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The field of histopathological image analysis has evolved significantly with the

advent of digital pathology, leading to the development of automated models

capable of classifying tissues and structures within diverse pathological images.

Artificial intelligence algorithms, such as convolutional neural networks, have

shown remarkable capabilities in pathology image analysis tasks, including tumor

identification, metastasis detection, and patient prognosis assessment. However,

traditional manual analysis methods have generally shown low accuracy in

diagnosing colorectal cancer using histopathological images. This study

investigates the use of AI in image classification and image analytics using

histopathological images using the histogram of oriented gradients method.

The study develops an AI-based architecture for image classification using

histopathological images, aiming to achieve high performance with less

complexity through specific parameters and layers. In this study, we investigate

the complicated state of histopathological image classification, explicitly

focusing on categorizing nine distinct tissue types. Our research used open-

source multi-centered image datasets that included records of 100.000 non-

overlapping images from 86 patients for training and 7180 non-overlapping

images from 50 patients for testing. The study compares two distinct

approaches, training artificial intelligence-based algorithms and manual

machine learning models, to automate tissue classification. This research

comprises two primary classification tasks: binary classification, distinguishing

between normal and tumor tissues, and multi-classification, encompassing nine

tissue types, including adipose, background, debris, stroma, lymphocytes,

mucus, smooth muscle, normal colon mucosa, and tumor. Our findings show

that artificial intelligence-based systems can achieve 0.91 and 0.97 accuracy in

binary and multi-class classifications. In comparison, the histogram of directed

gradient features and the Random Forest classifier achieved accuracy rates of

0.75 and 0.44 in binary and multi-class classifications, respectively. Our artificial

intelligence-based methods are generalizable, allowing them to be integrated

into histopathology diagnostics procedures and improve diagnostic accuracy

and efficiency. The CNN model outperforms existing machine learning

techniques, demonstrating its potential to improve the precision
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and effectiveness of histopathology image analysis. This research

emphasizes the importance of maintaining data consistency and applying

normalization methods during the data preparation stage for analysis. It

particularly highlights the potential of artificial intelligence to assess

histopathological images.
KEYWORDS

data science, image processing, artificial intelligence, histopathology images,
colon cancer
1 Introduction

Histopathological image analysis is a fundamental method for

diagnosing and screening cancer, especially in disorders affecting

the digestive system. It is a type of analysis used to diagnose and

treat cancer. In the case of pathologists, the physical and visual

examinations of complex images often come in the form of

resolutions up to 100,000 x 100,000 pixels. On the other hand,

the method of pathological image analysis has long been dependent

on this approach, known for its time-consuming and labor-

intensive characteristics. New approaches are needed to increase

the efficiency and accuracy of pathological image analysis. At this

point, the digital pathology of this particular field has been

completed. Digitization of high-resolution histopathology

photographs allows comprehensive analysis using complex

computational methods. As a result, there has been a significant

increase in interest in medical image analysis for creating automatic

models that can precisely categorize relevant tissues and structures

in various clinical images. Early research in this area focused on

predicting the malignancy of colon lesions and distinguishing

between malignant and normal tissue by extracting features from

microscopic images. Esgiar et al. (1) analyzed 44 healthy and 58

cancerous features obtained from microscope images. As a result of

the analysis, the percentage of occurrence matrices used equals

ninety percent. The first steps form the basis for more complex

procedures that integrate rapid image processing techniques and

the functions of visualization software. Digital pathology has

recently emerged as a widespread diagnostic tool, primarily

through artificial intelligence algorithms (2, 3). It has

demonstrated impressive capability in processing pathology

images to be advanced (4, 5). Advanced techniques, identification
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of tumors, detection of metastasis, and assessment of patient

prognosis are utilized regularly. Through the utilization of this

process, the automatic segmentation of pathological images,

generation of predictions, and the utilization of relevant

observations from this complex visual data were planned (6, 7).

Convolutional neural networks (convolutional CNNs) have

received significant focus among various machine learning

techniques in artificial intelligence, which are the techniques that

are being utilized. As a result of the application of deep learning in

previous biological research, it has been extensively accepted and

used (8–10). The CNNs distinguish themselves from others because

of their extraordinary accuracy, generalization capacity, and

computational economy. Each patient’s histopathology photographs

contain important quantitative data, known as hematoxylin-eosin

(H&E) stained tissue slides. Attractively, Kather et al. (11) have

explored the potential of CNN-based approaches to predict disease

progression directly from the available H&E images. In a

retrospective study, their findings underscored CNN’s remarkable

ability to assess the human tumor microenvironment and

prognosticate outcomes based on the analysis of histopathological

images. This breakthrough showcases the transformative potential of

artificial intelligence methodologies in revolutionizing the field of

medical image analysis, offering new avenues for efficient and

objective diagnostic and prognostic assessments.

On the other hand, in the literature, manual analysis methods

are also available to classify and predict disease outcomes using the

H&E images. When comparing the AI-based algorithms, traditional

manual analysis generally performs lower. It is highlighted in the

literature that the performance of traditional methods LBP and

Haralick is poor (12, 13). These studies emphasized that deep

learning is more effective in diagnosing colorectal cancer using

histopathology images and that traditional machine learning

methods are poor. The accuracy of LBP is 0.76 percent, and

Haralick’s is 0.75. In this context, since methods such as LBP and

Haralick showed low accuracy in the literature, we decided to adopt

an approach other than these two methods. We chose to carry out

this study with the HOG (Histogram of Oriented Gradients)

method. Unlike other studies in the literature, we performed

analysis using HOG features for the first time in this study. Our

choice offers an alternative perspective to traditional methods and
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deep learning studies. The results obtained using HOG features

make a new contribution to the literature. This study offers a unique

perspective to the literature by highlighting the value of analysis

using HOG on a specific data set.

Table 1 provides an overview of manual analysis and AI-based

studies from various literature sources. In a study by Jiang (14), a

high accuracy rate of 0.89 was achieved using InceptionV3 Multi-

Scale Gradients and Generative Adversarial Network for classifying

colorectal cancer histopathological images. Kather et al. (6) resulted

in an accuracy metric of 0.87% using texture-based approaches,

Decision trees, and SVMs to analyze tissues of multiple classes in

colorectal cancer histology. Other studies include Popovici et al.

(15) 0.84% with VGG-f (MatConvNet library) for the prediction of

molecular subtypes, 0.84% with Xu (16) CNN for the classification

of stromal and epithelial regions in histopathology images, 0.83%

with Mossotto (17) Optimized SVM for the classification of

inflammatory bowel disease. Tsai (19) has 0.80% accuracy metrics

with CNN for detecting pneumonia in chest X-rays. These results

show that artificial intelligence-based classification studies generally

achieve high accuracy rates. The primary emphasis of these studies

revolves around artificial intelligence methods employed in

analyzing histopathological images, with a particular focus on

convolutional neural networks (CNNs). These networks have

demonstrated exceptional levels of precision in a wide range of

medical applications. These algorithms have demonstrated
Frontiers in Oncology 03
remarkable outcomes in cancer diagnosis and screening domains.

CNNs provide substantial benefits compared to conventional

approaches, owing to their ability to handle and evaluate intricate

histological data. These methods excel in their capacity to detect

patterns, textures, and structures in high-resolution images, thereby

complementing or, in certain instances, even substituting the

human review processes of pathologists. The promise of these AI-

based techniques to change the field of medical picture processing is

well acknowledged.
2 Materials and methods

2.1 Dataset

Our research was based on the use of two separate datasets,

carefully selected and prepared for use as our training and testing sets.

We carefully compiled the training dataset (NCT-CRC-HE-100K)

from the pathology archives of the NCT Biobank (National Center

for Tumor Diseases, Germany), including records from 86 patients.

The University Medical Center Mannheim (UMM), Germany (11,

21). Generated the testing dataset using (NCT-VAL-HE-7K) dataset.

It included data from 50 patients. We obtained the datasets from

open-source photographs after carefully removing them from

formalin-fixed paraffin-embedded tissues of colorectal cancer. The

dataset we used for training and testing consisted of 100,000 high-

resolution H&E (hematoxylin and eosin) images.

From these images, we selected 7180 non-overlapping sub-

images, also known as sub-images. Each of these sub-images

measures 0.5 microns in thickness and boasts dimensions of

224x224 pixels. The richness of our dataset is further highlighted

by the inclusion of nine distinct tissue textures, each encapsulating

the subtle difficulties of various tissue types. These encompass a

broad spectrum, from adipose tissue to lymphocytes, mucus, and

cancer epithelial cells. Table 2 meticulously presents the distribution

of images within the test and training datasets, segmented by their

respective tissue classes. For instance, we meticulously assembled a

training dataset featuring a robust 14.317 samples within the

colorectal cancer tissue class. Simultaneously, the testing dataset
TABLE 2 The number of H&E images in the test and training set used in
the study.

Classes Number of Training Number of Tests

ADI 10.407 1.338

BACK 10.566 847

DEB 11.512 339

LYM 11.557 634

MUC 8.896 1.035

MUS 13.536 592

NORM 8.763 741

STR 10.446 421

TUM 14.317 1.233
TABLE 1 Overview of the literature manual analysis and AI-
based studies.

Author Aim of Research Method
Accuracy
Metrics

Jiang (14)
Colorectal cancer
histopathological

images classification

InceptionV3
Multi-Scale
Gradients
Generative
Adversarial
Network

0.89

Kather
(6)

Analysis of multiple
classes of textures in

colorectal cancer histology

Texture-based
approaches
Decision

trees, SVMs

0.87

Popovici
(15)

Prediction of
molecular subtypes

VGG-f
(MatConvNet

library)
0.84

Xu (16)

Classifying the stromal
and epithelial
sections of

histopathology pictures

CNN 0.84

Mossotto
(17)

Classification of
inflammatory
bowel disease

Optimized SVM 0.83

Sena (18) Tumor tissue classification
Custom CNN
(4CL, 3FC)

0.81

Tsai (19)
Chest X-ray

pneumonia detection
CNN 0.80

Shapcott
(20)

Classification of nuclei
CNN based on
Tensorflow

“ciFar” model
0.76
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for this class comprises 1.233 samples. These detailed statistics play

a crucial role in providing readers with a comprehensive

understanding of the data distribution and the relative sizes of

each class within the study, forming the foundation for our

subsequent analyses and model development.

All images in the training set were normalized using the

Macenko method (22). Figure 1 describes the effect of Macenko

normalization on sample images. The torchstain library (23), which

supports a PyTorch-based approach, is available for color

normalization of the image using the Macenko method.

Figure 1A represents this method’s target/reference image,

while Figure 1B represents the source images. Macenko

normalization aims to make the color distribution of the source

images compatible with the target image. In the example shown in

the figure, the result of the normalization process applied on the

source images (Figure 1B), taking the target image (Figure 1A) as a

reference, allows us to obtain a more consistent and similar color

profile by reducing color mismatches, as seen in Figure 1C. This will

make obtaining more reliable results in machine learning or image

analytics applications possible. Normalization was performed on

the dataset on which the model was trained, and applying this

normalization to the test set can increase the model’s generalization

ability. However, the test set represents real-world setups and

consists of images routinely obtained in the pathology

department. Therefore, since these images wanted to train a

clinically meaningful model with different color conditions, they

were not applied to the normalization test set. In this way, we also

investigated the effect of applying color normalization on classifying

different types of tissues. The original data set shown in Figure 2

first row from nine different tissue samples has substantially

different color stains; however, Figure 2 second row shows their

normalized versions. These images are transformed to the same

average intensity level.
2.2 Manual analysis algorithm

In traditional manual analysis, the classification process was

emphasized by extracting HOG (Histogram of Oriented Gradient,

Histogram of Directional Gradients) features. HOG features
Frontiers in Oncology 04
represent a class of local descriptors that extract crucial

characteristics from images and videos. They have found typical

applications across various domains, encompassing tasks such as

image classification, object detection, and object tracking (24, 25).

The following parameters were used to extract HOG features:

The number of orientations is 9. This is the number of gradient

directions calculated in each cell. The cells per pixel are: Each cell

consists of 10x10 pixels. The blocks per cell: Each block contains

2x2 cells. Rooting and Block Normalization: Using the

`transform_sqrt=True` and `block_norm=“L1”` options, rooting

and L1 norm-based block normalization were performed to reduce

lighting and shading effects. The resulting features are more robust

and amenable to comparison, especially under variable lighting

conditions. This can improve the model’s overall performance in

image recognition and classification tasks. Using these parameters

increases the efficiency and accuracy of the HOG feature extraction

process, thus ensuring high performance in colorectal cancer

tissue classification.

We chose HOG features, one of the local descriptors, because

HOG processes the image by dividing it into small regions called

cells. As illustrated in Figure 3, the cells are created with the original

images. In the created cells, the gradients of the pixels in the x-

direction (Sx) and the y-direction (Sy) are calculated using Equation

1. The gradient direction q is computed using the computed

gradients in Equation 2 (26).

S =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S   2x + S   2y

q
(1)

q =   tan−1
Sx
Sy

 !
(2)

After calculating the gradients, the histograms are calculated,

and these histograms are combined to form blocks. Normalization

is performed on the blocks to avoid lighting and shading effects. The

study involved a comprehensive analysis of the image set, where all

images were initially standardized to a dimension of 224x224. This

standardization was conducted to enhance the classification

performance of the features derived from these images. To

achieve this, a bilinear interpolation method was applied, resizing

the images to a standardized dimension 200x200. The decision to
B CA

FIGURE 1

(A) Target/reference image, (B) source image, and (C) normalized source image.
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reduce the image dimensions from 224x224 pixels to 200x200 pixels

was taken to optimize the calculation time. In particular, a 224x224

image produces 7200 feature vectors, while a 200x200 image

performing the same process produces 5832 feature vectors. The

feature vector formula is explained as follows (Equation 3).

Feature vector size

= N  � W
CW

− CpBX + 1

� �
� H

CH
− CpBy + 1

� �

� Orientations� CpBx � CpBy   (3)

In Equation 3, N is the number of pixels in the image, W and H

are the image’s width and height, respectively, CW cell weight and

CH cell height defines cell dimensions, CpBx and CpBy are the

number of cells per block, representing the number of directions

calculated for each cell in the HOG feature vector. Not only does

dimensionality reduction have the advantage of reducing

computational time, but smaller-sized feature vectors can

potentially reduce memory usage and the overall complexity of

the model. This is due to optimizing model training and prediction

times, especially when working on large data sets.

This study preferred the Random Forest (RF) algorithm as the

machine learning model for colorectal cancer tissue classification.

RF is one of the ensembles learning methods and creates a robust

and generalizable model by combining multiple decision trees. The

main reason for this choice is that RF performs highly on different

data sets. It can work effectively on complex and multidimensional

data sets. RF can operate effectively on large data sets and high-

dimensional feature spaces. RF is resilient to noise and anomalies in

the data set. It can also evaluate relationships between variables,

increasing the stability of the model. RF can deal with overfitting

problems, preventing the model from overfitting the training data.

These features support the suitability of the RF algorithm for

colorectal cancer tissue classification. As a result of preliminary

tests and analyses, it was decided that RF was the most suitable

model. This choice is intended to obtain reliable results.
Frontiers in Oncology 05
RF applications are practical biomedical imaging and tissue

analysis tools with features such as high-dimensional data

processing ability, accuracy, and robustness. Challenges to this

implementation, such as computational efficiency, potential

overfitting, and especially interpretability and explainability, are

also significant. It was stated that the algorithm was possible and

was considered to increase security, especially for the future of

medicine and clinical research. It is interesting to note that

comprehensive feature selection plays a critical role in learning

and comprehensively makes the consolidated results more accurate

and robust. This is extremely important in increasing efficiency in

medicine and clinical research (27, 28).
2.3 AI-based automation

In this study, a remarkable CNN architecture was developed for

the image classification problem. The developed model aimed to

achieve high performance with less complexity through specific

parameters and layers. We used a simple CNN-based architecture

and trained it using the same H&E images, the same data we used in

the manual analysis part. We aim to compare the performance of

manual analysis and AI-based automation methods in classifying

colorectal cancer tissue images. Table 3 shows the parameter and

structure information of the CNN model.

In the manual analysis section, steps were taken to extract

features from images and train the model using these features.

Nevertheless, we used images directly as input in the AI automation

part, then created a model suitable for the purpose and carried out

the training process. In the AI automation approach, we used local

filters, intermediate steps, and a multilayer artificial neural network

model to train the base CNN model (Table 3) (10). This table

explains the layers, structures, and hyperparameters of the CNN

model used in the AI automation section. This model includes

direct use of images and essential operations such as sequential

convolution, batch normalization, and ReLU activation. Finally, it
FIGURE 2

First row represents Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colonic
mucosa (NORM), cancer-associated stroma (STR), colorectal adenocarcinoma epithelium (TUM) and the second row data set was obtained by
applying normalization to the same tissue examples.
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uses the classification of results with softmax activation and a cross-

entropy-based loss function. This model reflects a complex

structure aimed at classifying colorectal cancer tissue images. This

approach has played an important role in comparing the

performance of manual analysis and AI automation methods.

This AI automation model is designed to extract and classify

features in histopathological images. In the first layer, the model

gets input from color (RGB) images of 28x28 pixels. Input images

are processed with ‘zscore’ normalization, which brings the mean of

the data to zero and its standard deviation to one. The model’s

architecture then includes a series of convolutional layers, batch

normalization, and ReLU activation functions. Convolution layers

move over the image to extract feature maps and highlight

important features. Batch normalization helps train the network

faster and provides more stable performance. ReLU activation

functions filter out negative pixel values, increasing the learning

ability of the model. Maximum pooling layers shrink the feature

maps and increase the model’s scalability. As a result of these layers,
Frontiers in Oncology 06
the model includes high-level features such as learning and

increasing complexity. Finally, the model uses fully connected

layers to assign learned features to specific classes and uses the

softmax activation function to make the results more consistent.

On the other hand, its existence allows a probability

distribution to be provided for each class. The cross-entropy

loss function optimizes the learning of the model with accurate

classification labels and manual analysis techniques, which are

examples of techniques that can be used to optimize the process.

As a result of this model, AI automation can improve feature

extraction and classification capabilities in histopathology image

classification tasks.

The study selected parameters to train the model based on

starting values commonly accepted in the literature (29). In the

early stages of the training process, researchers attempted to achieve

gradual improvement by choosing a varying initial learning rate.

The researchers determined that the maximum number was fifty

and presented the maximum number as one hundred, allowing the

model to follow the training data over a long period. At each epoch,

the model rearranged the training data to produce a more

comprehensive and independent representation unaffected by

prior learning. We chose a batch size ranging from 32 to 64 to

ensure uniform processing of the samples. We used these

parameters to select validation data and determine the evaluation

frequency. Continuous evaluation of the model throughout the

training process is not only guaranteed but also guaranteed. By

eliminating cases of overfitting, the model achieved greater

generalizability, and more reliable results were confirmed. We

conducted rigorous testing and used a trial-and-error approach to

determine these parameters to monitor the model’s performance.

Research findings show that the selected parameters yield the best

results, and the model effectively facilitates learning from

the dataset.

During the last training session, we carefully determined the

exact parameter values that led to the successful training of the

model: We set the initial learning rate to 0.01 and the maximum

number of epochs to 50. Blending is the process of combining data.

We carried out from different sources. Every complete pass across

the entire dataset is performed at every epoch. This is intended to

ensure the size is set to 64 during the process. You will also see that

64 data samples are processed together. He managed to complete

the task for twenty days successfully. The model in question is a

specific learning rate that uses the number of epochs and other

parameters that reflect a unique scenario to be trained. We carefully

chose these parameters for the model to achieve the necessary level

of success and assure the best possible fit to the data set.

In this study, the researchers developed a convolutional neural

network (CNN) model to improve their ability to extract essential

features and classify histopathology images. The model takes

28x28x3 RGB images as input, processing them with ‘zscore’

normalization. The model structure includes three 3x3

convolution layers containing 8, 16, and 32 filters. The ReLU

activation function was used after each convolution layer.

Additionally, there are 2x2 sized Max Pooling layers following

each convolution layer. In the final stages of the model, there are

three fully connected layers; the softmax activation function was
TABLE 3 Details, complexity, and hyperparameters of the simple CNN
architecture we build for the AI automation approach.

CNN
layers

Parameters
and explanations

Complexity

1 Image Input 28x28x3 images with
‘zscore’ normalization

Low - preprocessing step

2 Convolution 8 3x3 convolutions with stride [1
1] and padding ‘same’

Moderate – only
eight filter

3
Batch
Normalization

Batch Normalization Low to moderate

4 ReLU ReLU Low

5
Max Pooling

2x2 max pooling with stride [2
2] and padding [0 0 0 0]

Low

6 Convolution 16 3x3 convolutions with stride
[1 1] and padding ‘same’

Moderate

7
Batch
Normalization

Batch normalization Low to moderate

8 ReLU ReLU Low

9
Max Pooling

2x2 max pooling with stride [2
2] and padding [0 0 0 0]

Low

10
Convolution

32 3x3 convolutions with stride
[1 1] and padding ‘same’

Higher due to the
increased number
of filters

11
Batch
Normalization

Batch normalization Low to moderate

12 ReLU ReLU Low

13
Fully
Connected

Three fully connected layer High

14 Softmax softmax Low

15
Loss function

crossentropyex Low
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preferred as the last layer. In terms of training parameters,

explained in Table 4, the model is initially trained with a learning

rate of 0.01 and works on the data set for a maximum of 50 epochs.

Data shuffling is applied at the end of each epoch, and 64 is selected

as the batch size. The performance and generalization ability of the

model are continuously monitored with validation dataset

evaluations performed every 20 epochs. Determining these

parameters ensures that the model adapts to the data set most

appropriately and reaches the desired level of success, and also helps

the model avoid possible problems such as overfitting during the

training process. With this configuration, the model has the

necessary feature extraction and classification capabilities to

produce effective and accurate results in histopathological

image classification.

The cross-entropy loss (Equation 4) calculates the difference

between the probability distribution that the model predicts and the

probability distribution of the actual labels. The formula for binary

classification is as follows:

L(y, p) = −(ylog(p) + (1 − y) log (1 − p))   (4)

In Equation 4, L represents the loss function, y represents the

actual label value (1 or 0), and p represents the probability predicted

by the model. The formula for multiclass classification is usually:

L = −o
M

c=1
(yo,clog(po,c)   (5)

In Equation 5, M denotes the number of classes, yo,c   is the

binary representation (1 or 0) indicating o whether or not the

instance belongs to class c. If that instance belongs to class c, this

value is 1; otherwise, it is 0. po,c is the probability that the model

predicts that sample o belongs to class c.

One of the reasons for choosing cross-entropy loss is direct

probability evaluation. Cross-entropy directly evaluates how close

the probabilities produced by the model are to the actual labels,

making it a natural choice for classification problems. Faster

convergence is another reason for choosing it. This function helps

the model converge faster and more efficiently during gradient-

based optimization, mainly thanks to the logarithmic component.

Cross entropy works on probabilities directly affecting the model’s

performance in classification problems. This directly improves the

model’s ability to predict class labels accurately. Cross-entropy loss

imposes a significant penalty on incorrect predictions, especially in

cases where the model is very confident in its incorrect prediction.
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This prevents the model from making incorrect predictions that

are overconfident.

The CNN model developed in this study was evaluated in terms

of computational complexity depending on the model’s architecture

and learning process. Our model is analyzed for time and space

complexity, considering factors such as interlayer transitions and

filter sizes. Each convolution layer has O(k : n2) time complexity to

extract features between adjacent pixels. Here k represents the filter

size and n2 represents the size of the image. Our model has a time

complexity of O(k : n2 : d) for one training epoch, where d is

expressed as depth (number of layers). Space complexity is

directly related to weight matrices and feature maps and specifies

the amount of memory the model requires. As a result of this study,

it was observed that the model can scale effectively in large data sets

and exhibit high performance in practical applications.

#parameters = (FilterHeight * FilterWidth * InputChannels

+ 1) * NumberofFilters       (6)

The number of parameters for the first convolutional layer can

be calculated using Equation 6, (3 * 3 * 3 + 1) * 8, and obtain 224.

This operation is computationally exhaustive but with only eight

filters, therefore, complexity is moderate.
2.4 Model evaluation

This study used two essential methods to evaluate model

performance and obtain reliable results. First, the metrics used to

evaluate the model’s performance and the reasons for choosing

these metrics are stated. Then, it details why the 10-fold stratified

cross-validation method was preferred during the training of the

manual analysis model.

It is crucial to choose the right metrics to evaluate model

performance. In this study, commonly used metrics such as

accuracy, precision, recall, and F1 score were preferred to

measure the model’s classification performance and explained in

Equations 7–10, respectively. Accuracy is the ratio of correctly

classified samples to the total number of samples. That is, it refers

to the ratio of true positives and true negatives to the total samples.

Precision shows the proportion of samples predicted to be positive

that are positive. It refers to the ratio of true positives to total

positive predictions. Recall shows the ratio of true positives to the

total number of positive samples. While accuracy refers to overall

correct predictions, precision and sensitivity evaluate the model’s

performance in more detail, especially in unbalanced class

distributions. F1 score is a performance measure calculated as the

harmonic mean of precision and recall values. In unbalanced class

distributions, the F1 score is used to evaluate the model’s

performance on both classes in a balanced way. In unbalanced

class distributions, especially in cases where the majority class has

more samples, the model must make true positive and true negative

predictions in a balanced way.

Accuracy =  
TP +  TN

TP +  TN + FP + FN  
      (7)
TABLE 4 The CNN-based automation model training parameters.

Training Parameter Value

Initial Learning Rate 0.01

Maximum Number of Epochs 50

Data Shuffle After each epoch

Batch Size 64

Verification Data and Evaluation Frequency Every 20 epochs.
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Precision   (P) =  
TP

TP + FP
                      (8)

Recall   (R) =  
TP

TP + FN
                            (9)

F1   score = 2� P � R
P + R

                              (10)

For the model to generalize reliably and to avoid overfitting

problems, the 10-fold stratified cross-validation method was

preferred. This method divides the dataset into ten equal folds

and uses each fold as validation data while training the model using

the remaining 9-fold as training data. This process continues until

each fold is used as validation data. Stratification preserves the class

proportions in each tissue type, allowing the model to learn and

evaluate equally in each class. This ensures the model can generalize

over various data samples, allowing us to obtain reliable results.

In this study, a paired t-test was used to determine that the

classification results of the proposed approach were not obtained by

chance. The significance of the difference in the overall accuracy

achieved by the models was assessed by calculating Paired t-test p

values for the overall accuracy of the classification performance

achieved by the models. Statistical analysis was performed using the

stats module of the Scipy library (version 1.11.3) (30) of Python

(version 3.8). P values less than 0.05 were considered statistically

significant. The p-value of the paired t-test is explained in the

results part.

Within the scope of this research, a convolutional neural

network (CNN) model was developed using MATLAB R2023a

and AI automation Toolbox 16.3 versions for AI automation

tasks. MATLAB was used for data manipulation, training, and

evaluation of results. The manual analysis classification model was

built using Python 3.8 along with the deep learning model. This

model is integrated with scikit-learn (v0.24.2) and NumPy (v1.20.3)

libraries. Python has been used in feature extraction and

classification tasks. In terms of hardware, the study was run on a

personal computer, MacBook Air, with an Apple M1 chip with

eight cores and 8 GB of memory. macOS Big Sur (v11.2.3) was used

as the operating system. These hardware and software

configurations increase the understandability of the methodology,

ensure the reproducibility of results, and facilitate comparability of

similar studies.

Our research used a large dataset of H&E images of various

classes. Specifically, the dataset contains 10.407 ADI, 10.566 BACK,
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11.512 DEB, 11.557 LYM, 8.896 MUC, 13.536 MUS, 8.763 NORM,

10.446 STR, and 14.317 TUM images for training, and the test sets

are detailed in Table 2. Remarkably, training our CNN model on a

dataset of approximately 100.000 images was completed in 200

seconds, demonstrating that our approach is practical even with

large-scale data.
3 Results

Our classification study started with a comprehensive

examination aimed at distinguishing normal and tumor tissues

selected from a diverse collection of nine distinct tissue types. This

initial phase of our research involved utilizing Histogram of

Oriented Gradients (HOG) features extracted from the images.

We employed the Random Forest classifier model to assess the

effectiveness of this approach.

For a more visual representation of our results, figures

explain the confusion matrices derived from the CNN model

and the manual analysis results in the supplementary part.

This visual insight provides a comprehensive view of the

classification performance.

These complex confusion matrices in high-dimensional datasets

provide in-depth information about the model’s ability to classify

tissues. In particular, the ADI class has a high accuracy rate in both

normalized and non-normalized scenarios. The LYM class exhibits

low sensitivity when the data is not standardized. Furthermore, the

TUM class demonstrates high accuracy and sensitivity, especially in

normalized situation. It is clear from this that the model can

accurately identify cancerous tumors.

On the other hand, the STR class has low accuracy and

sensitivity, particularly in a non-normalized situation. This may

indicate that this texture is more challenging to categorize than

other textures. As a consequence of this, these matrices are an

essential instrument for assessing the performance of the model on

various types of tissue and for gaining an understanding of the

model’s strengths and shortcomings. In addition, it sheds light on

the challenges associated with the classification of uncommon

classes and the potential for normalization to ease these

challenges. These findings potentially provide valuable direction

for future work to enhance the model and improve its performance.

Table 5 and Figure 4 evaluate the effect of normalization in four

different cases, with and without normalization, and includes

accuracy results obtained with manual analysis and AI
TABLE 5 Accuracy results (N, Normal; T, Tumor).

Normalization Tissue type Manual analysis AI automation Significance

No N-T 0.74 0.78 Yes

Nine tissues 0.41 0.86 Yes

Yes N-T 0.75 0.91 Yes

Nine tissues 0.44 0.97 Yes
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automation models for different tissues. When normalized, manual

analysis accuracy for N-T tissues increased from 0.75 to 0.91, which

was highly significant (p=7,72x10-41). Without normalization,

accuracy increased from 0.74 to 0.78 for the same comparison,

which was statistically significant (p=0.0033). Additionally, the

effect of normalization varies between tissues; Significant changes

in accuracy are observed depending on the tissues (p<0.05).

According to the analysis results, the p-value is under 0.05, a

statistically significant level. This shows that the differences

between the analyzed results are unlikely to be coincidental, and

the reliability of the findings is statistically supported.

Table 6 compares the classification results performed by manual

analysis with the effect of normalization. Although normalization

increased accuracy, this was not statistically significant (p = 0.2108).

While recall decreased slightly with normalization, this decrease is

statistically significant (p = 0.0005). Precision increases with

normalization, which is statistically significant (p=0.0162).

Regarding the F1 score, the effect of normalization is not

statistically significant (p = 0.7144).

Table 7 contains an analysis in which normal and tumor

classifications performed by AI automation are evaluated under

the influence of normalization. Normalization caused statistically

significant improvements in accuracy, recall, precision, and F1 score

metrics (p=1.08x10-28, p=1.66x10-26, p=3.87x10-12, p=2.01x10-14),

respectively. These results show that normalization is efficacious in

improving AI automation-based classification performance.

Tables 8 and 9 and Figures 5 and 6 also include the multiple

classification results using AI automation for all classes before and

after normalization was applied. With the application of

normalization, the increases observed in the evaluation metrics of

especially low-performing classes show that the model significantly

improves its classification. Table 8 contains two values of particular

significance: 0 and NaN (Not a Number) within the “BACK”

category. This can indicate that the class failed or did not manage
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to calculate for specific metrics. As shown in Table 9, an overall

performance improvement was observed after updating these NaN

and 0 values. As a result of normalization, the performance of each

class became more consistent and equal. This suggests that the

model exhibits enhanced robustness and consistency in its output

to normalization.
4 Discussion

Intending to classify histopathology images accurately, this

study attempts to analyze the operational mechanisms of various

methods. Distinguishing between normal and tumor tissues and

categorizing tissues into nine distinct groups were this study’s two

primary classification objectives. The analysis results also assessed

the effects of different normalization methods. We conducted a

comparative analysis between conventional manual analysis and

deep learning methodologies powered by AI. Our findings were

considerably enhanced through the implementation of

normalization methods; in particular, the “Normal-Tumor” and

“Nine Categories” classification tasks yielded substantially higher

accuracy rates after normalization. On the other hand, it

demonstrates the critical importance of improving the overall

effectiveness and maintaining the data integrity of our models.

AI methods offer superior performance compared to manual

analysis and AI-powered automation. It demonstrates the ability

to distinguish between normal and tumorous tissues in

histopathological images, as evidenced by the AI automation’s

91% accuracy rate in its classification of “normal-tumor”. AI

methods showed superior performance on the “Nine Categories”

task, where texture posed a more significant challenge than human

analysis. In this particular instance, the accuracy rates dropped due

to the complexity not being present. On the other hand, the

integration of artificial intelligence methodologies has increased

accuracy rates despite the increasing complexity of this particular

situation, which is a contradiction. The results of an automated

histopathology image analysis reveal the tremendous potential of

artificial intelligence-based methods utilized within the

otolaryngology field. It is vital throughout the data processing

phase. This is the objective of this study.

In terms of application, the cross-entropy loss function

accelerated the model’s training process and gave positive results.

As a result of this function, the model’s stabilization and

classification accuracy increased despite the data sets’ asymmetric

structure. Cross-entropy loss increased the generalization capacity

of the model by reducing entropy loss, further reducing the

potential for overfitting. The evaluation of both included test

datasets also showed that the model had improved predictive

capability and accuracy when applied to unobserved data. It was

determined that cross-entropy was the most appropriate loss

function for this example through experiments with alternative

functions. For example, cross-entropy provided faster convergence

and higher classification accuracy compared to mean square error

loss, faster convergence, and higher classification accuracy

compared to error loss.
TABLE 7 Normal and tumor classification evaluation metrics with and
without normalization using AI automation.

Norm NonNorm Significance

Accuracy 0.9048 0.7751 Yes

Recall 0.9262 0.4130 Yes

Precision 0.9217 0.9714 Yes

F1-score 0.9239 0.5795 Yes
TABLE 6 Normal and tumor classification evaluation metrics with and
without normalization using manual analysis.

Norm NonNorm Significance

Accuracy 0.7475 0.730 No

Recall 0.8879 0.9204 Yes

Precision 0.7958 0.7641 Yes

F1 score 0.8393 0.8350 No
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At the same time, the model’s efficiency was increased by

making additional adjustments to the parameters of the loss

function. As a result of the utilization of the model, the

optimization of the hyperparameters of the loss function is

performed on the result. This allows for optimizing the loss

function, the optimization of the hyperparameters, and the

optimization of the recall ratio. In the context of the model, it

performed exceptionally well, even when faced with complex data

types. Given the significant improvement in overall performance

that this particular option can bring, it is arguably the best option

for our model other than the entropy loss.

It reveals a significant difference in cases where normalization is

applied, which is the subject of the verification of statistical analysis

in these tables. Specifically, the various texture classification results

in Table 5 show that normalization has a significant effect. An

analysis and an AI automation modeling review show that

normalization significantly affects both scenarios, which is the

goal of this investigation. A comparison was made between the

classification results of samples with and without normalization,

which can be found in Tables 6, 7. It shows that normalization

significantly improves the classification performance, which is
Frontiers in Oncology 10
statistically significant. The results presented in Table 9 are

particularly relevant to the AI automation model and show that

normalization has a more pronounced effect. In summary,

statistical analyses prove that the improvements in the

classification performance of the proposed method are not

coincidental and that normalization is an important determinant.

As a result of this artificial intelligence-based model, it is

considered a good alternative as it performs as well as and better

than the more complex models described in the literature. The

dataset’s features, the number of classes, and the complexity of the

proposed model are all used in this context. In summary, this research

contributes significantly to the ongoing discourse surrounding

comparing established approaches to the automatic categorization of

histopathology images (31, 32). The results highlight the indisputable

advantages of AI automation and the critical importance of data

normalization and interpretation; these should be considered in

further research in this area. Results from this research contribute

significantly to advancing knowledge in this field and can potentially

guide subsequent advances in automated histopathology image

analysis. In the relevant scientific field, the findings can serve as a

handbook for researchers facing similar conditions.
TABLE 9 Multi-class classification results after normalization using AI automation.

Accuracy Recall Precision F1-score

ADI 0.9652 0.9652 0.9533 0.9015

BACK 0.9951 0.9951 0.9603 0.9798

DEB 0.9671 0.9671 0.6235 0.6878

LYM 0.9819 0.9819 0.8600 0.9025

MUC 0.9699 0.9699 0.8911 0.8963

MUS 0.9429 0.9429 0.6723 0.6339

NORM 0.9557 0.9557 0.8825 0.7543

STR 0.9320 0.9320 0.4219 0.4259

TUM 0.9567 0.9567 0.8237 0.8830
TABLE 8 Multi-class classification results without normalization using AI automation.

Accuracy Recall Precision F1-score

ADI 0.9396 0.6779 0.9967 0.8069

BACK 0.8820 0 NaN 0

DEB 0.6689 0.4867 0.0697 0.1219

LYM 0.9130 0.0142 1.000 0.0280

MUC 0.8085 0.5874 0.3907 0.4693

MUS 0.8311 0.4392 0.2279 0.3001

NORM 0.8656 0.0634 0.1478 0.0888

STR 0.8955 0.0950 0.0978 0.0964

TUM 0.8084 0.1322 0.3475 0.1915
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Doğan and Yılmaz 10.3389/fonc.2023.1325271
An example would be the LBP and Haralick methods,

which may have limitations when processing high-resolution

histopathological images. These images may be better suited to

artificial intelligence algorithms that can process large data sets and

identify complex patterns, and artificial intelligence. Unlike

traditional methods, artificial intelligence algorithms with

advanced feature extraction and learning capabilities can

extract features more comprehensively. It can perform more

comprehensive analysis by gaining information about complex

relationships and patterns within the data set. CNN and other

artificial intelligence algorithms are examples of websites that

provide such algorithms. Using variable data types can pose

challenges and face difficulties adapting to traditional approaches

often designed for specific situations.

In contrast, AI algorithms exhibit greater adaptability and can

expertly navigate diverse data types and dynamic environments. AI
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algorithms can be superior to traditional methods in terms of

automation and speed. This provides a significant advantage,

especially in time-consuming and labor-intensive procedures, for

example, large-scale histopathological image analysis.

There are some limitations to this study design. First, the data

set’s size and diversity can affect the model’s generalization ability.

Access to a more extensive and diverse data set can help the model

achieve more robust and overall performance. Additionally, the

imbalance between classes can cause difficulties in classifying

infrequent classes. This imbalance can affect the learning curve of

the model. It may be recommended to overcome these limitations

using more balanced data sets in future studies. This study reveals

several future work and application opportunities that can be

considered in a broader context. First, how the model will

perform on other medical imaging datasets can be further

evaluated. Studies focusing on a similar classification task in
FIGURE 4

Comparison of manual analysis and AI automation for normal and tumor classification.
FIGURE 3

(A) Original image (B) Extracted HOG features from the image (C) HOG features shown on the original image.
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different medical fields could evaluate the general applicability of

the model.

Additionally, application studies can focus on how the proposed

model can be integrated into more specific clinical applications.

This can evaluate the usability and effectiveness of the model on real

patients in clinical applications. In future studies, integrating the

model into real-time applications and how it can contribute to

patient care can be investigated in more detail. To validate the

model’s performance on other medical imaging datasets, evaluate

its broad applicability in many medical domains, and investigate

integration into clinical applications, the paper makes

recommendations for further work. It implies that more research

might look into the model’s potential for real-time use and how it

can improve patient care.

AI-based automation has emerged as a significant development

in healthcare technologies in recent years. Developing and

implementing AI systems contribute to transforming clinical

practices, especially in digital pathology. However, the effective

integration of these technologies and their acceptance in clinical

settings is closely related to the traceability, explainability, and

interpretability of the results provided by AI systems (33, 34).

Current trends highlight the compliance of AI applications with
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standards of transparency and accountability, especially within the

framework of the European Union’s Medical AI laws. In this

context, the ability of AI systems to explain the reasons and

mechanisms underlying the decisions they make is critical for

clinicians’ acceptance of these technologies. Evans et al. (35)

emphasize that the usability of AI-based systems in clinical

settings is directly related to the ability of these systems to

explain and interpret their results. Therefore, when evaluating the

potential of AI-based automation in our work, we found it

essential to focus on the interpretability and explainability of

these technologies. To better understand the role of AI systems in

clinical decision-making processes and integrate these technologies

into clinical environments, algorithms must transparently

reveal decision-making processes and be understandable by

clinical experts.
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Multi-class classification results without normalization using AI automation.
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