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Identification of a venetoclax-
resistance prognostic signature
base on 6-senescence genes
and its clinical significance
for acute myeloid leukemia
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Yusha Guo1,2, Ying Wang1,2, Huiying Qiu1,2, Depei Wu1,2,
Zhao Zeng1,2*, Suning Chen1,2* and Xiebing Bao1,2*

1National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The
First Affiliated Hospital of Soochow University, Suzhou, China, 2Institute of Blood and Marrow
Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
Background: Satisfactory responses can be obtained for acute myeloid leukemia

(AML) treated by Venetoclax (VEN)-based therapy. However, there are still quite a

few AML patients (AMLs) resistant to VEN, and it is critical to understand whether

VEN-resistance is regulated by senescence.

Methods: Here, we established and validated a signature for predicting AML

prognosis based on VEN resistance-related senescence genes (VRSGs). In this

study, 51 senescence genes were identified with VEN-resistance in AML. Using

LASSO algorithms and multiple AML cohorts, a VEN-resistance senescence

prognostic model (VRSP-M) was developed and validated based on 6-

senescence genes.

Results: According to the median score of the signature, AMLs were classified into

two subtypes. A worse prognosis and more adverse features occurred in the

high-risk subtype, including older patients, non-de novo AML, poor cytogenetics,

adverse risk of European LeukemiaNet (ELN) 2017 recommendation, and TP53

mutation. Patients in the high-risk subtype were mainly involved in monocyte

differentiation, senescence, NADPH oxidases, and PD1 signaling pathway. The

model’s risk score was significantly associated with VEN-resistance, immune

features, and immunotherapy response in AML. In vitro, the IC50 values of ABT-

199 (VEN) rose progressively with increasing expression ofG6PD and BAG3 in AML

cell lines.

Conclusions: The 6-senescence genes prognostic model has significant

meaning for the prediction of VEN-resistance, guiding personalized

molecularly targeted therapies, and improving AML prognosis.
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Introduction

Acute myeloid leukemia (AML) is one of the most common

hematological malignant cancers, which is far more common in

elderly patients (1, 2). Traditional chemotherapy era, elderly AML

patients (AMLs) have a much poorer prognosis, with a 5-year

survival rate of only 5% after the diagnosis (3). With the recent

advent of molecularly targeted therapies, such as B-cell lymphoma 2

(BCL-2) inhibitor, survival of older AMLs has been improved (4, 5).

The BCL-2 protein is a key regulator of the mitochondrial

apoptotic pathway and plays an important role in the survival and

persistence of AML blasts (6, 7). Targeting BCL-2, Venetoclax

(VEN) showed an efficient strategy to promote caspase-dependent

cell death in AML (4, 8). In accordance with these studies, VEN has

been approved for the treatment of newly-diagnosed elderly AMLs.

VEN-based therapy can induce approximately 70% therapeutic

responses in older AMLs. However, a significant minority of

AMLs lack therapeutic response to initial induction or re-

induction of VEN Monotherapy (9). The short duration of

response and development of resistance have become major

concerns. Previous studies have found that key contributing

factors to VEN resistance include dependencies on alternative

anti-apoptotic BCL-2 family proteins, selection of the activating

kinase mutations, TP53 mutation, and BAX variants (10–14). More

research is needed to explore the mechanisms of VEN resistance in

AML and try to find strategies to overcome the resistance.

Senescence is the natural consequence of telomere shortening at

the chromosome ends upon extensive replication, but it can also be

induced by DNA damage and imbalances in cellular signaling

networks (15, 16). Cellular senescence response may suppress

cancer progression in vivo (17–19), but could also variously

stimulate tumor progression in some conditions, as well as

associated with various age-related diseases (20–22). The

elimination of senescent cells can delay multiple age-related

symptoms, and reduce incidences of spontaneous tumorigenesis

and cancer-related mortality (23). Therefore, tumor cells can

undergo senescence as an evolutionary process, including both

tumor-intrinsic characteristics and extrinsic immune pressure (24,

25). However, a comprehensive understanding of the influences of

senescence on VEN-resistance in AML is still lacking. In this study,

we developed a VEN-resistance senescence prognostic model

(VRSP-M) across multiple AML cohorts. The prognostic

signature has significant meaning for the prediction of VEN-

resistance, guiding personalized molecularly targeted therapies,

and improving AML prognosis.
Materials and methods

Data source

The profiles of TCGA AML (n=151) were downloaded from the

website of UCSC Xena (https://gdc.xenahubs.net) and exploited to

build a prognostic signature for AML based on VRSGs (VEN

resistance-related senescence genes). Human-related senescence
Frontiers in Oncology 02
genes (HRSGs, n=279, Supplementary Table S1) were acquired from

the HAGR website (https://genomics.senescence.info/cells/). Ex vivo

data from Beat AML cohort (26) was used to identify VRSGs and a

total of 343 AMLs were enrolled to validate the relationship between

prognostic signature and clinical manifestation. To test the

applicability, we further verified the effects of a predictive model in

non-APL (acute promyelocytic leukemia) AML (GSE106291, n=250)

and normal karyotype AML (GSE71014, n=104). The inclusion criteria

of Beat AML contained: expression profiles at time of the initial

diagnosis, complete data of survival and ELN stratification, but

excluding duplicated cases. For other three datasets, all patients with

survival and expressed information were included in this study. All the

data used in this study were obtained from the public program, and all

processes complied with the publication guidelines. Therefore, ethical

approval of local ethics committees is not required.
Identification of VRSGs

From the drug response of beat AML in Ex vivo, samples with the

lowest 20% of area-under-the-curve values (AUCs) were deemed to

be sensitive to VEN, while those with the highest 20% AUCs were

considered as VEN-resistance. A total of 3023 differential expression

genes (DEGs) were identified between VEN-resistant and -sensitive

samples through the DEseq2 method (|log2FC| ≥1.0 and adjusted P

value < 0.05, Supplementary Table S2). The intersections of DEGs

with HRSGs were identified as VRSGs (n=51).
Prognostic model generated from VRSGs

According to the median expressed levels of VRSGs and univariate

Cox analysis, 18 of 51 VRSGs were proved to be associated with AML

prognosis in the modeling set (Supplementary Table S3, P<0.05). Of 18

VRSGs, the Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm was performed to screen the optimal senescence genes to

develop VRSP-M in TCGA-AML through “glmnet” R packet. A 10-

fold cross-validation method was employed to hold stability, and the

minimum criteria was chosen as the optimal penalty value (l) (set.seed,
2021). The risk score was calculated using the expression of model’s

genes as follows:

Risk score =o
n

i=1
Coef (i)� x(i)

To evaluate and validate VRSP-M in the modeling and

validation datasets, AMLs could be divided into high- and low-

risk subtypes according to the median score. Survival analyses were

applied to distinguish the difference between these two groups by

“survival” package. Curves of receiver operating characteristic

(ROC) and AUCs were used to assess the accuracy of the

prognostic model using the “timeROC” package. Then Beat AML

and GSE106291 were combined after removing batch effects by the

“SVA” package. A subset containing 80% samples of the combined

dataset was re-sampled 100 times and used to examine the

robustness of the VRSP-M for predicting OS of AML patients.
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Functional analyses

A previous study demonstrated that a monocytic clone of AML

could confer VEN-resistance (27), so its markers were obtained to

assess the enrichment of monocyte differentiation. Moreover, the

SenMayo set (28) was also used to estimate the degree of enrichment

in the senescence pathway. Therefore, four gene sets were acquired to

inquire into the biological function of VRSP-M, including

c2.cp.kegg.v7.5.1.symbols.gmt, c2.cp.reactome.v7.5.1.symbols.gmt,

monocyte differentiation (Supplementary Table S4), and the

SenMayo gene set (Supplementary Table S5). A value of false

discovery rate (FDR) < 0.05, adjusted P < 0.05, and |NES|

(normalized enrichment score) >1.5 were considered as significant

enrichment in gene set enrichment analysis (GSEA).
Components analysis of immune cells

Using the “GSVA” and “GSEABase” R packages, the different

components of immune cells between the high- and low-risk

subtypes were reckoned and compared using single-sample gene

set enrichment analysis (ssGSEA). The gene set was collected from

the previous study (29), containing 28 types of immune cells. Then

xCell (30) and ESTIMATE (31) algorithms were further utilized to

impute the weights of M2 macrophages, immune and stromal

score, respectively.
Predicted response of immunotherapy

The correlation with Spearman method was performed to check

the link between the risk score of VRSP-M and eight immune

checkpoints (SIGLEC15, TIGIT, CD274,HAVCR2, PDCD1, CTLA4,

LAG3, and PDCD1LG2). We also predicted whether high-risk

subtype could benefit from blockade therapy of immune

checkpoints using the algorithm of Tumor Immune Dysfunction

and Exclusion (TIDE) (32).
Screening marker genes of VEN-resistance

Using one dataset of CRISPR-Cas9 screens (GSE216087) (33),

we checked whether model’s VRSGs dysregulated in AML cells after

single-VEN treatment. When sgRNAs depleted significantly on

OCI-AML2 cells after VEN treatment, it meant that knockdown

of these genes increased sensitivity to VEN, and high expression of

these genes could decrease sensitivity to VEN and contribute

to resistance.

To identify which model’s VRSGs could be an effective biomarker

of VEN-resistance, we first applied ABT-199 (venetoclax) to search

molecular biomarkers of treatment response to VEN using a software

of computational analysis of resistance (CARE) (34), the score of

which indicates the correlation between gene alteration and drug

efficacy. A higher positive score suggests better drug response, while a

negative score demonstrates drug resistance. Furthermore, we also

got data on CRISPR loss-of-function from previous VEN-resistance
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research (13). The negatively selected gene indicated that higher

expression confers resistance to VEN. Then we verified in vitro.
Cell lines and RT-qPCR

AML cell lines, including HL-60, MOLM13, MV4-11, THP-1

OCI-AML3, and K562, were purchased from the American Type

Culture Collection (Manassas, United States). All of them were

cultured in RPMI 1640 with 10% FBS (Gibco, United States) as well

as antibiotics (1% penicillin-streptomycin). All cells were kept at 37°

C in an incubator with 5% CO2.

The total RNA was extracted using RNA Isolator Total RNA

Extraction Reagent (R401-01, Vazyme, China), and reverse transcribed

to cDNAs using the PrimeScript™ RT Master Kit (RR036A, Takara,

Japan). Quantitative real-time PCR (qRT-PCR) was performed using

2x SYBR Green qPCR Master Mix (B21202, Bimake, United States)

with 7500 real-time PCR system (Applied Biosystems, United States).

The sequences of gene-specific primers are summarized in

Supplementary Table S6. Gene expression levels were quantified with

the 2-DCt method and GAPDH was used as endogenous control.
Western blot

Protein preparation and western blot assay were performed as

described previously (35). BAG3 Ab (sc-136467, United States) was

purchased from Santa Cruz Biotechnology, and GAPDHAb (ab8245,

United States) was obtained fromAbcam. G6PDAb (AF6945, China)

and secondary Abs, such as HRP goat anti-mouse IgG (A0216,

China) and goat anti-rabbit IgG (A0208, China), were bought from

Beyotime Biotechnology.
Cell viability assay

The cytotoxic effects of ABT-199 on AML cell lines were

determined by a Cell Counting Kit-8 (CCK-8; B34304, Bimake,

United States) assay. ABT-199 was diluted in 100 μl of growth

medium to designated doses, and leukemia cells were added to the

96-well plate (1×104 cells per well in 100 μl). Cultured leukemia cells

were incubated in the presence of the drug for 48 hours at 37°C in a

humidified 5% CO2-95% air incubator. Then, 10 mL of the CCK-8

reagent was added into each well, and optical densities at the

wavelength of 450 nm were measured using the Synergy HTX

Multimode Reader (BioTek, United States). The percentage of

surviving cells was calculated according to the absorbance ratio of

the test well and control well. IC50 values were calculated and

visualized using GraphPad Prism software v9.0 (GraphPad, La Jolla,

CA) based on the percent of live cells.
Statistical analysis

Categorical variables were compared by Chi-square or Fisher’s

exact test, and continuous variables were checked using the non-
frontiersin.org
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parametric test. Survival differences were quantified through the

log-rank method or Cox regression analysis, and visualized using

Kaplan-Meier curves. All analyses were conducted using the

statistical software R (version 4.1) (http://www.R-project.org). The

P-value of two-sided was set at the 0.05 significance level.
Results

Construction of VEN-resistance
senescence prognostic model

The flow chart is presented in Figure 1. A total of 3023 DEGs were

found differently between VEN-sensitivity and -resistance (Figure 2A).

Fifty-one genes were identified as VRSGs (Figure 2B), and 18 of which

were verified with AML prognosis (Figure 2C). Through the LASSO

method, 6 of 18 prognosis-related VRSGs were selected to construct

VRSP-M to predict overall survival (OS) in TCGA AML (Figures 3A,

B). The risk score of each patient was determined based on the

following formula (EXP indicated the expression of each gene):

Risk Score = 0:1893656� G6PD EXP + 0:078429364 � BAG3 EXP

+ 0:032736642� SRC EXP + 0:005747792

� TNFSF15 EXP + 0:127731446� GRK6 EXP

− 0:02047377� CDK6 EXP

The distribution of risk score, survival status, and expression of

6-VRSGs are shown in Figure 3C. Associated with the elevated risk

scores, mortality risk increased, while the survival time decreased.

AUCs at 1, 3, and 5 years were 0.738, 0.736, and 0.864 (Figure 3D),

which indicates that VRSP-M had better accuracy than random

choice. Moreover, AMLs with high-risk scores presented a worse

OS (P < 0.001, Figure 3E).
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VRSP-M correlates with adverse features
and monocyte differentiation in AMLs

Table 1 summarizes the clinical characteristics in high- and low-

risk subtypes in TCGA-AML. AMLs with high risk were older than

those in the low-risk subtype, with median ages of 62 and 51 years

respectively (Figure 4A, P < 0.001). More AMLs with intermediate

or poor cytogenetic risk were located in the high-risk subtype

(Figure 4B, P<0.001). In the distribution of the French-American-

British (FAB) subtype, M5 possessed the highest risk score, while

M3 had the lowest score (Figure 4C). Furthermore, GSEA analysis

also confirmed the enrichment of monocyte differentiation for the

high-risk subtype (Figure 4D, NES = 2.475).

The different expressions of key genes in apoptosis pathways

may help to explain why the high-risk subtype was more likely to be

resistant to VEN (Figure 4E). The BCL2 expression in the high-risk

subtype was significantly lower than that in the low-risk subtype,

but opposite results occurred in the expression of BCL2L1, BCL2A1,

and MCL1. In addition, although the high-risk subtype possessed a

high expression of pro-apoptotic genes (BID, BMF, BCL2L11) and

apoptosis receptor (BAX, BAK1), the inhibitor of apoptotic genes

(BIRC3, NAIP) was also higher in high-risk subtype than those in

the low-risk group (adjusted P < 0.05).
Validating the clinical significance of VRSP-
M in AML patients

Three AML cohorts were used to verify the performance of 6-

genes VRSP-M. In the Beat AML cohort, the clinical features are

depicted in Table 2. A higher proportion of M5 subtype, non-de

novo AML, and adverse risk of ELN recommendation was

presented in AMLs with high-risk scores (P < 0.05). When taking
FIGURE 1

Work flow of the current study.
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genetic mutations into account, patients with no mutation data

were excluded from the analysis. AMLs with high-risk scores were

frequently accompanied by mutations of DNMT3A (P = 0.005),

NRAS (P = 0.007), KARS (P = 0.066), and TP53 (P = 0.040), while

the proportion of FLT3-ITD mutation in low-risk subtype was

significantly higher than that in high-risk subtype (P = 0.002).

Consistent with the results in the modeling set, as risk scores

increased, death risk also went up in three validation cohorts

(Figures 5A–C). A worse OS was confirmed for the high-risk

subtype (Figures 5D–F), and the VRSP-M also had the ability to

predict AML prognosis (Figures 5G–I). Similarly, patients with

high-risk scores were mainly involved in monocyte differentiation

(Figures 5J–L). Leukemia heterogeneity may limit the practicability

of prognostic signatures. Thus, we combined Beat AML and

GSE106291 after removing batch effects by the SVA package. To

check the robustness of this 6-genes prognostic signature, a total of

100 re-sampling tests were conducted randomly in 80% samples of

the combined dataset. The results indicated that the P values were

less than 0.05 in each Kaplan-Meier and univariate Cox analysis

(Table S7), indicating a high performance for OS prediction

in AML.
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Functional signaling pathways

GSEA analyses were performed to better investigate the potential

function of VRSP-M. The high-risk subtype was highly enriched in

the senescence pathway (Figure 6A). KEGG results revealed that

high-risk subtype enriched in Lysosome, Hematopoietic cell lineage,

Cell adhesion molecules, and many immune-related pathways, such

as cytotoxicity mediated by natural killer cell, interaction of cytokine

and cytokine receptor, chemokine and T cell receptor signaling

pathway (Figure 6B). Moreover, the main items of Reactome

analysis were interactions between lymphoid and non-lymphoid

cell, NADPH oxidases, interleukin 10 and PD1 signaling (Figure 6C).
VRSP-M correlates with immune features
in AMLs

Many enriched items of immune-related pathways prompted us

to explore the immune features associated with VRSP-M. We found

that patients with high-risk score were often accompanied with a

higher immune cell infiltration, including various subtypes of
B

C

A

FIGURE 2

Identification of Venetoclax (VEN) resistance-related senescence genes (VRSGs). (A) Volcano map of differential expression genes (DEGs) between
VEN-resistant and -sensitive samples through DEseq2 method. (B) Intersections of VEN-resistant related DEGs and Human related senescence
genes (HRSGs). (C) Eighteen VRSGs were confirmed with AML prognosis in the modeling set using univariate Cox regression analysis.
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B

C D E

A

FIGURE 3

Establishment of a VEN-resistance senescence prognostic model (VRSP-M). (A, B) Selecting key genes of the eighteen VRSGs for constructing VRSP-
M using LASSO (least absolute shrinkage and selection operator) analysis. (C) The distribution of risk score, survival status and heatmap of 6-VRSGs
in VRSP-M. (D) Curves of ROC (receiver operator characteristic) based on the VRSP-M in the modeling set. AUC, the area under the curve. (E) Curve
of overall survival (OS) analysis with Kaplan-Meier method in the modeling set.
TABLE 1 Clinical characteristics of AML patients in TCGA cohort.

Level Low risk (n=76) High risk (n=75) P value

Age (median [IQR]), years 51 [38, 61] 62 [48, 71] <0.001

Gender (%) Female 36 (47.4) 32 (42.7) 0.677

Male 40 (52.6) 43 (57.3)

WBC (median [IQR]) (×109/L) 19.0 [4.0, 42.5] 16.0 [5.0, 70.0] 0.239

HB (median [IQR]) (g/L) 9.0 [9.0, 11.0] 9.0 [9.0, 10.0] 0.276

PLT (median [IQR]) (×109/L) 45.0 [24.5, 83.0] 50.0 [32.0, 87.0] 0.565

BM blast (median [IQR]) % 44.0 [10.0, 68.5] 29.0 [6.0, 59.0] 0.291

FAB (%) M0 7 (9.2) 8 (10.7) 0.001

M1 15 (19.7) 20 (26.7)

M2 24 (31.6) 14 (18.7)

M3 14 (18.4) 1 (1.3)

M4 14 (18.4) 15 (20.0)

M5 2 (2.6) 13 (17.3)

M6 0 (0.0) 2 (2.7)

(Continued)
F
rontiers in Oncology
 06
 fro
ntiersin.org

https://doi.org/10.3389/fonc.2023.1302356
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ke et al. 10.3389/fonc.2023.1302356
TABLE 1 Continued

Level Low risk (n=76) High risk (n=75) P value

M7 0 (0.0) 1 (1.3)

Not Classified 0 (0.0) 1 (1.3)

Cytogenetics risk (%) Favorable 26 (34.2) 5 (6.7) <0.001

Intermediate 36 (47.4) 46 (61.3)

Poor 14 (18.4) 22 (29.3)

NA 0 (0.0) 2 (2.7)

FLT3 mutation (%) Neg 51 (68.0) 51 (70.8) 0.846

Pos 24 (32.0) 21 (29.2)

RAS mutation (%) Neg 71 (93.4) 71 (95.9) 0.745

Pos 5 (6.6) 3 (4.1)

NPM1 mutation (%) Neg 62 (81.6) 55 (74.3) 0.381

Pos 14 (18.4) 19 (25.7)

IDH mutation (%) Neg 64 (85.3) 57 (79.2) 0.445

Pos 11 (14.7) 15 (20.8)
F
rontiers in Oncology
 07
 fro
IQR, inter quartile range; WBC, white blood cells; HB, hemoglobin; PLT, platelet; BM, blast; NA, not available; Pos, positive; Neg, negative.
The meaning of the bold value is P<0.05.
B C

D E

A

FIGURE 4

Correlation of clinical features and VRSP-M in the modeling set. (A) Difference of age distribution between high- and low-risk subtypes based on
VRSP-M. (B, C) Distribution of risk score between different risk of cytogenetics and French-American-British (FAB) subtype, including M0, M1, M2,
M3, M4 and M5. *** indicate P<0.001. (D) Curve of gene set enrichment analysis (GSEA) between high- and low-risk subtypes in monocyte
differentiation. (E) Coexpression of key genes in apoptosis pathways, the difference was compared by non-parametric test. IAP, inhibitor of
apoptosis proteins.
ntiersin.org
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TABLE 2 Clinical characteristics of AML patients in Beat cohort.

Level Low risk (n=171) High risk (n=172) P value

Age (median [IQR]), years 58 [37, 69] 63 [52, 72] 0.001

Gender (%) Female 79 (46.2) 74 (43.0) 0.629

Male 92 (53.8) 98 (57.0)

WBC (median [IQR]) (×109/L) 18.7 [4.9, 52.5] 19.8 [6.5, 48.4] 0.675

HB (median [IQR]) (g/L) 8.5 [7.2, 9.9] 8.5 [7.5, 9.5] 0.724

PLT (median [IQR]) (×109/L) 34.0 [23.0, 63.0] 39.0 [22.0, 90.8] 0.140

PB blast (median [IQR]) % 57.5 [25.0, 83.5] 29.5 [8.0, 61.3] <0.001

BM blast (median [IQR]) % 76.0 [56.0, 90.0] 51.0 [24.0, 76.8] <0.001

FAB (%) M0 4 (8.7) 2 (4.9) 0.004

M1 5 (10.9) 2 (4.9)

M2 6 (13.0) 2 (4.9)

M3 9 (19.6) 0 (0.0)

M4 13 (28.3) 11 (26.8)

M5 8 (17.4) 21 (51.2)

M7 0 (0.0) 2 (4.9)

NOS 1 (2.2) 1 (2.4)

De novo AML (%) No 63 (36.8) 93 (54.1) 0.002

Yes 108 (63.2) 79 (45.9)

ELN 2017 risk (%) Favorable 68 (39.8) 32 (18.6) <0.001

Intermediate 55 (32.2) 61 (35.5)

Adverse 48 (28.1) 79 (45.9)

FLT3-ITD mutation (%) Neg 128 (74.9) 152 (88.4) 0.002

Pos 43 (25.1) 20 (11.6)

NPM1 mutation (%) Neg 124 (72.9) 140 (81.4) 0.083

Pos 46 (27.1) 32 (18.6)

ASXL1 mutation (%) Neg 3 (23.1) 1 (6.2) 0.444

Pos 10 (76.9) 15 (93.8)

CEBPA mutation (%) Neg 77 (81.1) 64 (92.8) 0.057

Pos 18 (18.9) 5 (7.2)

DNMT3A mutation (%) Neg 55 (80.9) 37 (56.9) 0.005

Pos 13 (19.1) 28 (43.1)

FLT3 mutation (%) Neg 80 (86.0) 71 (83.5) 0.800

Pos 13 (14.0) 14 (16.5)

IDH1 mutation (%) Neg 75 (87.2) 73 (90.1) 0.727

Pos 11 (12.8) 8 (9.9)

IDH2 mutation (%) Neg 69 (83.1) 65 (81.2) 0.913

Pos 14 (16.9) 15 (18.8)

KIT mutation (%) Neg 73 (91.2) 61 (98.4) 0.144

Pos 7 (8.8) 1 (1.6)

(Continued)
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immune activated and immunosuppressive cells (Figure 7A). The

high-risk AMLs both had a higher immune and stromal score

(Figure 7B). In addition, as well as Myeloid-derived suppressor cells

(MDSCs) (Figure 7A), a higher proportion of M2 macrophage cells

was also observed in patients with high-risk score (Figure 7C).
VRSP-M associated with immunotherapy
response of AMLs

On account of the above discoveries, we speculated that PD1

plays a vital role in VRSP-M. The results showed that the risk score

of the VRSP-M was positively correlated with CTLA4 (R=0.402),

PDCD1 (R=0.398), HAVCR2 (R=0.328), PDCD1LG2 (R=0.283),

CD274 (R=0.281), LAG3 (R=0.324), and T cell dysfunction

(R=0.551), but negatively related with TIDE score (R= -0.489)

and T cell exclusion (R= -0.491) (Figures 8A–D, P < 0.001). With

a lower TIDE score (Figure 8E, P < 0.001), the high-risk subtype had

a higher number of responders from immunotherapy (53.3% vs.

21.1%, P < 0.001) (Figure 8F). According to the expression of

PDCD1 and VRSP-M’s risk score, AMLs were divided into four

groups. Patients both with a high level of risk score and PDCD1

presented a worse prognosis (Figure 8G, P < 0.001). These results

indicated that patients with high-risk scores may benefit from the

blocking therapy of immune checkpoints.
Verification of the maker genes of VRSP-M
in vitro

In this signature, five senescence genes (except CDK6) were

positively associated with higher VRSP-M scores. We then checked

whether these five genes were dysregulated in AML cells using

another dataset of CRISPR-Cas9 screens (GSE216087). The results

indicated that four sgRNAs (except GRK6) were depleted

significantly on OCI-AML2 cells after single-VEN treatment

(Figure S1), suggesting that overexpression of these genes could

confer VEN-resistance.

In ex vivo data from the Beat AML sample, the risk score was

proved to be positively associated with VEN-resistance (Figures 9A,
Frontiers in Oncology 09
B). Using CARE software, 2 of 6 model’s genes had a negative score

as follows: G6PD (-5.460, P < 0.001) and BAG3 (-2.780, P = 0.006)

(Figure 9C). Additionally, G6PD also presented a negative CRISPR

score both at day 8 (-0.524, P = 0.034) and day 16 (-2.441, P = 0.004)

post co-culture of VEN, compared with control.

Whereafter, a method of CCK-8 assay was used to examine the

viability of AML cell lines treated with ABT-199 for 48 hours and

determined the IC50 values. The IC50 values ranged from <10

nmol/L to >1000 nmol/L (Figure 10A). The expression levels of

G6PD and BAG3 were further tested in these AML cell lines, such as

HL-60, MOLM13, MV4-11, and so on. The results indicated that

G6PD expression was positively correlated with the IC50 of ABT-

199 (Figure 10B). Except for OCI-AML3, the expression of BAG3

was also positively correlated with VEN-resistance (Figure 10C).

The expression of G6PD and BAG3 were also verified in these AML

cell lines using Western blot. As shown in Figures 10D, E, the IC50

levels of ABT-199 rose progressively with increasing protein levels

of G6PD and BAG3. These findings indicate that G6PD and BAG3

may be effective markers for VEN-resistance in AML.
Discussion

Senescence is a complex stress response that can be grouped

into different categories including genome-based failures and

signaling dysfunction. However, the role of cellular senescence in

cancer is controversial. In some conditions, the response of cellular

senescence suppresses cancer progression (17, 18), conversely,

which variously stimulates tumor progression in other ways (20–

22). However, it is not quite clear whether senescence could induce

VEN-resistance in AML. To better understand it, a VRSP-M was

developed and validated using multiple AML cohorts, which can

distinguish the prognosis of AMLs.

In this prognostic model, G6PD, BAG3, SRC, TNFSF15, and

GRK6 act as risk factors, whereas CDK6 is a protective factor.

Moreover, G6PD possesses the highest weight on AML prognosis,

and was also proven to be an effective molecular marker of VEN-

resistance. Previous studies have indicated that G6PD overexpression

was associated with a poor prognosis in certain types of cancer,

including AML, hepatocellular carcinoma, invasive breast carcinoma,
TABLE 2 Continued

Level Low risk (n=171) High risk (n=172) P value

KRAS mutation (%) Neg 65 (94.2) 46 (82.1) 0.066

Pos 4 (5.8) 10 (17.9)

NRAS mutation (%) Neg 61 (81.3) 39 (59.1) 0.007

Pos 14 (18.7) 27 (40.9)

TP53 mutation (%) Neg 61 (89.7) 43 (74.1) 0.040

Pos 7 (10.3) 15 (25.9)

RUNX1 mutation (%) Neg 23 (69.7) 15 (46.9) 0.106

Pos 10 (30.3) 17 (53.1)
fro
PB, Peripheral Blood; ELN, European LeukemiaNet. When taking genetic mutations into account, cases without genetic mutations data were excluded from analysis.
The meaning of the bold value is P<0.05.
ntiersin.org

https://doi.org/10.3389/fonc.2023.1302356
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ke et al. 10.3389/fonc.2023.1302356
and mesothelioma (36). G6PD could promote cancer progression

through its effects on some metabolic pathways (37, 38). Decreasing

proliferation of leukemia and other cancer cells, knockdown of G6PD

significantly increased apoptosis of tumor cells which are also more

susceptible to oxidative stress (39, 40). Acting as an effector of ATM

(Ataxia telangiectasia mutated), G6PD often participates in the

development of various cancers through metabolic programming

and DNA repair pathways (41). As an essential enzyme in the pentose

phosphate pathway (PPP), G6PD could produce more materials by
Frontiers in Oncology 10
this pathway to meet the high anabolic needs of tumor cells, which

may make the cancers more resistant to chemotherapy. Playing an

important role in AML resistance to the FLT3 inhibitor, the

inactivation of G6PD increases the sensitivity of AML to FLT3

inhibitors (42). Under various stresses, multiple tumors turn

metabolism to the PPP to get enough reductants to fight against

reactive oxygen species (ROS) by activatingG6PD rapidly. Otherwise,

G6PD can also affect cancers by regulating ROS.Modulation ofG6PD

was proven to affect bladder cancer via ROS accumulation and the
B C

D E F

G H I

J K L

A

FIGURE 5

Validation of VRSP-M in three independent AML cohorts. (A–C) The distribution of risk score, survival status and heatmap of 6-VRSGs in three
validation sets. (D–F) Curves of survival analysis in Beat AML, GSE106291, and GSE71014. (G–I) Curves of ROC analysis in Beat AML, GSE106291, and
GSE71014. (J–L) GSEA analysis of monocyte differentiation between high- and low-risk subtypes.
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B C

A

FIGURE 7

The different components of immune cells between high- and low-risk subtypes of VRSP-M. (A) The difference of 28 types of immune cells,
evaluating by single-sample gene set enrichment analysis (ssGSEA). (B) The difference of immune and stromal score, calculated by ESTIMATE
method. (C) Subtypes of macrophages between high- and low-risk AMLs, estimated by xCell algorithm. * indicate P<0.05, ** indicate P<0.01,
*** indicate P<0.001.
B

C

A

FIGURE 6

GSEA analysis. (A) SenMayo gene set. (B), KEGG (Kyoto Encyclopedia of Genes and Genomes) gene set. (C) Reactome gene set.
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AKT pathway in vitro (43), and knockdown of G6PD reduces ROS

accumulation and enhances apoptosis of bladder cancer cells. In

addition, G6PD also facilitates clear cell renal cell carcinoma invasion

through the ROS−MAPK axis pathway (44).

Up-regulated ROS level induced by G6PD activation not only

leads to out of control of cell growth and apoptosis of cancer, by also

affects the immune microenvironment. In our study, high-risk AMLs

also activate the signal of NADPH oxidases, and excessive activation

of NOX (non-phagocytic cell oxidase) in cancer cells results in a large

amount of ROS production. Accumulation of ROS leads to apoptosis

in normal cells and mediates cellular senescence (45), which may be

one of the reasons for the activation of NADPH oxidases in the high-

risk subtype. Otherwise, excessive ROS also maintains the

proliferation of tumor cells due to the protection of anti-oxidative

stress with NADPH (39, 46–48). In fact, overexpression of G6PD

could protect leukemic cells against oxidative stress by increasing

NADPH production. On the other hand, not only leading to DNA

damage and genomic instability, excessive of ROS could regulate

signal transduction in the tumor environment, all of these are

beneficial to the growth and progress of tumors (49, 50). Previous

study has demonstrated that elevated ROS level induced by VEN can

enhance the anti-leukemia effect of T cells (51). However, many
Frontiers in Oncology 12
studies also confirmed that ROS could induce the polarization of

macrophages to M2 subtypes (52–56). Acting as a double-edged

sword, ROS not only enhances T cells’ anti-leukemia effect, but

stimulates other immune cells, such as M2 macrophages and

MDSCs. Hence, cellular senescence often triggers an immune

response in the tumor microenvironment, facilitating tumor

formation and progression (57, 58), which might lead to a higher

immune and stromal score in our high-risk AMLs. Moreover, a

higher infiltration of MDSCs and M2 Macrophages in the high-risk

subtype could prevent immune clearance of leukemia cells, and lead

to poorer prognosis (59).

Shaping an unfavorable immune microenvironment,

immunosenescence is also an urgent problem to be solved in the

treatment of cancers. Mainly involved in PD1 signaling and

strongly related to many immune checkpoints, a high-risk score

of the VRSP-M was positively correlated with T cell dysfunction but

negatively with T cell exclusion. T-cell dysfunction in cancer

displays functional unresponsiveness, including senescence,

exhaustion, anergy, and self-tolerance that is increasingly

recognized as major hurdles for the success of cancer

immunotherapy (60–62). So, potential approach to enhance anti-

leukemia is to improve T and NK dysfunction, such as PD-1
B

C

D

E

F

G

A

FIGURE 8

The correlation of VRSP-M’s risk score with 8 immune checkpoints and predicted response of immunotherapy. (A–D) The relationship of VRSP-M’s
risk score with expression of 8 immune checkpoints, Exclusion, Dysfunction, and TIDE score, tested by Spearman method. (E, F) The difference of
Exclusion, Dysfunction, TIDE score, and predicted response of immunotherapy between high- and low-risk subtypes. (G) Survival analysis of
classification based on PDCD1 expression and VRSP-M’s risk score. *** indicate P<0.001.
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inhibitor, chimeric antigen receptor T-cell therapy, and NK or gd T-
based adoptive immunotherapies (63–65). While the blocking-up of

immune checkpoints has led to breakthroughs in several solid

cancer therapies, research in AML remains limited (66). In the

real world, AMLs have limited benefits from anti-PD-1 therapy (67,

68), which may be due to many AMLs often accompanied by T cell

exclusion. The resistance to immunotherapy in AML, such as PD-1

blockade, remains one of the major challenges impeding its

application in the future. So, a higher predictive response of

immunotherapy in the high-risk subtype may bring a new

perspective towards AML therapy, and VEN combined with

blocking therapy of immune checkpoints is worthy of

further exploration.

Considering VEN-resistance from the perspective of gene

interaction, patients in the high-risk group presented a lower

BCL2 expression, but higher levels of BCL2L1, BCL2A1, and

MCL1. This means that the high-risk score often causes VEN-

resistance by interacting with anti-apoptosis proteins, which is one

of the main causes of VEN-resistance (9, 69, 70). Of other 5

senescence genes, as the co-variants of BCL-2, BAG3 works

together with BAG1 to maintain the viability of myeloid cells,
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dysregulation of which could lead to physiological abnormalities

(71). Notably, previous studies have indicated that BAG3 is

associated with a poor AML prognosis (72), and involved in

resistance to chemotherapy (73). Bound to the DR3 receptor,

TNFSF15 often plays pro-inflammatory roles and regulates

cytokine release (74). Furthermore, the TNFSF15/DR3 axis is

involved in promoting apoptosis through Caspase pathways, but

could also activate inhibitors of apoptosis proteins by regulating

NF-kB pathways and inhibiting apoptosis (75). It is noteworthy that

persistent inflammation could also promote the progression and

resistance of tumors (76). Abnormal activation of SRC protein, one

of the non-receptor tyrosine kinases, is closely related to the tumors’

progression. Overexpression of which could lead to increased Src

kinase activity, and play an important role in human cancer,

including cell proliferation, differentiation, survival, and mortality

(77). Besides, up-regulated GRK6 level is also associated with the

progression and prognosis of colorectal carcinoma (78), and its role

in AML is worth further exploration. Interestingly, AMLs sensitive

to VEN-therapy are enriched in various gene sets of leukemic stem

cells (LSCs), while the major enrichment of VEN-resistant AMLs is

monocytic differentiation (27). As an essential regulatory molecule
B

C

A

FIGURE 9

Screening Marker genes from VRSP-M. (A, B) The correlation analysis of VRSP-M’s risk score with IC50 values (log10 transformation) and AUC values
(log10 transformation) of VEN in Ex vivo data from Beat AML sample, tested by Spearman method. (C) The importance of G6PD and BAG3 in VEN-
resistance, and the scores were evaluated using by CARE algorithm and CRISPR data.
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for activating LSCs (79), CDK6 is up-regulated significantly in

VEN-sensitive AMLs. Consistent with these results, CDK6 levels

are negatively associated with the risk score of VRSP-M, and high-

risk AMLs are also enriched in the monocytic phenotype. In both

mice and humans, aging is often accompanied by alteration of the

monocyte function and increased production of classical monocytes

expressing MHC II, which may help to explain why our high-risk

subtype was mainly involved in monocyte differentiation and

resistant to VEN-therapy (80).

In the context of oncogenes and clinical characteristics, patients

in the high-risk subtype were frequently accompanied by mutations
Frontiers in Oncology 14
of NRAS, KARS, and TP53. Of note, AML with RAS mutation was

associated with VEN-resistance and monocytic phenotype (27, 81).

As one of the most common proto-oncogenes in AML, a gain of

function in KRAS/NRAS could activate the pathway of RAS/MAPK,

and further lead to overexpression and increased stability ofMCL-1

protein, which also plays a major role in VEN-resistance.

Furthermore, RAS regulatory genes such as PTPN11 usually co-

mutate with KRAS/NRAS mutation, which have been reported

refractory to VEN monotherapy in AML (12, 82). In addition, a

higher TP53 mutation may also help explain why the high-risk

AML subtype exhibited a lower response to VEN and a poor
B C

A

D E

FIGURE 10

The experimental verification of the Key Markers. (A) The IC50 values of ABT-199 (Venetoclax) in different AML cell lines, tested by CCK-8 assay.
(B, C) The mRNA levels of G6PD and BAG3 expression in different AML cell lines, using PCR method. (D, E) Protein levels of G6PD and BAG3 in
different AML cell lines, tested by Western blot.
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prognosis (4, 83, 84). In general, our results demonstrate that more

adverse prognostic features were presented in the high-risk group,

including older patients, non-de novo AML, poor cytogenetics or

adverse ELN risk, and TP53mutation. All these results support why

high-risk patients in our results have worse survival.

Our study provides a new perspective and potential therapeutic

targets based on senescence aid to explore pathogenesis of VEN-

resistance in AML; however, there are still several limitations in the

current study. More independent AML cohorts are needed to

validate it. Moreover, further investigation is needed to explore

the underlying mechanisms. The risk score of the prognostic model

is significantly associated with VEN-resistance, immune features,

and immunotherapy response in AML. We also verified that G6PD

and BAG3 could be effective biomarkers of VEN-resistance in vitro.

In conclusion, the 6-senescence genes prognostic model has

significant meaning for the prediction of VEN-resistance, guiding

personalized molecularly targeted therapies, and improving

AML prognosis.
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22. Pérez-Mancera PA, Young AR, Narita M. Inside and out: the activities of
senescence in cancer. Nat Rev Cancer (2014) 14(8):547–58. doi: 10.1038/nrc3773

23. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, et al. Naturally
occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature (2016) 530:184–9.
doi: 10.1038/nature16932

24. Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and
cancer perspectives. Trends Immunol (2015) 36(4):217–28. doi: 10.1016/j.it.2015.02.009

25. Berben L, Floris G, Wildiers H, Hatse S. Cancer and aging: two tightly
interconnected biological processes. Cancers (Basel) (2021) 13(6):1400. doi:
10.3390/cancers13061400

26. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al.
Functional genomic landscape of acute myeloid leukaemia. Nature (2018) 562
(7728):526–31. doi: 10.1038/s41586-018-0623-z

27. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with
acute myeloid leukemia. Cancer Discov (2020) 10(4):536–51. doi: 10.1158/2159-
8290.CD-19-0710

28. Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, et al.
A new gene set identifies senescent cells and predicts senescence-associated pathways
across tissues. Nat Commun (2022) 13(1):4827. doi: 10.1038/s41467-022-32552-1

29. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep (2017) 18
(1):248–62. doi: 10.1016/j.celrep.2016.12.019

30. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity
landscape. Genome Biol (2017) 18(1):220. doi: 10.1186/s13059-017-1349-1

31. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia
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