calculating radiomics features (58–61).
4.2 Feature extraction

After image preprocessing, high-throughput radiomics features

can be automatically extracted from each ROI (in the PET, CT, and

MR) in accordance with the guidelines of the imaging biomarker

standardization initiative (IBSI) (62). The commonly used features

fall into three categories: [1] first-order statistics describing voxel

intensity; [2] shape-based features reflecting region shape and size;
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FIGURE 1

Artificial intelligence (AI)-based radiomics analysis workflow.
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and [3] textural features, including gray level co-occurrence matrix

(GLCM) features, gray level run length matrix (GLRLM) features,

gray level size zone matrix (GLSZM) features, neighboring gray-

tone difference matrix (NGTDM) features, and gray levels

dependent matrix (GLDM) features. These textural features

quantify regional heterogeneity differences. Additionally, multiple

filters can be applied to the original image to enhance feature

richness. Moreover, other factors such as handcrafted features, end-

to-end deep features from DL models, demographics, biochemical

information, and genomics may also be incorporated to construct a

predictive model.
4.3 Feature selection

Given the high-throughput nature of radiomics features, it is

essential to perform feature selection or dimensionality reduction to

identify robust imaging biomarkers. Feature selection involves

assessing the importance or relevance of features to the prediction

task and selecting a subset from the original set. This can be done

using methods such as the least absolute shrinkage and selection

operator (LASSO), variance thresholding, and SelectKBest.

Dimensionality reduction aims to transform the high-dimensional

feature space into a lower-dimensional one while preserving as

much information as possible. Techniques like linear discriminant

analysis (LDA) and principal component analysis (PCA) are used

for this purpose. Features selected through feature selection provide

interpretability, while features obtained through dimensionality

reduction capture important patterns.
4.4 Model construction

Based on the selected features, various ML-based models can be

developed for different tasks. Representative ML algorithms, such as
Frontiers in Oncology 06
logistic regression (LR), support vector machine (SVM), random

forest (RF), extreme gradient boosting (XGBoost), decision tree

(DT), and k-nearest neighbor (KNN), are widely employed for

medical image classification and regression tasks. These classifiers

are trained on a training dataset to determine the most suitable

parameters for mapping features to categories or specific values. It’s

noteworthy that compared to traditional multi-parameter

prediction methods, such as PCA, ML algorithms offer several

advantages. Firstly, they have the ability to capture the complex

nonlinear relationships between input and target variables.

Additionally, they can be optimized based on labeled data,

resulting in higher prediction accuracy. Lastly, they are applicable

to various problem types and data domains, demonstrating superior

generalization capabilities.
4.5 Performance evaluation

Model performance should be assessed using internal or

external validation datasets. Multiple quantitative metrics can be

calculated to evaluate the model’s performance.

For classification tasks, it is recommended to plot receiver

operating characteristic (ROC) curves to visualize the trade-off

between the true positive rate and false positive rate at various

classification thresholds. The area under the curve (AUC) is often

calculated to quantify the overall performance of the model.

Additionally, metrics like accuracy, sensitivity, specificity, and F1-

score can also be computed. Calibration curves assess how well

predicted probabilities from a model align with observed outcomes.

Decision curves help researchers determine whether radiomics-

based predictive models would improve clinical benefits compared

to treating all or none of the patients.

For regression tasks, common metrics include mean squared error

(MSE), mean absolute error (MAE), R-squared, and the Pearson

correlation coefficient. A combination of multiple evaluation metrics
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and rigorous statistical analysis can provide a comprehensive

assessment of model performance for regression tasks. In the realm

of AI-based radiomics analysis, an increasing number of software tools

have been developed to streamline and automate the process of

extracting, analyzing, and interpreting radiomics features from

medical images. Representative software includes Pyradiomics

(http://pyradiomics.readthedocs.io/en), Radiomics Toolbox (https://

www.radiotoolbox.com/), IBEX (Imaging Biomarker Explorer, http://

bit.ly/IBEXSrc_MDAnderson), and uAI Research Portal

(https://www.uii-ai.com/en/uai/scientific-research), which aim to

improve the automation, standardization, reproducibility, and

efficiency of radiomics analysis.
5 Challenges and prospects of
PET-related radiomics

In recent years, AI-based radiomics analysis has made

remarkable progress in lung cancer assessment. However, several

challenges and prospects of PET-related radiomics need to be

addressed before its widespread use in clinical practice.
5.1 Data scarcity and heterogeneity

The development of automated clinical solutions, such as

radiomics analysis, faces a significant challenge in obtaining high-

quality and large-scale data. Pathologically confirmed ground truth

typically relies on invasive surgical resection or needle biopsy, while

manual annotation is time-consuming and costly, requiring

experienced radiologists with extensive domain knowledge. To

address this issue, the creation of open-source image repositories

through cross-institutional data sharing has proven effective in

increasing data volume. However, variations in institutions,

scanners, acquisition protocols, and image post-processing

algorithms can introduce significant heterogeneity into the

images. DL-based approaches show promise in improving data

quality and quantity through data augmentation and reducing the

dependency on manual annotation through unsupervised learning.

Efforts towards standardization are needed to minimize data

heterogeneity and improve model generalizability.
5.2 Model performance

Class imbalance presents a significant challenge to model

performance. Notably, the majority of lung nodules are benign (58).

AI systems trained on imbalanced datasets struggle to adequately learn

valuable features from minority classes and tend to treat all items as a

single majority class. To address these problems, methods such as data

augmentation and data generation have been developed to offer

potential benefits. Additionally, models trained on specific datasets

often demonstrate excellent performance for specific tasks but may not
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maintain the same level of performance in more general situations.

This lack of generalizability makes it challenging to assess the overall

applicability of trained models. Furthermore, it is essential to note that

most AI algorithms are developed retrospectively and lack prospective

validation. Prospective validation trials should be conducted with

diverse patient populations to provide a realistic assessment of the

clinical utility of AI.
5.3 Model interpretability

There is a lack of transparency regarding the inner workings of

AI methods, leaving clinicians with a ‘black box’ when reviewing

AI-generated results. To enhance clinicians’ confidence in AI-

informed decisions, it is crucial to emphasize the interpretability

and transparency of AI models. Data visualization tools can aid in

understanding how algorithms arrive at their decisions to some

degree. For instance, class activation maps can highlight the areas

that algorithms prioritize during the decision-making process (63).
5.4 Ethical issue

From an ethical standpoint, several issues need to be addressed

before considering AI systems as viable decision-making tools.

These issues encompass determining accountability for incorrect

AI decisions, evaluating public perception of AI decision tools, and

addressing concerns regarding data security and privacy.

Furthermore, there should be restrictions on over-reliance on

automation and the disregard for common sense.
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