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Background: Hepatocellular carcinoma (HCC) is a complex malignancy, and

precise prognosis assessment is vital for personalized treatment decisions.

Objective: This study aimed to develop a multi-level prognostic risk model

for HCC, offer ing ind iv idua l ized prognos i s assessment and

treatment guidance.

Methods: By utilizing data from The Cancer Genome Atlas (TCGA) and the

Surveillance, Epidemiology, and End Results (SEER) database, we performed

differential gene expression analysis to identify genes associated with survival

in HCC patients. The HCC Differential Gene Prognostic Model (HCC-DGPM)

was developed through multivariate Cox regression. Clinical indicators were

incorporated into the HCC-DGPM using Cox regression, leading to the

creation of the HCC Multilevel Prognostic Model (HCC-MLPM). Immune

function was evaluated using single-sample Gene Set Enrichment Analysis

(ssGSEA), and immune cell infiltration was assessed. Patient responsiveness

to immunotherapy was evaluated using the Immunophenoscore (IPS).

Clinical drug responsiveness was investigated using drug-related

information from the TCGA database. Cox regression, Kaplan-Meier

analysis, and trend association tests were conducted.

Results: Seven differentially expressed genes from the TCGA database were

used to construct the HCC-DGPM. Additionally, four clinical indicators

associated with survival were identified from the SEER database for model

adjustment. The adjusted HCC-MLPM showed significantly improved

discriminative capacity (AUC=0.819 vs. 0.724). External validation involving

153 HCC patients from the International Cancer Genome Consortium (ICGC)

database verified the performance of the HCC-MLPM (AUC=0.776).

Significantly, the HCC-MLPM exhibited predictive capacity for patient

response to immunotherapy and clinical drug efficacy (P < 0.05).

Conclusion: This study offers comprehensive insights into HCC prognosis

and develops predictive models to enhance patient outcomes. The
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evaluation of immune function, immune cell infiltration, and clinical drug

responsiveness enhances our comprehension and management of HCC.
KEYWORDS

hepatocellular carcinoma, prognosis risk model, machine learning, immune
function, drug responsiveness
1 Introduction

Primary liver cancer, a prevalent malignancy of the digestive

system, ranks as the sixth most frequently occurring tumor globally

and is the second leading cause of mortality (1, 2). Hepatocellular

carcinoma (HCC) is the prevailing pathological subtype of primary

liver cancer, accounting for 75%-85% of all cases (3). The poor

prognosis of HCC arises from its early propensity for metastasis,

often involving dissemination to the portal vein or distant organs

(4). Patients with early-stage HCC have access to a potentially

curative treatment option with a long-term survival rate exceeding

5% at 60 years, while patients with advanced-stage tumors

experience a median survival period ranging from 1 to 2 years

(5–7). Therefore, timely identification, early intervention, and the

implementation of rational and effective treatment strategies are

crucial for patients diagnosed with HCC (8).

Surgical resection is considered represents the primary

therapeutic approach for patients with early-stage HCC and often

leads to favorable outcomes (9, 10). However, for individuals

diagnosed with intermediate or advanced-stage HCC, surgical

resection is no longer a feasible option due to tumor progression

and metastasis. Local regional therapies, such as ablation, arterial-

directed therapies, or external beam radiation therapy, are the

preferred treatment modalities for patients with localized liver

disease that cannot be surgically removed or are not suitable for

surgery. Systemic therapies are recommended for patients who

undergo disease progression after local regional therapies or those

with metastases outside the liver (11). This focus on systemic

therapies highlights the importance of considering the tumor

microenvironment, drug responsiveness, and immunotherapy as

crucial factors (12–14). Targeted therapies are particularly relevant

for patients diagnosed with intermediate or advanced-stage HCC
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(15, 16). Sorafenib, initially approved for advanced HCC treatment,

is hindered by the development of resistance (17, 18). Subsequently,

other multi-kinase inhibitors, such as Lenvatinib, Regorafenib,

Cabozantinib, and the VEGFR2 inhibitor ramucirumab, have

been approved as second-line targeted treatment options (19).

With a deeper understanding of the interplay between the

immune system and cancer, immune checkpoint inhibitors (ICI)

have been integrated into the therapeutic arsenal for patients with

advanced HCC. Nivolumab, an ICI agent, has been FDA approval

for the management of advanced HCC (20, 21). Given the

expanding range of treatment methods, the selection of the most

suitable treatment plan for patients has become critical.

Therefore, to provide optimal treatment approaches for different

stages of HCC progression, conventional methods often assign

patients to specific stages based on the Barcelona Clinic Liver

Cancer (BCLC) classification (6, 22). BCLC staging, widely utilized

in HCC, categorizes patients into different stages based on factors

such as tumor size, number, liver function, and symptoms (23).

Treatment strategies, such as surgical resection, liver transplantation,

radiofrequency ablation, radiation therapy, and targeted therapy, are

determined for patients according to their corresponding stages (6).

However, significant heterogeneity exists among patients, including

genetic variations, immune environments, and tumor heterogeneity.

Relying solely on conventional staging methods may insufficiently

consider individual patient characteristics and the complexities of the

disease, potentially leading to inaccurate prognosis assessments and

suboptimal personalized treatments.

Recent advancements in tumor genomics research have

facilitated the utilization of extensive tumor genomic data to gain

insights into the complexity and individual variations of tumors.

The Cancer Genome Atlas (TCGA) database, as a comprehensive

repository of diverse cancer-related data, offers new opportunities

for exploring prognostic risk assessment in HCC (24, 25).

Therefore, in contrast to conventional approaches, we consider

incorporating factors such as molecular biology information and

the tumor microenvironment based on clinical indicators. By

leveraging the potential of powerful machine learning and big

data analysis techniques, we can extract valuable insights from

extensive tumor genomic data to construct prognostic risk

assessment models.

Through a comprehensive analysis of clinical indicators,

molecular biology information, tumor microenvironment, and

other multi-level factors, o our objective is to establish a
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comprehensive and accurate HCC prognostic risk model and explore

its association with drug responsiveness and immunotherapy (26,

27). By improving the accurate assessment of prognostic risk in HCC

patients, we can provide essential evidence to inform the

development of personalized treatment plans, thus improving

prognosis assessment and treatment outcomes for patients.

Moreover, by leveraging the extensive resources of databases such

as TCGA and SEER, this study has the potential to make significant

breakthroughs and advancements in the field of HCC prognostic

assessment and personalized treatment.
2 Research design and methods

2.1 Research workflow

The research workflow (depicted in Figure 1) comprised the

subsequent steps: 1) Identification of differentially expressed genes

(DEGs) associated with survival through gene expression analysis;
Frontiers in Oncology 03
2) Development of the HCC Differential Gene Prognostic Model

(HCC-DGPM) by integrating significant DEGs; 3) Selection of

clinical indices linked to survival; 4) Model adjustment and

validation, culminating in the HCC Multilevel Prognostic Model

(HCC-MLPM); 5) Evaluation of immune function and analysis of

clinical drug responsiveness.
2.2 Data collection and preparation

The dataset for liver cancer was obtained from the TCGA

database through the website, and the gene expression matrices of

adjacent non-cancerous and cancerous tissues were used for the

analysis. The dataset consisted of 50 samples of normal liver tissue

and 370 samples of liver cancer. Additionally, data from 30,684

patients diagnosed with primary liver cancer between 1988 and

2015 were extracted from the SEER database using SEER*stat

software 8.4.0 (https://seer.cancer.gov/). After data cleansing, a

total of 3,017 patient records were available for further analysis.
FIGURE 1

Research workflow for the construction of hepatocellular carcinoma prognostic model. HCC, Hepatocellular carcinoma; TCGA, The Cancer
Genome Atlas; SEER, Surveillance, Epidemiology, and End Results; DEGs, Differentially expressed genes; HCC-DGPM, HCC Differential Gene
Prognostic Model; HCC-MLPM, Hepatocellular Carcinoma Multilevel Prognostic Model.
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The International Cancer Genome Consortium (ICGC) database

provided data from 369 HCC patients for the study. After further

data cleaning, cases with incomplete clinical information were

excluded, resulting in a final sample size of 153 cases.

It is important to note that all the included patients were

diagnosed with primary liver cancer. The year of the initial

diagnosis was categorized into 5-year intervals and considered as

an ordinal variable. Age 45 was chosen as the threshold to classify

cases with early-onset HCC, and age was divided into 10-

year intervals.
2.3 Selection of HCC prognostic DEGs

The “limma” package in R was used to identify the DEGs

between cancerous and adjacent non-cancerous tissues (28). The

DEG threshold was set as an absolute log2-fold change (FC) ≥ 1 and

an adjusted P < 0.05. Volcano plots illustrating the DEGs were

generated using the “ggplot2” package (https://ggplot2.tidyverse.

org/). Subsequent screening involved conducting both univariate

and stepwise multivariate Cox regression analyses. In the univariate

Cox regression analysis, each DEG was evaluated individually to

assess its association with the survival outcome. In this context, the

survival outcomes were solely considered as “death”. This analysis

facilitated the identification of genes that exhibited a significant

correlation with patient survival. Subsequently, a stepwise

multivariate Cox regression analysis was performed.
2.4 Construction and validation of
HCC-DGPM

The patients from the TCGA dataset were randomly assigned to

training (n = 250) and testing (n = 120) sets in a 7:3 ratio, facilitated

by the “caret” R package for random assignment (29). The training

set was used to train the model, while the testing set was used to

assess the predictive performance of the model. HCC-DGPM was

constructed using the multivariate Cox regression method. External

validation set was performed using the ICGC dataset (n = 153). The

performance of HCC-DGPM was evaluated using receiver

operating characteristic (ROC) curves, with a higher area under

the curve (AUC) indicating improved predictive accuracy. To

enhance the precision of our prognostic model, calibration

curves were utilized, employing the “rms”, “survival”, and

“ResourceSelection” R packages (https://CRAN.R-project.org/

package). These curves are a measure of how closely the model’s

predictions align with actual outcomes. The closer these curves lie to

the 45-degree line, the more accurate the model is, indicating a high

degree of concordance between predicted and observed results. The

HCC-DGPM was validated with Kaplan-Meier (KM) curves, and

the methodology for establishing the cutoff value for risk groups was

not initially specified. The cutoff value used for delineating high and

low risk groups was determined by the method that maximizes

(sensitivity + specificity - 1). The established cutoff value for the risk

score was 1.65.
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2.5 Model adjustment and validation

To improve the model’s performance, we performed

multivariate Cox regression analysis to identify clinical indicators

associated with HCC patient survival using the SEER database.

SSubsequently, these indicators were used to refine the HCC-

DGPM, resulting in the HCC-MLPM. ROC curves and KM

curves were generated to assess the performance of the HCC-

MLPM and provide additional validation of its effectiveness.
2.6 Immune evaluation of the model

Gene Set Enrichment Analysis (GSEA) was performed to

investigate the impact of the risk score on the biological function

of HCC patients. The annotated gene setlist was selected using a

significance threshold of P < 0.05. Moreover, the “ssGSEA” R

package was used to estimate the infiltration levels of 28 distinct

immune cell types in HCC patients (30), taking into account their

risk scores. The IPS was used to assess patient responsiveness to

immunotherapy (31).
2.7 Clinical drug responsiveness evaluation

To explore the variations in clinical drug responsiveness among

patients, we analyzed the clinical drug information and patients’

drug responsiveness data retrieved from the TCGA database. We

evaluated the effects of chemotherapy drugs such as Gemcitabine,

Cisplatin, Doxorubicin, 5-fluorouracil (5-FU), Oxaliplatin,

Adriamycin, and Cytoxan, alongside targeted therapy agents

including Sorafenib, Everolimus, Sunitinib, and Temsirolimus.

This comprehensive assessment was crucial as it is well-

recognized that therapeutic efficacy varies significantly between

treatments, independent of other evaluated variables.

Based on the risk scores generated by our model, patients were

categorized into high-risk and low-risk groups. Subsequently, a

proportional stacked bar chart was used to visually represent and

analyze the disease progression in these two patient groups.
2.8 Statistical analysis

Cox regression models were employed to calculate hazard ratios

(HR) and assess the relationship between gene expression and survival

outcomes. The KM method was utilized to generate survival curves,

and the log-rank test was applied to compare these curves. The

Jonckheere-Terpstra test and Cochran-Mantel-Haenszel test were

performed to evaluate the trend association between the diagnosis

year and patient characteristics for numerical and categorical data,

respectively. Cox proportional hazards regression models were used to

HRs and their corresponding 95% confidence intervals for prognostic

factors related to overall survival (OS). In the multivariate Cox

regression analyses, a stepwise procedure was conducted with an

entry criterion of P < 0.05 to identify the most statistically significant
frontiersin.org

https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://CRAN.R-project.org/package
https://CRAN.R-project.org/package
https://doi.org/10.3389/fonc.2023.1327147
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1327147
prognostic factors. The significance level for all statistical tests was set at

P < 0.05. Statistical analyses were conducted using SAS 13.2 (SAS

Institute, Cary, NC, USA), and the KM curves were plotted using

R Software.
2.9 Availability of data

The data utilized in this study can be obtained by contacting the

authors due to restrictions imposed by the data providers, namely

TCGA, SEER, and GSEA databases. Access to these databases is

available via their dedicated websites: TCGA (https://

portal.gdc.cancer.gov/), SEER (https://seer.cancer.gov/), GSEA

(http://software.broadinstitute.org/gsea/index.jsp), and ICGC

(https://icgcportal.genomics.cn/). Researchers interested in accessing

the data may reach out to the authors for additional information and

support in acquiring the required permissions and data access.
3 Results

3.1 Analysis of differential gene expression

To establish a prognostic model, 370 HCC samples and 50

samples of normal liver tissue from TCGA were involved.

Compared to normal group, a total of 1761 DEGs were identified,

comprising 1,091 upregulated genes and 670 downregulated genes

in HCC group. The expression patterns of these DEGs are

illustrated in Figure 2A through volcano plots.
3.2 Identification of genes associated with
patient prognosis

To further identify the prognostic genes, a univariate Cox

regression was performed on the 1,761 genes to identify genes

significantly associated with patient prognosis. This analysis yielded

a subset of 89 genes that showed a significant association at a

significance level of P < 0.001. Further analysis using multivariate

Cox stepwise regression identified seven genes significantly

associated with the survival of HCC patients: MYBL2, SF3B4,

CDCA8, NUF2, HMMR, PON1, and PAGE1 (Table 1).

KM analysis was performed to assess the impact of the seven

identified genes on patient survival. The results revealed a

significant correlation between these genes and patient prognosis,

as evidenced by distinct survival patterns observed in patient groups

with high and low expression levels of these genes. Moreover, the

survival analysis demonstrated that patients with higher gene

expression levels had a significantly poorer prognosis compared

to those with lower expression levels (Figures 2B–H).
3.3 Construction and validation of the
HCC-DGPM

Therefore, HCC-DGPM was constructed through univariate

Cox proportional hazards regression analysis using the expression
Frontiers in Oncology 05
levels of the seven identified genes (MYBL2, SF3B4, CDCA8, NUF2,

HMMR, PON1, and PAGE1) as covariates. The regression

coefficients were used to assign weights to each gene, allowing for

the development of a risk score formula to calculate the individual

risk score for each patient The risk score formula is defined as

follows: Risk score = (Expression level of MYBL2 × 0.4820) +

(Expression level of SF3B4 × 3.0446) + (Expression level of CDCA8

× 3.1851) + (Expression level of NUF2 × 0.1932) + (Expression level

of HMMR × 3.1205) + (Expression level of P0N1 × 0.7698) +

(Expression level of PAGE1 × 1.2691).

ROC curve was performed to assess the predictive ability of the

HCC-DGPM in determining patient outcomes. The training dataset

exhibited an AUC of 0.723 (Figure 3A) for the HCC-DGPM, while

the testing and external validation sets showed AUC values of 0.724

& 0.719 (Figures 3B, C). These results suggest that the HCC-DGPM

has a moderate predictive ability to distinguish between high-risk

and low-risk patients. To enhance the credibility of our model’s

accuracy, we performed calibration curve analyses following the

ROC assessments (Figures 3D–F). The results from these

calibration curves lend further credence to the model’s predictive

acumen, highlighting its prospective value in a clinical setting.

In addition, survival analysis was conducted based on the newly

calculated risk score, allowing for the classification of patients into

high-risk and low-risk groups for model validation purposes. The

KM curves demonstrated significant differences in survival between

the high-risk and low-risk groups (Figures 3G–H).
3.4 Model adjustment

Clinical indicators, including Age, Race, Sex, tumor size (T), node

involvement (N), metastasis (M), and stage, were screened from the

SEER database due to their potential correlation with patient survival

in HCC. Four indicators were identified as significantly associated

with survival outcomes (Table 2). Multivariate Cox regression

analysis was conducted to determine the clinical factors

significantly associated with patient survival. Four indicators were

found to be significantly correlated with survival outcomes (Table 2).

Next, the identified clinical indicators from the SEER database were

integrated with the risk scores obtained from the 7 DEGs, resulting in

the development of a novel predictive model (HCC-MLPM). The

adjusted predictive HCC-MLPM is represented by the following

formula: Risk Score = (Expression level of MYBL2 × 0.4820) +

(Expression level of SF3B4 × 3.0446) + (Expression level of CDCA8 ×

3.1851) + (Expression level of NUF2 × 0.1932) + (Expression level of

HMMR × 3.1205) + (Expression level of PON1 × 0.7698) +

(Expression level of PAGE1 × 1.2691) + (Age × 1.5079) + (T ×

2.9376) + (N × 0.8721) + (M × 3.0453).
3.5 Evaluation of HCC-MLPM

The performance of the HCC-MLPM was evaluated using both

the training and testing datasets. In the training dataset, the HCC-

MLPM demonstrated improved predictive ability with an AUC of

0.826 (Figure 4A). In the testing dataset, the HCC-MLPM achieved
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an AUC of 0.819 (Figure 4B), further validating its enhanced

predictive capacity. Similarly, the HCC-MLPM exhibited

satisfactory predictive capability in the external validation dataset,

achieving an AUC of 0.776 (Figure 4C). These results indicate that

the HCC-MLPM effectively discriminates between high-risk and

low-risk patients in this external validation set. Calibration curves

were subsequently integrated, serving as an additional verification

stratum for the model’s validity (Figures 4D–F).
Frontiers in Oncology 06
Furthermore, by utilizing the scoring system derived from the

adjusted model, patients were categorized into high-risk and low-

risk groups. KM curves showed that patients in the low-risk group

had superior overall survival outcomes compared to those in the

high-risk group (Figures 4G–H). These findings indicate that the

integration of risk scores based on differential gene expression,

along with the selected clinical indicators, significantly improved

the predictive performance of the HCC-MLPM.
A B

D
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G H

C

FIGURE 2

Survival impact of 7 DEGs screened from HCC patients. (A) Volcano plots illustrating the DEGs from HCC vs. normal. Genes upregulated in HCC are
represented in red, while genes downregulated in HCC are shown in blue. The x-axis represents the log2-fold change in gene expression, indicating
the magnitude of change, and the y-axis represents the statistical significance (-log10 p-value) of the differential expression. (B–H) Kaplan-Meier
(KM) curves demonstrating the association between gene expression levels and patient survival. High-risk patients are depicted in red, while low-risk
patients are represented in blue. The x-axis represents the survival time, and the y-axis represents the survival probability.
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3.6 Stratified survival analysis based on
clinical indicators

This section delves into a detailed survival analysis of HCC

patients within the HCC-MLPM framework, stratified according to

key clinical indicators. The KM curves display distinct survival

probabilities over time for groups stratified by key clinical

indicators: Age (Figure 5A), T (Figure 5B), N (Figure 5C), and M

(Figure 5D). These curves reveal considerable variation in survival

outcomes across these different clinical stratifications (P<0.001),
Frontiers in Oncology 07
underscoring the significant impact of each indicator on survival.

They highlight the potential utility of these clinical indicators in

refining the HCC-MLPM.
3.7 Gene set enrichment analysis

To assess the immune function associated with the HCC-MLPM,

Gene Set Enrichment Analysis (GSEA) was performed. The analysis

revealed that high-risk patients showed a stronger association with
TABLE 1 Differential genes associated with OS in HCC patients.

Name HR HR.95L HR.95H P value

MYBL2 0.4820 0.31979 0.7264 0.000488

SF3B4 3.0446 1.90062 4.8770 3.63e-06

CDCA8 3.1851 1.65058 6.1463 0.000552

NUF2 0.1932 0.08874 0.4205 3.43e-05

HMMR 3.1205 1.73930 5.5985 0.000136

PON1 0.7698 0.67562 0.8771 8.47e-05

PAGE1 1.2691 1.11467 1.4448 0.000318
fro
A B
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C

FIGURE 3

Performance Evaluation of the HCC-DGPM. (A) ROC curve of the training dataset. (B) ROC curve of the testing set. (C) ROC curve of the external
validation set. The x-axis represents the false-positive rate, while the y-axis represents the true-positive rate. (D–F) Calibration curves for the
training, testing, and external validation sets, respectively. (G–I) KM curves for overall survival (OS) in the training, testing and external validation set
sets respectively (red: High risk; blue: Low risk).
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cellular processes related to the cell cycle and DNA replication,

indicating a more aggressive tumor phenotype compared to low-risk

patients (Figures 6A–C). Moreover, the high-risk group exhibited a

closer association with immune response compared to the low-risk

group. This was evident from the enrichment of gene sets related to the

toll-like receptor signaling pathway, cytokine-cytokine receptor

interaction, and chemokine signaling pathway. These findings

highlight a significant correlation between the risk score and the

immune status of HCC (Figures 6D–F).
3.8 Immune assessment of the HCC-MLPM

Using the single-sample Gene Set Enrichment Analysis

(ssGSEA) method, we conducted an analysis of immune cell
Frontiers in Oncology 08
infiltration in HCC patients, comparing the high-risk and low-

risk groups. Violin plots further illustrated significantly lower

infiltration levels of activated B cells, activated CD8+ T cells,

natural killer cells, immature B cells, mast cells, and memory

CD4+ T cells in the high-risk group. Conversely, the infiltration

level of activated CD4+ T cells was significantly higher in the high-

risk group (Figure 7A). Additionally, we examined the expression

changes of immune checkpoint markers between the high-risk and

low-risk groups. Remarkably, the high-risk group exhibited a

significant upregulation in the expression levels of most immune

checkpoint markers (Figure 7B). These findings indicate that the

high-risk group of HCC patients displays lower levels of immune

cell infiltration, particularly in specific immune cell subsets, along

with higher expression of immune checkpoint markers. These

observa t ions sugges t the pre sence o f a po tent i a l l y
A B

D E F

G IH

C

FIGURE 4

Performance Evaluation of the HCC-MLPM. (A) ROC curve of the training dataset. (B) ROC curve of the testing set. (C) ROC curve of the external
validation set. (D–F) Calibration curves for the training, testing, and external validation sets, respectively. (G–I) KM survival curves for OS of the
training, testing and external dataset respectively (red: High risk; bule: Low risk).
TABLE 2 Risk factors in the SEER database.

risk factors HR HR.95L HR.95H P value

Age 1.5079 1.2375 1.8374 4.63e-05

T 2.9376 2.5259 3.4165 2e-16

N 0.8721 0.7641 0.9954 0.0425

M 3.0453 2.4834 3.7343 2e-16
fro
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immunosuppressive microenvironment in the high-risk group,

which may contribute to disease progression and poorer prognosis.

To assess the responsiveness of patients in both groups to

immunotherapy, we utilized an unsupervised clustering approach

based on the characteristics of the tumor microenvironment,

specifically the IPS. The patients were categorized into four

groups: immune-enriched/fibrotic (IE/F), immune-enriched (IE),
Frontiers in Oncology 09
fibrotic (F), and immune-depleted (D). Among these groups, IE/F

and IE demonstrated a more favorable response to immunotherapy,

while F and D were associated with relatively poorer responses. In

our analysis, we observed a higher proportion of patients in the low-

risk group with an IE/F microenvironment. However, the

proportions of IE and F were comparable between the two patient

groups (IPS) (Figure 7C).
A B

D E F

C

FIGURE 6

Gene Set Enrichment Analysis (GSEA) of the HCC-MLPM. (A–C) DNA replication, apoptosis and cell cycle enrichment analysis by GSEA. (D-F) T and
B cell receptor pathway, cytokine receptor interaction pathway enrichment analysis by GSEA.
A B

DC

FIGURE 5

Performance for Different Clinical Indicators in HCC-MLPM. (A) KM curves for Age. (B) KM curves for tumor size (T). (C) KM curves for node
involvement (N). (D) KM curves for metastasis (M).
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3.9 Assessment of clinical
drug responsiveness

To investigate the clinical drug responsiveness predicted by

HCC-MLPM, we utilized drug information obtained from the

TCGA database. We examined the correlation between drug

targets (Sorafenib) and cytotoxic drugs with the risk scores

derived from our model. The results revealed significant

differences in drug responsiveness between the high-risk and low-

risk groups. Notably, a higher proportion of patients in the low-risk

group demonstrated disease stability when treated with both

targeted therapy and chemotherapy regimens (Figures 8A, B).

This finding suggests that these treatment approaches were more

likely to be effective in the low-risk group, providing potential

therapeutic options for this particular subgroup of patients.
4 Discussion

We have successfully developed a machine learning-based

prognostic risk model specifically designed for patients with

HCC. This study integrates diverse indicators from a multicenter
Frontiers in Oncology 10
dataset, providing a comprehensive tool to aid in personalized

treatment decisions for HCC patients. Remarkably, this model

accurately predicts patient survival outcomes and offers insights

into the effectiveness of immunotherapy and other clinical drug

treatments in HCC patients.

The molecular pathogenesis of HCC is highly complex and

heterogeneous. Currently, clinical treatment decisions for HCC

patients are primarily based on limited clinical and pathological

indicators (32). However, the development and progression of HCC

are influenced by various factors, such as genetic variations, aberrant

cell signaling pathways, and alterations in the immune environment

(33, 34). Therefore, there is an urgent need to develop a dependable

prognostic risk assessment model to enable personalized treatment for

HCC. Previous studies have predominantly focused on individual

tumor indicators, including age, stage, pathological type, tumor size,

and other clinical factors, which have been extensively utilized in

clinical assessments (35, 36). With advancements in genomics and

immunology, there is a growing emphasis on the molecular

characteristics of HCC and the impact of the immune environment

on patient prognosis. Researchers have made efforts to predict patient

prognosis from a biological perspective by integrating diverse

information sources, such as gene expression data, protein expression
A

B C

FIGURE 7

Evaluation of the HCC-MLPM on tumor immunity. (A) The Violin plots for infiltration levels of specific immune cell types. (B) Boxplot for infiltration
levels of immune checkpoint markers. (C) The performance for immunotherapy. IE/F, Immune-enriched/Fibrotic; IE, Immune-enriched; F, Fibrotic;
D, Depleted; High, high risk; Low, low risk. (red: High risk; bule: Low risk).
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data, and immune cell infiltration (37, 38). However, these evaluation

methods provide a limited perspective on patient prognosis, resulting

in inherent limitations. In contrast, our study not only takes into

account clinical and pathological indicators that reflect the overall

patient condition and disease severity but also places significant

emphasis on the biological characteristics of liver cell tumors. This

approach involves the identification of differentially expressed genes in

HCC and the unveiling of potential biological mechanisms. By utilizing

a modeling approach that incorporates comprehensive multi-level

indicators, our model can offer a more comprehensive and

dependable prognostic risk assessment for HCC patients (39, 40).

Similar methodologies have demonstrated favorable outcomes in

studies focusing on diverse cancer types, underscoring their potential

utility in personalized medicine. Specifically, researchers investigating

breast cancer, bladder cancer, and colorectal cancer have achieved

robust predictive results by integrating comprehensive models with

diverse datasets encompassing clinical, gene expression, and proteomic

information (41–43). These investigations additionally validate the

feasibility of our modeling approach.

In terms of methodology, our research has made significant

advancements. Cox regression, an advanced machine learning

technique, has provided strong technical support. Machine

learning, in comparison to traditional statistical methods, excels

in managing complex data structures and relationships, facilitating

the extraction of potential features and patterns from extensive

clinical and gene expression data (41). By employing the feature

selection and optimization process of Cox regression, we have

identified the most relevant indicators for prognosticating HCC

patients. This approach effectively reduces the dimensionality of the

feature space and enhances the predictive performance of the model

(AUC = 0.724 vs. 0.819). Importantly, our research leverages the
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generalizability of machine learning, enabling the evaluation of the

model’s predictive performance and reliability across diverse

datasets from multiple centers, including TCGA, SEER, and

ICGC. The comprehensive integration of biological factors,

clinical and pathological features, and multi-level indicators in

our model substantially enhances its capacity to capture the

intricacies of patient survival in HCC.

Our research findings include 11 risk factors, including 7

identified from the TCGA dataset (MYBL2, SF3B4, CDCA8,

NUF2, HMMR, P0N1, and PAGE1), and an additional 4 acquired

from the SEER database (Age, T, N, M). Several studies have

recognized the substantial impact of certain factors on patient

outcomes in HCC (44, 45). Our stratified survival analysis

revealed that age plays a critical role in determining survival

rates, aligning with previous findings. Furthermore, the

correlation observed between smaller tumor size and better

prognoses in our study underscores the importance of early

detection and diagnosis in HCC, as reflected in the Kaplan-Meier

curves for T. N and M, which indicate the aggressive progression of

HCC, were also found to significantly affect survival rates in our

analysis. These findings advocate for a nuanced understanding of

HCC, indicating the inadequacy of generic treatment strategies.

Moreover, our study validated these risk factors against the

National Comprehensive Cancer Network (NCCN) guidelines

(11), confirming the model’s emphasis on tumor staging and

its reliability.

Apart from established clinical factors, our research

innovatively identified 7 genes that influence prognosis. These

genes play critical roles in regulating cell-cell interactions,

extracellular matrix remodeling, angiogenesis, and inflammatory

responses within the tumor microenvironment. For example,
A B

FIGURE 8

Drug responsiveness Evaluation of the HCC-MLPM. (A) Performance for predicting targeted molecular therapy of HCC-MLPM. (B) Performance for
chemotherapy of HCC-MLPM. (High: high risk; Low: low risk).
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MYBL2 plays an important role in regulating the cell cycle, as its

high expression is correlated with the staging and grading of various

cancers (46). SF3B4 is involved in regulating the cell cycle, cell

differentiation, and immune deficiency. Mutations in SF3B4 can

lead to abnormal cell growth and contribute to disease development

(47). CDCA8 controls the process of cell mitosis and has been

identified as an unfavorable prognostic predictor in liver cancer

(48). NUF2 participates in chromosome segregation and has been

positively correlated with differential immune cell infiltration and

various immune biomarkers (49). HMMR is associated with the

infiltration levels of neutrophils, CD8+ T cells, and CD4+ T cells in

the immune system, as well as the prognosis of patients with cancer

(50). PON1 plays a role in cell adhesion and migration, contributing

to the regulation of tumor development, oxidative stress, and

inflammatory responses (51). PAGE1 is involved in cell apoptosis

and immune regulation (52). These gene abnormalities play a role

in altering the tumor microenvironment, which impacts the growth,

infiltration, and metastasis of HCC. By integrating these differential

gene factors into the prognostic risk assessment model, we capture

the intricacies of patient survival in HCC.

In addition to assessing the model’s performance in predicting

patient survival, our research closely integrates with clinical treatment

through the evaluation of patients’ immune infiltration status and

their responses to clinical drugs. This enhances our comprehensive

understanding of HCC. In recent years, immunotherapy has emerged

as a significant breakthrough inHCC treatment, utilizing the patient’s

immune system to target tumor cells (53, 54). We examined the

association between the model’s predictive results and the immune

status by employing GSEA analysis and assessing immune cell

infiltration. The results indicated a significant correlation (P < 0.05)

between high-risk patients and malignant tumor phenotypes,

particularly in terms of cell cycle, DNA replication, and immune

responses. We have discerned a significant elevation in the infiltration

levels of Type2 T helper (Th2) cells within the cohort of high-risk

HCC patients (P < 0.001), indicating a Th2-dominated immune

microenvironment. The cytokines secreted by Th2 cells, such as IL-4

and IL-10, may facilitate tumor growth and assist in the tumor’s

evasion of immune surveillance. Therapeutic interventions targeting

the Th2 cell pathway, such as PD-1/PD-L1 and CTLA-4 inhibitors,

have demonstrated potential in the treatment of other cancers (55, 56).

This observation underscores the importance of considering the

immune microenvironment when devising therapeutic strategies

for HCC.

Additionally, we introduced the novel IPS to assess both the

immune system’s activity level and the extent of immune cell

infiltration in the tumor microenvironment. This was done with

the aim of identifying potential variations in patient response to

immunotherapy. The IPS quantifies patients ’ potential

responsiveness to immunotherapy based on the analysis of

expression patterns in immune-related genes. Higher IPS scores

generally reflect a more active immune system and an increased

likelihood of positive response to immunotherapy (31). We

computed IPS scores for patients in both the high-risk and low-

risk groups, facilitating a comparison of their immunotherapy

responsiveness. The findings showed that the low-risk group

exhibited significantly higher responsiveness to immunotherapy
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(P < 0.05), providing theoretical support for the application of

immunotherapy in low-risk patients.

Although our research has shown promising results, it is important

to acknowledge its limitations. First, the development and prognosis of

HCC are influenced by various biological and environmental factors.

While we thoroughly considered clinical data and genetic information,

it is conceivable that other factors, not accounted for in the model, may

also contribute. This underscores the necessity for continual

improvement and refinement. Secondly, as our model lacks support

from Supplementary Databases, it is advisable to conduct further

prospective studies to validate and refine it in relation to

immunotherapy and clinical drug responsiveness.

In conclusion, we have successfully developed a machine

learning-based prognostic risk model for HCC, providing robust

support for personalized treatment strategies in HCC patients.

Furthermore, this study highlights the potential importance of

utilizing multi-level modeling approaches in the realm of

personalized medicine.
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