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Colorectal cancer (CRC) remains a major cause of morbidity and mortality.

Therapeutic approaches for advanced CRC are limited and rarely provide long-

term benefit. Enzymes comprising the 24-member matrix metalloproteinase

(MMP) family of zinc- and calcium-dependent endopeptidases are key players in

extracellular matrix degradation, a requirement for colon tumor expansion,

invasion, and metastasis; hence, MMPs are an important research focus.

Compared to sporadic CRC, less is known regarding the molecular

mechanisms and the role of MMPs in the development and progression of

colitis-associated cancer (CAC) − CRC on a background of chronic

inflammatory bowel disease (IBD) − primarily ulcerative colitis and Crohn’s

disease. Hence, the potential of MMPs as biomarkers and therapeutic targets

for CAC is uncertain. Our goal was to review data regarding the role of MMPs in

the development and progression of CAC. We sought to identify promising

prognostic and therapeutic opportunities and novel lines of investigation. A key

observation is that since MMPs may be more active in early phases of CAC, using

MMPs as biomarkers of advancing neoplasia and as potential therapeutic targets

for adjuvant therapy in those with advanced stage primary CAC rather than overt

metastases may yield more favorable outcomes.
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1 Introduction

Enzymes comprising the 24-member matrix metalloproteinase

(MMP) family of zinc- and calcium-dependent endopeptidases play

key roles in cancer progression by degrading the extracellular matrix, an

obstacle to tumor expansion, invasion, and metastasis. Notably,

differential induction of specific MMPs has been reported depending

on the cancer type examined and how the neoplastic cells are stimulated.

For example, more than a decade ago, our research team reported that

stimulating human colon cancer cells with muscarinic receptor agonists

resulted in robust, selective induction of MMP-1, -7, and -10 (1).

Subsequent work indicated that blocking muscarinic receptor activation

or the activity of MMP-1, whose expression correlates with advanced

colon cancer stage, tumor metastasis, and reduced survival (2–4),

abolished acetylcholine-induced colon cancer cell invasion (5).

Moreover, we showed that muscarinic receptor agonist-induced

MMP-1 expression is mediated by potentiating crosstalk between

different post-muscarinic receptor signaling cascades (6).

Despite the great interest in understanding the role MMPs play in

the progression of sporadic colorectal cancer (CRC), relatively little

attention has been paid to their role in colitis-associated colon cancer

(CAC). This area of investigation is also relevant to our focus on the

role of muscarinic receptors and ligands in CRC (7–9) – our work and

that of others has demonstrated that muscarinic receptor activation

may play an important role in the progression of inflammatory bowel

disease (IBD, primarily Crohn’s disease and ulcerative colitis (UC))

(10, 11). Moreover, current work highlights the unique molecular

differences between CAC compared to non-colitis-associated CRC

(12), and the strong involvement of MMPs in regulating colitis and

intestinal permeability (13, 14). Hence, understanding the precise role

that MMPs play in the genesis and progression of CAC, and how

these differ from their roles in sporadic CRC, may reveal novel

mechanistic insights, but more importantly, identify MMPs as

promising biomarkers of CAC progression and therapeutic targets.

For these reasons, in this review, we aim to provide a thorough

appraisal of MMP’s functions, their role in the progression from

chronic colitis to CAC, and an overview of the application of MMP

inhibitors in clinical therapy. We searched the literature for English

language publications between 1962 and June 30, 2023, using

keywords relevant to this search (IBD, inflammation, matrix

metalloproteinases, colitis-associated cancer, extracellular matrix,

dysplasia, biomarkers), alone and in combination, in the following

public databases: PubMed, ScienceDirect, and BioMed Central.

Included publications were reviewed critically, and the results

summarized in the following text and tables. We believe the results

of this approach yielded important information that can be used to

develop preliminary insights, but perhaps more importantly, identify

areas worthy of further basic and clinical investigation.
2 Matrix metalloproteinases

2.1 Subgroups of matrix metalloproteinases

The extracellular matrix (ECM), comprised of fibers constructed

from collagen, elastin, laminin, fibronectin, proteoglycans,
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glycoproteins, and polysaccharides, serves as a meshwork for tissue

development and maintenance, and plays a key role in cell migration

and adhesion (15).Matrix metalloproteinases (MMPs) represent a 24-

member family of zinc and calcium endopeptidases that degrade

structural macromolecules within the ECM. Non-ECM substrates for

MMPs include proenzymes and proinflammatory cytokines,

chemokines, and bacteria (16). MMPs are numbered from 1 to 28;

MMP-4, -5, and -6, subsequently recognized to beMMP-1, -2, and -3,

respectively, are omitted, and MMP-18 was likewise later recognized

to beMMP-19 (17–19). The first MMPwas isolated and characterized

in 1962 in a tadpole tail (20) and 26 years later, human fibroblast

stromelysin and type IV collagenase were discovered and found to

possess a wider range of substrate specificities (21, 22). Interest within

the scientific community continued to evolve as additional MMPs

were discovered and their role in disease, particularly cancer, became

apparent. The late 20th century and early 21st century witnessed

important advances in the characterization of MMPs, followed by

investigation into their roles as potential biomarkers and therapeutic

targets. This is especially due to advances in research tools, evolving

from protein isolation and purification to more advanced tools, e.g.,

gene cloning, transgenic mice, immunofluorescence microscopy, and

single cell RNA expression profiling.

MMPs are classified as collagenases, gelatinases, stromelysins,

matrilysins, metalloelastase, enamelysin, epilysin, and membrane-

type MMPs. The major difference between these enzymes is domain

organization and substrate specificity, illustrated in Figure 1. As

anticipated from a family of proteins, MMP structural similarity is

high. MMPs share three basic domains: the N-terminus domain, pro-

domain near the active site, and catalytic domain. Upon activation,

the N-terminus and pro-domain are cleaved. Whereas matrilysins

(MMP-7 and -26) have this basic organization, collagenases (MMP-1,

-8, -13), stromelysins (MMP-3, -10), metalloelastase (MMP-12),

enamelysin (MMP-20), and MMP-22 and -27 have an additional

hemopexin-like domain close to the C- terminus, which binds and

helps to orient the substrate correctly. MMPs differ broadly in

substrate specificity; collagenases cleave peptide bonds present in

collagen, stromelysins cleave a wider range of substrates

(proteoglycan, gelatin, fibronectin, lamin, and collagen),

metalloelastases degrade elastin, and, as its name implies,

enamelysin modulates enamel formation. Gelatinases (MMP-2, -9)

have fibronectin repeats around the catalytic site and primarily target

gelatin and type IV collagen. Membrane-bound MMPs possess either

an additional transmembrane peptide domain (MMP-14, -15, -16,

-24), or glycophosphatidylinositol (GPI)-anchoring domain (MMP-

17, -25) and have a basic amino acid motif at the C-terminus, that is

recognized and cleaved for activation by proprotein convertases.

Notably, MMP-23 contains a type II transmembrane domain and,

instead of the hemopexin domain common to otherMMPs, possesses

a small toxin-like domain and immunoglobulin-like cell adhesion

molecule domain that informs its unique properties in modulating

voltage-gated potassium activity and interactions with components of

the ECM and signaling molecules (23, 24). An overview of the MMP

substrates and physiological functions unrelated to CAC

development are included in Table 1.

Due to their involvement in a multitude of biological processes,

dysregulated MMP expression or function can broadly impact
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health and disease. MMP dysregulation is evident in fibrotic

diseases, vasculopathies, and tissue degradation that promote

cancer progression, ulceration, rheumatoid arthritis, osteoarthritis,

periodontal diseases, among a host of other conditions. For

example, poor wound healing is characterized by increased

MMP-9 expression, with significantly higher levels detected in

unhealed diabetic foot ulcers (53). As a consequence of their roles

in degrading the pericellular matrix, activating other MMPs, and

stimulating epidermal growth factor (EGF) receptor (EGFR)-

dependent cell motility and growth, many MMPs, including

collagenases, gelatinases, matrilysin, metalloelastase, and

membrane-bound MMPs, promote neoplasia – e.g., cellular

invasion and metastasis (23). By modulating chemokine and

cytokine activity and bacterial clearance, MMPs are involved in

initiating acute inflammatory responses after tissue injury.

Nonetheless, MMPs can have conflicting functions that either

attenuate or augment inflammation. For example, although

MMP-7 expressed in non-inflamed epithelium modulates

homeostasis, it can also act on syndecan-1 after its release by

endothelial cells, to establish a local post-injury chemokine

gradient that activates FAS ligand to trigger apoptosis (54, 55).
2.2 Cellular regulation of matrix
metalloproteinase activity

Because they play such key roles in modulating cell functions,

MMP activity must be tightly regulated at the transcriptional, post-

transcriptional, and proteomic levels (Figure 2). MMPs are

produced and secreted by many different cell types, including
Frontiers in Oncology 03
dermal fibroblasts, osteoblasts, and endothelial and inflammatory

cells. Typically located peri- or extracellularly, both secreted and

membrane-bound MMPs can also localize to intracellular sites (56).

MMP secretion can be stimulated by cytokines, including

proinflammatory cytokines (e.g., interleukins and interferons),

growth factors (e.g., EGF and acetylcholine), and physiochemical

agents (e.g., heat) (15, 57). Particular cell types evidence signal-

dependent activation and repression of MMP gene transcription by

processes involving mitogen-activated protein kinase (MAPK)-,

nuclear factor-kB (NF-kB)-, and Smad-dependent pathways.

Specific transcription factors such as AP-1, PEA3, Sp1, Tcf/Lef-1,

and NF-kB serve as cis-acting elements that can bind proximal to

the MMP promoter to induce expression. In 1987, AP-1 was the

first inducer implicated in MMP-1 expression (58).

MMPs are regulated post transcriptionally by micro(mi)RNAs,

a family of short non-coding RNAs that modify gene expression.

Dysregulated miRNA activity can alter cancer progression by

sustaining proliferative signaling or enhancing invasion and

metastasis (59). For example, Wu et al. showed that the tumor

suppressor p53 can induce miR-34a expression and, thereby,

downregulate MMP-1 and MMP-9, and attenuate cell migration

and invasion (60). Sun et al. demonstrated that increased miR-21

expression in serum from patients with CRC and in colon cancer

cell lines correlated with increased MMP-2, -9, and -11 expression

(61). Other miRNA-MMP-linked interactions impacting CRC

progression have been studied, including miR-139-MMP-2, miR-

146a-MMP-16 (62, 63).

After transcription, MMPs are synthesized as pre-proenzymes.

Following removal of the N-terminal signal sequence during

translation, each MMP exists in three forms: the inactive secreted
FIGURE 1

Schematic of MMP domain structures. These schematics of MMP subtypes illustrate the relative distribution of key domains that modulate their
structure and function. GPI, glycophosphatidylinositol. Created with BioRender.com.
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form or zymogen known as pro-MMP, active MMP, and inhibitor-

complexed MMP (64, 65). Pro-MMPs are secreted and activated by

proteolytic removal of the pro-domain by other MMPs, particularly

membrane-type MMPs, serine proteases, plasmin, or furin.

Activation via serine proteases can be regulated by inhibition of

plasma proteinase inhibitors, such as a1-proteinase (66). Once

activated, MMPs possess catalytic activity until they bind to two

major types of endogenous inhibitors, a2-macroglobulin and tissue

inhibitor of matrix metalloproteinases (TIMPs). a2-macroglobulin,

a protease inhibitor abundant in plasma, binds to MMPs

extracellularly, allowing for their removal by receptor-mediated

endocytosis (67). In turn, TIMPs, a family of four inhibitors

(numbered 1-4), regulate processes mediated by MMPs and

ADAMs (A Disintegrin And Metalloproteinase), another family

of zinc-dependent peptidases related to MMPs (68). Dysregulation

of the MMP : TIMP ratio can upregulate active MMP expression

and ECM damage (64). Recent data show that TIMPs also modulate

biological processes independent of MMP and ADAM activity,

adding additional complexity to their impact on tumor proliferation

and/or inhibition (69). TIMP-1 preferentially inhibits MMP-1, -3,

-7, and -9, and has stimulatory cellular properties (68, 70). TIMP-2

traditionally inhibits MMP-2 and -9, but, in aggressive cancers,
Frontiers in Oncology 04
TIMP-2 uniquely binds and activates pro-MMP-2 and MT1-MMP

to stimulate MAPK/ERK signaling (68, 71). Recently, Li et al.

identified elevated TIMP-2 expression in the serum of patients

with CRC resistant to 5-fluorouracil (5-FU), a possible biomarker of

5-FU resistance (72). TIMP-3 preferentially inhibits MMP-2 and

MMP-9. In mice, TIMP-3 deficiency leads to maladaptive ECM

remodeling, cardiomyocyte hypertrophy, and cardiac dysfunction

(73). Though less studied, TIMP-4 appears to inhibit MMP-26

preferentially as well as contribute to the proteolysis of a cell surface

fatty acid transporter, underlying its role in intestinal lipid

absorption (74, 75).
3 Colitis-associated colon cancer

3.1 Relationships between IBD and
colon cancer

IBD is associated with a two- to three-fold increased risk of

CRC, a major cause of IBD mortality and need for colectomy (76).

The frequency rate of CAC is 1.78% among IBD patients (2.1% for

ulcerative colitis and 1.5% for Crohn’s disease), while the rate of
TABLE 1 Overview of MMP substrates and physiological functions with currently unknown roles in the development of CAC.

MMP Alternate names Substrates Role Refs

MMP-
12

Metalloelastase,
macrophage elastase

Elastin, type IV collagen, laminin, fibronectin Macrophage recruitment; adipose tissue expansion;
directly bactericidal

(14, 25–27)

MMP-
15

MT2-MMP Collagen, fibronectin, laminin, gelatin, pro-
MMP-2 and -13

Cell migration, cytotrophoblast invasion (28–30)

MMP-
16

MT3-MMP Fibrin, pro-MMP-2 Cell migration (31)

MMP-
17

MT4-MMP Fibrinogen, pro-TNF, ADAMTS4, a-
2-macroglobulin

Cell proliferation, angiogenesis, limb development (32, 33)

MMP-
19

RASI-1, stromelysin-4 Collagen I, IV, gelatin, fibronectin Wound healing, epithelial proliferation (34–36)

MMP-
20

Enamelysin Amelogenin Tooth enamel development (37)

MMP-
21

N/A Gelatin, a1-antiptrypsin, aggrecan Embryogenesis, tumor progression (38–40)

MMP-
22

N/A Gelatin, casein Upregulated in coronary heart disease (41, 42)

MMP-
23

N/A Gelatin Modulates voltage-gated K+ channel trafficking (24, 43)

MMP-
24

MT5-MMP Fibronectin, pro-MMP-2 Modulates neural stem cell proliferation and
promotes neuroinflammation

(44–46)

MMP-
25

MT6-MMP Gelatin, collagen type IV, fibronectin,
laminin, pro-MMP-2

Respiratory burst of phagocytes, IL-18 secretion,
tumor progression

(33, 47, 48)

MMP-
26

Matrilysin-2, endometase Fibrinogen, fibronectin, vitronectin,
denatured collagen

Enterocyte migration, tumor progression (35, 49)

MMP-
27

N/A Unknown Regulation of menstruation (50)

MMP-
28

Epilysin Casein Role in tissue homeostasis (35, 51, 52)
TNF, tumor necrosis factor; CAC, colitis-associated cancer; Refs, references; N/A, not applicable.
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CRC is 1.23% in the general population (77). Notably, in line with

the decreasing mortality from CRC in the United States, the rates of

CAC incidence and mortality also appear to be declining. The latter

is likely impacted by the development of a wide array of novel

therapeutic modalities targeting the inflammatory cascade,

e.g., biologicals targeting tumor necrosis factor and the

immune response.

Key mechanistic differences that distinguish CAC from

sporadic CRC raise important questions regarding the need for a

distinct approach to prevention, surveillance, and management.

The driving force behind CAC is chronic inflammation, which

amongst other consequences, promotes DNA oxidative damage

that may alter the expression and function of genes identified as

tumor promotors and suppressors (12). The risk factors most often

associated with CAC reflect the influence of chronic inflammation,

including the anatomical extent of disease, the severity of

histological injury, and the cumulative inflammatory burden (78).

While the same molecular pathways that contribute to the

development of CRC are involved in CAC, including

chromosomal and microsatellite instability, the sequence of

common gene alterations differs considerably. In contrast to the

canonical CRC adenoma-carcinoma sequence, in CAC, p53

mutation is an early event, occurring even before the

development of dysplasia (79) (Figure 3). APC mutation, an early

event in CRC, occurs later in the development of CAC (79). The

presence of similar burden of mutations in non-dysplastic mucosa

adjacent to CAC suggests a primed field effect, which may explain
Frontiers in Oncology 05
high rates of synchronous and metachronous dysplasia in the same

region (80, 81). These differences may contribute to the difficulty

detecting epithelial dysplasia using colonoscopy in those with IBD.

While most dysplastic colonic lesions in IBD are visible on high-

definition white light endoscopic evaluation, their flatter

morphology can have a more subtle appearance than classical

adenomatous polyps that precede the development of CRC. Using

tools like dye-based and virtual chromoendoscopy can augment the

ability to detect dysplasia in CAC (82). Additionally, in IBD, the

rapid and recurrent development of dysplasia in primed

precancerous fields requires repeated surveillance colonoscopies at

shorter intervals than those recommended for screening for

sporadic CRC (83). The implementation of such dysplasia

surveillance protocols in IBD is also thought to be a key

contributor to the decreasing rates of CAC.

In IBD, concomitant primary sclerosing cholangitis (PSC)

greatly augments CAC risk. Compared to those with IBD alone,

the additional diagnosis of PSC confers an additional three- to five-

fold increased risk of developing CAC. The mechanisms leading to

this increased risk have not yet been clarified but may differ from

those underlying CAC in IBD alone. Proposed factors include

altered bile acid metabolism, intestinal or biliary dysbiosis, and

systemic immunological dysfunction (84). It is both interesting and

puzzling that colonic inflammation itself appears to be less

influential, as those with concomitant IBD and PSC who

develop CAC often have quiescent clinical, endoscopic, and

histologic disease.
FIGURE 2

Regulation of MMP activity. Constitutive MMP expression is augmented in response to external stimuli, e.g., physiochemical stress, growth factors
(GF), and cytokines (1), that incite intracellular signaling via mitogen activated protein kinase (MAPK), NF-kB, Smad, and others (2). MMP expression is
further modulated by transcription factors, notably AP-1 (3). MMP RNA is translated into a pre-propeptide (4), a process that can be up- and down-
regulated by microRNAs (miRNAs). Cleavage of the N-terminal signal peptide in the endoplasmic reticulum (ER) yields the pro-MMP zymogen, which
may undergo intracellular (e.g., cleavage by furin) and extracellular (e.g., cleavage by plasmin) modification (5). Cellular release of MMPs is also
regulated by stress, growth factors, and cytokines (6). Extracellular MMPs are activated by post-translational modifications (7), or by the action of
other, membrane-bound MMPs. MMP activity is also modulated by complexes formed with inhibitors, i.e., TIMPs and a2-macroglobulin (8). GF,
growth factors; TIMP, tissue inhibitor of metalloproteinase. Created with BioRender.com.
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Given the many mechanistic differences between CAC and

sporadic CRC, as well as the relative paucity of research on the

treatment of CAC compared to that of sporadic CRC, CAC presents

many challenges to treatment. Management of CAC includes

surgical intervention with administration of adjuvant

chemotherapy, like treatment of CRC (85, 86). Unfortunately,

patients with metastatic CAC fare more poorly than age- and

tumor type-matched patients with metastatic sporadic CRC, even

when treated with first-line chemotherapy regimens such as

FOLFOX or FOLFIRI (87). This underscores the need for

improved early disease detection, and for the development of

therapies that target not only the carcinogenic milieu of CRC but

also CAC’s hallmark inflammatory dysregulation (85). Even the

type of underlying IBD may influence disease outcome in CAC,

adding additional facets to consider in the search for meaningful

CAC biomarkers. For example, individuals with Crohn’s disease

had more advanced CAC stage at diagnosis than those with UC,

leading to poorer survival outcomes for Crohn’s-associated

colorectal cancer (88).
3.2 Roles of matrix metalloproteinases in
CAC pathogenesis

MMPs are involved in myriad cellular and extracellular

processes, including epithelial proliferation, ECM homeostasis,

angiogenesis, and response to inflammation. As such, they are a

topic of interest in cancer research, particularly CRC research.

There is a growing body of literature regarding the roles of

MMPs in the relatively more enigmatic CAC, and in pre-

cancerous IBD (Table 2). Given clear differences in the

pathogenesis and clinical features of CAC, compared to non-
Frontiers in Oncology 06
inflammatory CRC, in the following paragraphs, we summarize

the current literature on MMPs in CAC, an underdeveloped focus

of investigation.

Unlike sporadic colon cancer, CAC arises from chronic

inflammation-related DNA damage, with distinct mechanisms

and a significant role for immune dysregulation (12, 110). It is

not surprising that increasing IBD duration and severity pose

progressively increased CAC risk (111). During acute intestinal

inflammation, several MMPs are upregulated, most prominently

MMP-1, -8, -9, -10, -12, and -13; persistent overactivity of MMPs

impairs ECM integrity, which itself can exacerbate IBD, heralding

chronic inflammation and pre-cancerous DNA damage (Figure 1)

(112). Biopsies of IBD-related intestinal epithelial damage (ulcers)

reveal increased gene and protein expression of MMP-1, -2, -3, -7,

and -9, as well as MMP-10, and -14 that activate MMP-1 and -2

(113, 114). In vitro studies revealed that MMP-9 derived from

intestinal epithelial cells (but not from neutrophils) plays a key role

in the pathogenesis of colitis by inhibiting epithelial cell-ECM

interaction and wound healing; MMP-9 knockout mice are more

resistant to various types of induced colitis (115, 116).

The roles of MMP-9 in IBD and in CAC are of particular

interest. Although MMP-9 appears to facilitate pro-inflammatory

signaling in non-cancerous or pre-cancerous IBD, its actions may

oppose tumorigenesis in the setting of CAC. In a recent study

highlighting the applicability of big data methods to such questions,

investigators used a transcriptomic approach to find thatMmp9 and

Mmp3 were overexpressed in colitis, but not in CAC (13). Using

different approaches, others reported increased MMP-9 expression

in CAC tissue samples (99, 117). Decades of investigation by Garg

and colleagues uncovered potential mechanisms whereby MMP-9

regulates CAC by promoting caspase-3-dependent apoptosis,

restraining cell proliferation, and limiting DNA damage by
FIGURE 3

Overview of CAC pathogenesis. Many MMPs are over-expressed, and their activity upregulated in active colitis. MMP-induced mucosal damage,
inflammatory dysbiosis, early p53 mutation, and other results of DNA damage promote dysplastic changes. Because the inflammatory insult is
widespread, CAC exhibits field cancerization, and multiple malignant foci form in the affected tissue. As dysplasia progresses, the population of
colonic macrophages shifts toward the pro-inflammatory M1 macrophage subtype. Despite its membrane-degrading effects in colitis, MMP-9 is
consistently found to be downregulated in CAC and acts as a tumor suppressor. ECM, extracellular matrix; MSI, microsatellite instability. Created
with BioRender.com.
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reactive oxygen species (ROS) (118, 119). MMP-9 most likely

mediates enterocyte apoptosis and proliferation by activating

Notch-1, a transcription factor which gatekeeps the differentiation

of goblet cells and, in turn, activates the tumor suppressor p53

(120). In multiple models, inhibiting this pathway leads to increased

tumor number and grade. Both in vivo and in vitro, MMP-9 was

found to be involved in mismatch repair and amelioration of

oxidative stress in CAC (119). Thus, although MMP-9 promotes

inflammation in non-cancerous IBD via ECM degradation, by a

different mechanism, it acts as a tumor suppressor in CAC.

Furthermore, Timp1, which encodes a TIMP that preferentially

inhibits MMP-1, -3, -7, and -9, is overexpressed in colitis and CAC,

suggesting tight regulation of MMP activity in both disorders (13).

Other MMPs have been studied in the context of CAC, however

their roles remain largely obscure. Compared to ulcerative colitis

without dysplasia, MMP-7 expression is increased at the crypt bases

of CAC tissue and its expression is more widespread in high-grade

compared to low-grade dysplasia (93). It is possible that increased

MMP-7 expression in CAC may result from the loss of APC, which

occurs relatively later in the progression from inflammation-related

dysplasia to CAC. APC loss results in nuclear translocation of b-
catenin and activation of MMP-7 transcription via TCF-4, like the

mechanism underlying MMP-7 overexpression in sporadic CRC
Frontiers in Oncology 07
(121). In a transcriptomics study, the genes encoding MMP-7 and

MMP-13 were overexpressed in CAC but not in colitis. In contrast

to pre-omics era MMP expression data, this difference might be

attributable to the analysis of a different tissue type (13, 113).

Additional studies using in vivo models of colitis and CAC found

that the expression signature of colitis (i.e., Mmp3 and Mmp9)

versus that of CAC (i.e., Mmp7 and Mmp13) could predict the

development of CAC in mice with dextran sulfate sodium (DSS)-

induced colitis (13).

Koller et al. found that MMP-10-deficient mice were more

susceptible to DSS-induced colitis, a common experimental model

approximating UC, and their disease was more severe and

refractory to resolution. Moreover, MMP-10-deficient mice had a

higher burden of inflammation-associated colonic dysplasia,

suggesting that MMP-10 may protect against both colonic

inflammation and CAC (103).

MMP-11 mRNA expression is also upregulated in CAC

compared to normal tissue, and the positive correlation between

MMP-11 and b-catenin expression in intestinal crypts suggests the

mechanismmay be similar to that for MMP-7, i.e., APC loss in CAC

(117). Interestingly, in mice, treatment with the proton pump

inhibitor omeprazole prevented experimental CAC, with

concomitant decreases in MMP-11, MMP-9, and MMP-14 (aka
TABLE 2 Overview of MMPs with known roles in the development of colitis and/or CAC.

MMP Alternate
names

Substrates Role Involvement in CAC Refs

MMP-
1

Collagenase-1 Types I-III collagen Cell migration, reepithelization,
TNF activation

Upregulated in UC and CD; involvement in
CAC unknown

(89)

MMP-
2

Type IV
collagenase,
gelatinase A

Collagen, gelatin Neurite outgrowth, cell migration Assists in epithelial barrier maintenance to prevent
initiation of colitis

(22, 89)

MMP-
3

Proteoglycanase,
stromelysin-1

Proteoglycan, casein,
fibronectin, laminin

Adipocyte proliferation,
antithrombotic activity,
wound healing

Upregulated in UC (90–92)

MMP-
7

Matrilysin-1 Gelatin, laminin,
fibronectin,
vitronectin,
and elastin

CRC metastasis,
adipocyte differentiation

Upregulated in IBD-associated dysplasia (89, 93–96)

MMP-
8

Collagenase-2 Fibrils of types I-
III collagen

Involved in
neutrophilic infiltration

Upregulated in UC (97, 98)

MMP-
9

Gelatinase B Gelatin,
collagen, elastin

Trophoblastic invasion, neo-
vascularization, macrophage and
neutrophil activation

Mediates inflammation in colitis; attenuates tumorigenesis
in CAC

(99–102)

MMP-
10

Stromelysin-2 Proteoglycan, casein,
fibronectin, laminin

Wound healing Resolution of inflammation; MMP-10 deletion increases
murine CAC burden

(103, 104)

MMP-
11

Stromelysin-3 Serpins, e.g., a2-
macroglobulin, a1-
proteinase inhibitors

Adipocyte de-differentiation,
desmoplastic reaction in cancer-
adjacent tissue, early
tumor invasion

Attenuated CRC cell apoptosis in MMP-11-deficient mice;
expression reduced by infliximab treatment in a murine
IBD model, suggesting a contributory role in CAC

(105–108)

MMP-
13

Collagenase-3 Fibrils of type I-
III collagen

Osteoclast and TNF activation Associated with increased intestinal permeability upon
inflammation, and upregulated in colitis

(89, 109)

MMP-
14

MT1-MMP Collagen type I-III,
gelatin, CD44, pro-
MMP-2, -8, and -13

Cell migration,
cytotrophoblast invasion

Upregulated in cancer-associated fibroblasts found in CAC (65, 96)
fr
TNF, tumor necrosis factor; UC, ulcerative colitis; CD, Crohn’s disease; CAC, colitis-associated cancer; IBD, inflammatory bowel disease; Refs, references.
ontiersin.org

https://doi.org/10.3389/fonc.2023.1325095
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Sampaio Moura et al. 10.3389/fonc.2023.1325095
MT1-MMP) and colon inflammatory markers. While attempting to

induce experimental CAC, the same group found similar decreases

in MMP-11 and -9 expression and activity in mice treated with

infliximab, an anti-TNF-a medication used in IBD (105). Little else

is known about the role of MMP-11 in CAC.
3.3 MMPs as potential biomarkers

The dynamic levels of selective MMP expression in

inflammation and disease progression, including CRC, make

them attractive biomarker candidates. Different methods of

analysis such as ELISA, zymography, mass spectrometry, and

cytology are used to detect MMPs in plasma, serum, urine, and

tissue samples (122, 123). Incidentally, it is important to pay

attention to sample collection – differences in MMP

concentration values are reported depending on sample type (e.g.,

higher in serum compared to plasma) (124).

The utility of MMPs to mark disease status was studied in

different contexts, including COVID-19 infection, cardiovascular

disease, IBD, and cancer. In sera from 156 patients hospitalized with

COVID-19 and respective controls, Gelzo et al. detected a

significant increase in MMP-3 in early infection and increased

MMP-9 levels throughout the course of disease (125). In a

prospective study of 1127 patients with coronary artery disease,

Blankenberg et al. reported an increase in plasma MMP-9 levels,

deeming it a possible predictor of cardiovascular mortality (126).

Regarding inflammation, Yoblecovitch et al. noted that serum

MMP-9 levels predicted a clinical flare in patients with quiescent

Crohn’s disease (127). Lastly, in CRC, elevated levels of MMP-2,

MMP-9, and MMP-13 were observed in plasma and cancer biopsy

samples (128–130). Together, these proofs of principle suggest that

specific MMPs can be used to gauge disease status and intestinal

inflammation, thus highlighting their potential use as

clinical biomarkers.
4 Clinical therapies targeting MMPs
in CAC

4.1 Approaches to targeting MMPs

MMPs are increasingly of interest as therapeutic targets for

several disorders, including complications of diabetes (e.g., diabetic

retinopathy (131) and foot ulcers (132)), and ischemic heart injury

(133). Both natural (i.e., TIMPs) and synthetic MMP inhibitors

have been pursued as therapeutic agents. In early studies, TIMPs

were of great interest as natural inhibitors, particularly given their

aberrant expression in multiple cancer types (134). Unfortunately,

the lack of effective and selective delivery methods and increased

TIMP levels in several cancers complicate their use. TIMP size and

structure make tissue penetration and targeted delivery difficult, and

once administered, they are prone to rapid degradation. Further,

there is an inverse correlation between survival and TIMP levels.

Although the rise in TIMP levels is likely due to a concurrent rise in
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MMP levels, their failure to impact tumor progression suggests that

exogenous TIMPs are unlikely to have therapeutic efficacy (135),

even though they may synergize with synthetic MMP inhibitors

(MMPIs) (136). Neovastat, a compound derived from shark

cartilage, targets MMP-2 while also blocking VEGF signaling.

Neovastat has only been explored for non-GI metastatic cancers

(e.g., breast, prostate, kidney, and lung (137)), but its dual

mechanism of action increases the likelihood of success beyond

phase III clinical trials. Combined with its excellent safety profile,

these features suggest Neovastat may be an attractive candidate to

target cancers in which MMP-2 is an important player (138).

Synthetic MMPIs are generally categorized as broad-spectrum

peptidomimetics, non-peptidomimetics, tetracycline derivatives,

and bisphosphonates (139). Peptidomimetics are collagen-

mimicking pseudopeptides that gained traction as potential

inhibitors, though they have not yet succeeded in phase III

clinical trials. The archetype, Marimastat, efficaciously targets

MMP-1, -3, -7, and -9 and dose-dependently reduced

carcinoembryonic antigen (CEA) levels in recipients with CRC

(140). Although Marimastat’s excellent oral bioavailability and

success in phase III trials were favorable, the lack of extended

overall survival and continued tumor progression diminished

enthusiasm (139). Synthetic MMPIs may provide benefit when

used in combination with other therapies; for example, TIMP-2

synergistically enhances the effects of Marimastat (136).

Synthetic non-peptidomimetics, described in more detail below,

provide an alternative therapeutic avenue. Their development

resulted from an attempt to increase oral bioavailability and

improve pharmacokinetic properties of peptidomimetic

compounds (141). Many are specific to MMP-2, -3, and -9, such

as Prinomostat’s targeting of MMP-2, -3, -9, -13, and -14 and

Tanomastat’s targeting of MMP-2, -3, and -9 (142). Tetracycline

derivatives, such as Periostat and Metastat, inhibit both the

production and secretion of MMP-2 and -9 (143, 144), however,

because of their toxicity at therapeutic doses, greater tissue

specificity is required for successful drug development.

Another approach utilizes miRNAs to modify the action of

MMPs indirectly. Multiple potential points of intervention exist,

including at the level of MMP secretion, enzymatic activity, and

expression. An example pursued in sporadic CRC is miR-34a, a

miRNA downregulated in several digestive cancers that

transcriptionally targets p53 (60). Treatment of colon cancer cells

with miR-34a reduced MMP-1 and -9 protein levels and decreased

proliferation and invasion in vitro (60). However, targeted delivery

of miRNAs remains challenging. A potential strategy is to target

tissues that exhibit increased MMP activity using polyplexes of

miRNA and MMP-responsive polyethylene glycol (PEG) shields,

which can deshield in the presence of high MMP levels. miR-34a

has been successfully polyplexed to MMP-2-responsive PEGylated

polyethyleneimine (PEI), a complex in which PEG shields PEI, but

can be cleaved by MMP-2. Compared to treatment with non-

PEGylated PEI and miRNA, application of this MMP-cleavable

system increases cellular co-uptake of the PEGylated PEI and

miRNA, and improves metrics of anti-cancer activity in vitro and

in vivo (145, 146).
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4.2 Synthetic MMP inhibitors

The 1990s witnessed great interest in the therapeutic potential

of synthetic MMPIs for cancer. Theoretically, synthetic MMPIs

offered a narrower spectrum of MMP inhibition compared to their

predecessors, and might therefore target specific MMPs and avoid

off-target toxicity. The earlier synthetic MMPIs were typically small

molecule inhibitors which targeted the MMP active site using zinc

binding groups on a peptide backbone (147). Aside from poor

MMP selectivity, low efficacy and musculoskeletal side effects

prevented these small molecule inhibitors, including Batimastat

and Marimastat, from advancing through clinical trials for CRC

(148, 149). Later, the use of transition state analogs and of targeting

multiple MMP structural features, e.g., the variable S1’, S2, and S3

subsites and exosite domains, improved substrate selectivity (148,

150, 151).

In the early 2010s, another avenue in MMPI drug development

emerged: allosteric regulation. In a proof of principle, Udi et al.

developed two branched amphiphilic molecules capable of binding

to “hidden regulatory sites” unique to MMP-12 and MMP-14,

thereby disrupting the geometric conformation of these MMPs

and their function, without the need for a less specific zinc binding

group (152). Soon thereafter, synthetic allosteric inhibitors and

inhibitory antibodies were developed to target MMPs implicated in

disease. In a murine model, AB0041, an antibody which

noncompetitively inhibits MMP-9 with high specificity,

attenuated colon cancer xenograft growth and metastasis (153).

The humanized form of AB0041, GS-5745 (Andecaliximab), had

equivalent potency and selectivity and completed Phase I clinical

trials for UC and advanced solid tumors, including CRC, but has

not been studied in CAC (153–155). Notably, Andecaliximab is the

only MMP-targeting monoclonal antibody that has undergone

clinical trials (149). As noted by others, MMPs may be more

active in the pre- and peri-metastatic phases of disease. Hence,

studying MMPIs only in advanced (i.e., metastatic) cancer may miss

interventional opportunities; perhaps including early-stage cancers

in MMPI trials would yield more favorable results (156).
4.3 Challenges in clinical application

Promising avenues for the use of MMP inhibitors in CRC

treatment are well established, but general challenges in their

clinical use warrant discussion. As discussed in section 2, the

development of specific MMP inhibitors was complicated by the

hard-to-define role certain MMPs had in inflammatory disease

progression, along with general substrate redundancy and high

structural homology (147). Broad spectrum MMPI use encountered

challenges such as low bioavailability, a poor metabolic profile, and,

as in the case of Marimastat, limiting musculoskeletal side effects

(157). Administration of non-pepdomimetic compounds also led to

variable effects in cell proliferation and adverse reactions. For

example, in phase III clinical trials for non-small lung cancer,

determining the dosage and timing of Tanomastat administration

proved problematic (158). Tetracycline derivatives such as Metastat,
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trialed for advanced solid tumors, were associated with severe

toxicity, including photosensitivity skin reactions, showing that

greater tissue selectivity is required (159).

Over time, more selective MMPIs were developed via NMR and

X-ray crystallography methods to identify less conserved binding

sites, such as cavities formed specific to individual enzymatic

structures (158). As novel MMPIs progress through clinical trials,

fewer challenges pertaining to delivery or heterogeneous effects are

noted. For example, in a randomized phase I/II study in psoriasis,

the adverse effects of Neovastast, used to inhibit MMP-2 and VEGF,

were mainly nausea and diarrhea (160). As observed in phase Ib and

phase II/III clinical studies for ulcerative colitis and rheumatoid

arthritis, selective MMP-9 inhibition using the monoclonal

antibody Andecaliximab also has a generally safer side-effect

profile. In these trials, test subjects exhibited modest adverse

events requiring only observation or minimal interventions (161,

162). As we consider challenges in their therapeutic use, in addition

to efficacy and safety concerns, the high cost of monoclonal

antibodies and similar advanced approaches should be considered.
5 Conclusions and future directions

As a consequence of chronic inflammation, colitis increases the

risk of developing CAC, underscoring the importance of

understanding the pathology of chronic inflammation-induced

CRC (163). Although previously thought to participate only in

ECM degradation, MMPs are now recognized to be directly

involved in the development and sustenance of inflammatory

states, including those that underlie both Crohn’s and ulcerative

colitis. Yet, despite advances reviewed here, large gaps in knowledge

exist regarding the role MMPs play in both CAC and the chronic

inflammation that precedes and promotes CAC. There is a

concordant lack of information regarding the potential utility of

MMP inhibitors to treat these disorders.

The upregulation of specific MMPs, like MMP-1, -2, -3, and -7,

in intestinal inflammation and IBD implicates not only their

contribution to the development of CAC but also their potential

as biomarkers to identify increasing dysplasia and incipient

neoplasia. In contrast, other MMPs, like MMP-10, appear to be

protective, auguring a more favorable prognosis. Some, like MMP-

9, play seemingly context-dependent dual pro-inflammatory and

anti-tumorigenic roles. Thus, prospectively testing the value of

individual MMPs or a panel of MMPs in blood and tissue

samples to gauge their value as biomarkers for dysplasia and

incipient neoplasia appears to be a worthy avenue of investigation.

This comprehensive review of MMP involvement in CAC

pathogenesis and potential therapeutic approaches targeting

MMPs, emphasizes the need for continuing research focused on

unraveling the pathways whereby different MMPs exert their

actions. For example, further work is needed to unravel the

pathways that modulate selective MMP upregulation after

muscarinic agonism in colon cancer, how this interplay

contributes to an invasive phenotype, and its importance for the

development and progression of CAC. Another potential avenue is

to use this information to develop a panel of MMPs that can be
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tested in primary tumors to gauge the potential for advancing

disease, the need for adjuvant therapy, and the likelihood of

response to conventional chemotherapeutic regimens. Lastly,

continuing attention must be devoted to exploring the growing

therapeutic applications of MMP inhibitors, particularly as they

relate to the management of IBD and CAC in those with an MMP

profile predictive of aggressive disease.
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39. Zakiyanov O, Kalousová M, Zima T, Tesar ̌ V. Matrix metalloproteinases and
tissue inhibitors of matrix metalloproteinases in kidney disease. Adv Clin Chem (2021)
105:141–212. doi: 10.1016/bs.acc.2021.02.003

40. Snoek-van Beurden PA, Von den Hoff JW. Zymographic techniques for the
analysis of matrix metalloproteinases and their inhibitors. Biotechniques (2005) 38
(1):73–83. doi: 10.2144/05381RV01

41. Jin DY, Liu CL, Tang JN, Zhu ZZ, Xuan XX, Zhu XD, et al. Interleukin-18,
matrix metalloproteinase-22 and -29 are independent risk factors of human coronary
heart disease. J Zhejiang Univ Sci B (2017) 18(8):685–95. doi: 10.1631/jzus.B1700073

42. Yang M, Kurkinen M. Cloning and characterization of a novel matrix
metalloproteinase (MMP), CMMP, from chicken embryo fibroblasts. CMMP,
Xenopus XMMP, and human MMP19 have a conserved unique cysteine in the
catalytic domain. J Biol Chem (1998) 273(28):17893–900. doi: 10.1074/jbc.273.28.17893

43. Fonseca-Camarillo G, Furuzawa-Carballeda J, Martıńez-Benitez B, Barreto-
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