
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Felix Seyfried,
Ulm University Medical Center, Germany

REVIEWED BY

Mohammad Alibakhshikenari,
Universidad Carlos III de Madrid de Madrid,
Spain
Pradeep Kumar Das,
VIT University, India

*CORRESPONDENCE

Basel Elsayed

be1905231@qu.edu.qa

Mohamed Yassin

yassinmoha@gmail.com

RECEIVED 31 October 2023

ACCEPTED 27 November 2023
PUBLISHED 06 December 2023

CITATION

Elsayed B, Elhadary M, Elshoeibi RM,
Elshoeibi AM, Badr A, Metwally O,
ElSherif RA, Salem ME, Khadadah F,
Alshurafa A, Mudawi D and Yassin M (2023)
Deep learning enhances acute
lymphoblastic leukemia diagnosis and
classification using bone marrow images.
Front. Oncol. 13:1330977.
doi: 10.3389/fonc.2023.1330977

COPYRIGHT

© 2023 Elsayed, Elhadary, Elshoeibi,
Elshoeibi, Badr, Metwally, ElSherif, Salem,
Khadadah, Alshurafa, Mudawi and Yassin.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 06 December 2023

DOI 10.3389/fonc.2023.1330977
Deep learning enhances acute
lymphoblastic leukemia
diagnosis and classification
using bone marrow images

Basel Elsayed1*, Mohamed Elhadary1,
Raghad Mohamed Elshoeibi2, Amgad Mohamed Elshoeibi1,
Ahmed Badr1, Omar Metwally1, Raghad Alaa ElSherif 1,
Mohamed Elsayed Salem3, Fatima Khadadah4, Awni Alshurafa5,
Deena Mudawi5 and Mohamed Yassin1,5*

1College of Medicine, Qatar University, Doha, Qatar, 2Faculty of Medicine, Mansoura University,
Mansoura, Egypt, 3Faculty of Medicine, Zagazig University, Zagazig, Egypt, 4Cancer Genetics Lab,
Kuwait Cancer Control Centre, Kuwait City, Kuwait, 5Department of Medical Oncology, National
Center for Cancer Care and Research, Doha, Qatar
Acute lymphoblastic leukemia (ALL) poses a significant health challenge,

particularly in pediatric cases, requiring precise and rapid diagnostic

approaches. This comprehensive review explores the transformative capacity

of deep learning (DL) in enhancing ALL diagnosis and classification, focusing on

bone marrow image analysis. Examining ten studies conducted between 2013

and 2023 across various countries, including India, China, KSA, and Mexico, the

synthesis underscores the adaptability and proficiency of DL methodologies in

detecting leukemia. Innovative DL models, notably Convolutional Neural

Networks (CNNs) with Cat-Boosting, XG-Boosting, and Transfer Learning

techniques, demonstrate notable approaches. Some models achieve

outstanding accuracy, with one CNN reaching 100% in cancer cell

classification. The incorporation of novel algorithms like Cat-Swarm

Optimization and specialized CNN architectures contributes to superior

classification accuracy. Performance metrics highlight these achievements,

with models consistently outperforming traditional diagnostic methods. For

instance, a CNN with Cat-Boosting attains 100% accuracy, while others hover

around 99%, showcasing DL models’ robustness in ALL diagnosis. Despite

acknowledged challenges, such as the need for larger and more diverse

datasets, these findings underscore DL’s transformative potential in reshaping

leukemia diagnostics. The high numerical accuracies accentuate a promising

trajectory toward more efficient and accurate ALL diagnosis in clinical settings,

prompting ongoing research to address challenges and refine DL models for

optimal clinical integration.
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1 Introduction

Acute lymphoblastic leukemia (ALL) encompasses a range of

lymphoid neoplasms that originate from precursor cells of both B-

lineage and T-lineage cells (1). These neoplasms may primarily

manifest as an extensive leukemic process involving both the bone

marrow and peripheral blood, or they can display localized tissue

infiltration with limited bone marrow involvement, termed

lymphoblastic lymphoma (LBL) (2). Although ALL and LBLs

exhibit distinct clinical features, they appear to represent a

continuous biological spectrum. The current classification by the

World Health Organization categorizes these conditions as B- or T-

lymphoblastic leukemia/lymphoma (3). ALL is the most common

pediatric malignancy, with pediatric ALL constituting

approximately 80% of cases (4, 5). However, when it arises in

adults, ALL takes on a particularly different clinical presentation.

Notably, in the recent era of novel agents, not all cases of adult ALL

have a poor prognosis; in fact, some individuals now experience

good prognoses (6). In the United States, the estimated occurrence

of ALL is about 1.6 cases per 100,000 individuals (7, 8). Research

conducted among children has pinpointed genetic conditions that

make a fraction of ALL cases more likely to occur including Down

syndrome, Fanconi anemia, Bloom syndrome, and Ataxia

Telangiectasia (9–11).

The initial phase of the diagnostic process for ALL, particularly

to distinguish it from acute myeloid leukemia (AML) involves

examining the bone marrow. This is crucial because ALL, as per

its definition, invariably manifests with bone marrow participation

(12, 13). Additional specialized tests are used to complement bone

marrow evaluation such as peripheral blood smear (PBS)

assessment and flowcytometric immunophenotyping (14, 15).

However, bone marrow aspiration and biopsy remains the gold

standard for ALL diagnostic confirmation, which provides a

complete examination of cellular structure and appearance which

could help indicate prognosis and evolution of the disease later on

(16). While this approach allows for more precise classification and

subtyping, it is an invasive process that can be painful, especially in

pediatric patients, and getting appropriate samples can be difficult.

Peripheral blood smears, on the other hand, require studying blood

samples under a microscope to analyze blood cell morphology.

Although they provide a rapid and non-invasive method of

detecting blasts, their diagnostic depth may not be as extensive as

bone marrow analysis.

Artificial intelligence (AI) and machine learning (ML)

breakthroughs have sparked a revolution in medical image

analysis and hematological diseases as previously explored by our

group (17–21). Deep learning (DL) is a subset of ML that uses

artificial neural networks to learn from data. Convolutional neural

networks (CNNs) are one type of DL algorithm that has been

particularly successful in image classification tasks (22). CNNs are

designed to recognize patterns in images by using a series of

convolutional layers that extract features from the input image.

These features are then passed through a series of fully connected

layers that classify the image based on the extracted features (22).

CNNs have demonstrated exceptional ability in evaluating and
Frontiers in Oncology 02
interpreting medical images, including microscopic bone marrow

images (23, 24).

In addition to the strides made in deep learning-based

approaches, it is essential to acknowledge recent non-DL-based

works that have contributed to the field of hematological disorder

detection (25). Despite their contributions, these non-deep learning

methods often face limitations in handling the complexity and

variability present in hematological images. They may struggle to

adapt to diverse morphologies and may require extensive manual

tuning for optimal performance. DL methods, with their ability to

automatically learn hierarchical features and patterns, offer a

promising alternative that can potentially overcome some of these

limitations, providing a more adaptive and robust solution for

hematological disorder detection.

Although DL models in ALL diagnosis are widely studied, the

focus has primarily been on peripheral blood smear (PBS) samples,

neglecting the crucial bone marrow aspirates and biopsies, which

are the gold standard for leukemia diagnosis. Recent reviews have

also missed the majority of studies involving digital image analysis

of microscopic bone marrow images (26, 27). Therefore, the goal of

this review is to investigate the uses of DL in redefining ALL

diagnosis and categorization using bone marrow images, possibly

leading to the development of automated systems that assist

healthcare personnel in making precise and timely ALL

diagnoses. Performance metrics of several DL models and

architectures in the detection and/or classification of ALL will be

discussed. Furthermore, we will discuss the possible limitations and

benefits of applying these models.
2 Materials and methods

2.1 Search strategy

We developed our search strategy on the 11th of June 2023 in

the PubMed/MEDLINE database. To ensure a broad search

strategy, we used many terms, such as ‘acute lymphoblastic

leukemia’, ‘acute lymphocytic leukemia’, ‘acute lymphoid

leukemia’, ‘ALL’, ‘artificial intelligence’, ‘machine learning’, ‘deep

learning’, and ‘neural network’. The search was not restricted by

language or time frame. The developed search strategy was

transferred to Scopus, Embase, and Web of Science databases

using the Polyglot translator (28). The studies were then

transferred to EndNote X9, where duplicates were detected

and omitted.
2.2 Eligibility criteria

The review will encompass studies that meet specific inclusion

criteria: (1) utilization of human ALL samples, (2) publication in

English, (3) employment of DL techniques for diagnosing/

classifying ALL, (4) utilization of bone marrow samples, and (5)

reporting of performance metrics. Studies not meeting these criteria

will be excluded, ensuring a focused and relevant analysis.
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2.3 Study selection and screening

After applying our search strategy to the mentioned databases,

studies were transferred to EndNote X9, where duplicates were

identified and removed. Remaining articles were uploaded to the

Rayyan platform for additional screening (29). In Rayyan, titles and

abstracts were screened for preliminary eligibility by two reviewers,

and any discrepancies were settled by consensus. The whole texts of

the papers that had been determined to be eligible were then

acquired and independently double-screened for inclusion or

exclusion using the mentioned criteria, with discrepancies

resolved through screening by a third member if needed.
2.4 Data extraction

The data extraction process involved the extraction of pertinent

information from included studies, comprising the last name of the

primary author and the publication year, country of origin, dataset

utilized, the targeted outcome under investigation, the applied

validation methodologies, the employed models, and their

corresponding performance metrics including accuracy, precision,

sensitivity (recall), specificity, and F1 score. Furthermore, the

strengths and limitations associated with each model were noted.

Two investigators examined and obtained data from the eligible

study independently. When they were unable to reach an

agreement, they held a meeting with all team members. Only if it

was agreed upon in the team meeting was the study included in the

final review.
2.5 Aims

This review aims to provide an extensive examination of

contemporary DL algorithms employed for the diagnosis and

classification of ALL, with a specific emphasis on bone marrow

samples. The principal objective entails a comprehensive evaluation

of the performance of the diverse DL models featured in each study.

Concurrently, a secondary aim involves the analysis of the relative

merits and constraints of individual models in comparison

to others.
3 Results

3.1 Study selection

The PRISMA flow diagram, shown in Figure 1, depicts the

process of selecting studies for this review. Initially, our database

search yielded 496 results, with an additional article found through

manual extraction. After removing 282 duplicates with EndNote

and Rayyan, we evaluated the remaining 215 items based on their

titles and abstracts. Through this screening process, we excluded

195 articles not eligible for further screening and were left with 20

for full-text screening. We retrieved and examined the complete

texts of the 20 studies and based on a variety of reasons listed in
Frontiers in Oncology 03
Figure 1, we eliminated 10 more articles. Ultimately, 10 studies were

included in our review.
3.2 Study characteristics and
data collection

Table 1 presents the attributes and data gathered from the

studies included in this analysis. It evaluates the effectiveness of

deep learning models implemented for the diagnosis and

categorization of ALL through bone marrow imagery. For a more

comprehensive understanding, the specific metrics for accuracy

(ACC), precision (PRE), sensitivity (SEN), specificity (SPE), and

F1-score are provided for each model. In summary, the studies

covered were published between 2013 and 2023, predominantly

originating from India (n = 5), China (n = 3), KSA (n = 1), and

Mexico (n = 1). Among these, five studies utilized the SN-AM

dataset, comprising microscopic bone marrow aspirate images from

patients diagnosed with B-cell ALL and Multiple Myeloma

(MM) (40).

Notably, Yang et al. employed the SN-AM dataset in

conjunction with the ALL-IDB1 database of peripheral blood

smear images for external validation (38). Their model’s training

and testing employed bone marrow samples from patients

representing diverse leukemia families and subtypes. Zhou et al.

introduced a novel “AI-cell platform” database for white blood cell

(WBC) classification using bone marrow images, externally

validating their model on authentic clinical samples of ALL and

acute myeloid leukemia (AML) (39). The remaining four studies

retrospectively sourced bone marrow aspirate images from hospital

records. In terms of validation methods, only two studies conducted

both external and internal validation, specifically utilizing a Train-

Test Split approach. The remaining eight studies solely relied on

internal validation via Train-Test Split (6) and k-fold cross-

validation (2). Most of the studies employed CNNs as their

classifier model, incorporating various layers, optimizations, and

supplementary algorithms. The architecture of CNNs, as adapted

from Kavitha et al, is depicted in Figure 2. A singular study deviated

by utilizing radial basis function neural networks with a fuzzy logic

algorithm in place of CNNs. The prevalence of CNNs, transfer

learning, gradient boosting algorithms, and other elements typically

associated with supervised learning tasks underscores these models’

intent for tasks involving labeled training data. Most models

exhibited remarkable performance in their designated tasks.

Notably, the models achieved high accuracy, with some reaching

100%, demonstrating the robustness of DL in ALL diagnosis.

Table 2 provides an overview of the strengths and limitations of

each DL model discussed in the review. Each model’s outcomes,

including feature selection, boosting algorithms, and optimized

hyperparameters, are highlighted as strengths. However,

limitations such as the lack of external validation, dependency on

image quality, and computational complexity are also discussed.

These strengths and limitations are crucial in evaluating the

practical applicability and potential challenges associated with

each DL model. For instance, the discussion on the lack of

external validation emphasizes the need for further validation on
frontiersin.org
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TABLE 1 Performance of DL models in ALL diagnosis and classification using bone marrow images.

Authors
(Year)

Country Dataset & Sample Size Validation
(IV/EV)

Best Model(s) ACC
(%)

PRE
(%)

SEN
(%)

SPE
(%)

F1
(%)

Devi et al.
(2023) (30)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

CNN (Convolutional Leaky
RELU) with Cat-
Boosting algorithm

100 100 99.9 100

CNN (Convolutional Leaky
RELU) with XG-
Boosting algorithm

97.12 98.5 99 97.2

Duggal et al.
(2017) (31)

India BM samples (ALL [4469],
healthy [4469])

IV (5-fold CV) Texture-CNN with an additional
SD-Layer

93.20 93.08

CNN (AlexNet) with an
additional SD-Layer

88.5 88.32

Huang et al.
(2020) (32)

China BM samples (ALL [23], AML
[53], CML [10], healthy [18])

IV
(Train-Test)

CNN (DenseNet121) with
Transfer Learning technique

99

Ikechukwu
et al.
(2022) (33)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

CNN (i-Net) 99.18 99.30 99.18 99.19

Kavitha et al.
(2022) (34)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

CNN with Cat-
Swarm Optimization

99.6 99.2 99.5 99.3 99.89

Kumar et al.
(2020) (35)

India SN-AM dataset (B-ALL [90]
and MM [100])

IV
(Train-Test)

Dense CNN (DCNN) 97.25 100 93.97 95.19 96.89

(Continued)
F
rontiers in Onco
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FIGURE 1

Schematic representation of the literature review process.
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diverse datasets to ensure the generalizability of the models.

Moreover, the acknowledgment of computational complexities

and interpretability issues provides insights into areas where

improvements and future research could be directed.
3.3 Specialized CNN designs

Section 3.3 is a discussion of studies that focused on developing

specialized CNN designs, including the integration of specific

enhancements, additional layers, and boosting algorithms to

increase classification accuracy. It will be divided into studies

using the SN-AM dataset and studies using retrospectively

collected hospital bone marrow samples.

3.3.1 B-ALL and MM classification using the SN-
AM dataset

B-ALL and MM are hematologic malignancies that arise from

various stages of B-cell development. Despite their evident clinical

and pathological distinctions, certain resemblances exist in their
Frontiers in Oncology 05
morphological attributes and molecular characteristics, rendering

their differentiation challenging. This subsection focuses on a series

of studies that employ the SN-AM dataset, containing bone marrow

images from patients with B-ALL and MM, to develop specialized

CNN designs for accurate classification. In the four studies, the

model was evaluated using internal validation through train-test

split, partitioning data into training, validation, and testing sets with

no external validation.

The article by Devi et al. addresses the segmentation and

classification of white blood cancer cells within bone marrow

microscopic images. The research methodology starts with data

preprocessing, effectively eliminating dataset anomalies. Following

that, dataset diversity and comprehensiveness are augmented

through data augmentation techniques. The proposed model then

utilizes the Convolutional Leaky RELU with CatBoost and XGBoost

(CLR-CXG) algorithm for image segmentation and feature

extraction, which are key processes for accurate classification.

Binary classification is executed through CNN, accompanied by

gradient boosting using CatBoost and XGBoost algorithms

individually. The interaction between CNN and boosting
FIGURE 2

Convolutional neural network and its layers, adapted from Kavitha et al.
TABLE 1 Continued

Authors
(Year)

Country Dataset & Sample Size Validation
(IV/EV)

Best Model(s) ACC
(%)

PRE
(%)

SEN
(%)

SPE
(%)

F1
(%)

Ordaz-
Gutierrez et al.
(2013) (36)

Mexico BM samples (ALL [118],
healthy [62])

IV
(Train-Test)

Hybrid of Fuzzy Logic
and RBFNN

96.7 98.00 91.00

Rehman et al.
(2018) (37)

KSA BM samples (ALL L1 [100],
ALL L2 [100], ALL L3 [30],
healthy [100])

IV (10-
fold CV)

CNN (AlexNet) 97.78

Yang et al.
(2023) (38)

China BM samples (ALL [306], AML
[500], CML [162],
healthy [291])

IV (Train-
Test)
EV (SN-AM)

Hybrid of CNN and ViT
(MobileViTv2)
with MultiPathGAN

96
(IV)
99.72
(EV)

Zhou et al.
(2021) (39)

China AI-cell database1 (ALL [24],
AML [25])

IV (Train-
Test)1

EV
(BM samples)

Ensemble of CNNs
(ResNext101_32x8d,
ResNext50_32x4d,
and ResNet50)

89
(EV)

86
(EV)

95
(EV)
frontier
ACC, Accuracy; PRE, Precision; SEN, Sensitivity SPE, Specificity; BM, Bone Marrow; ALL, Acute Lymphoblastic Leukemia; MM, Multiple Myeloma; AML, Acute Myeloid Leukemia; CML,
Chronic Myeloid Leukemia IV, Internal Validation; EV, External Validation; CNN, Convolutional Neural Network; SD-Layer, Stain Deconvolutional Layer; ViT, Vision Transformer; RBFNN,
Radial basis function neural network.
1Performance metrics of internally validated WBC classifier model: Accuracy: 82.93%, Precision: 85.67%, F1 score: 82.93%, AUC: 98.70%.
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algorithms mainly occurs in the classification phase. The features

extracted by the CNN are used as inputs to the boosting algorithms,

which refine the classification decision. This combination allows for

a more accurate and efficient classification of blood cancer cells.

This CLR-CXG approach aims to minimize bias and amplify

accuracy in cancer cell classification, primarily discerning between

B-ALL and MM. Internal validation is achieved by partitioning the

dataset into train, test, and validate sets. CNNs play a pivotal role in

image classification, recognizing important features within images

through weight and bias assignment. To address challenges like

input-output consistency and GPU expenses, the CLR-CXG model

introduces modifications into the CNN architecture. A novel

element is the incorporation of the Leaky RELU activation

function, elevating the architecture’s capabilities. The results

impeccably show that CatBoost and XGBoost algorithms enhance

accuracy and computational efficiency. The CLRC algorithm

achieves an impressive 100% accuracy, precision, and specificity

in cancer cell classification, complemented by a sensitivity (recall) of

99.9% and an F1 score of 100. Meanwhile, CLRXG attains 97.12%

accuracy, alongside precision, sensitivity (recall), and specificity

values of 98.5%, 99%, and 97.2%, correspondingly. Despite these

achievements, the article has many limitations including absence of

information regarding resource allocation, memory usage, and

energy efficiency.

Moreover, the study by Ikechukwu et al. introduces a novel deep

CNN model named “i-Net” for classification of ALL using

microscopic images. The proposed approach utilizes data from

the SN-AM and ALL-IDB datasets, both sourced from the cancer

imaging archive (TCIA) repository. Initially, augmentation

balanced limited data. Data preprocessing involved grayscale

conversion, contrast enhancement, and resizing. For

segmentation, they used a UNet model with InceptionV2

architecture, while a custom CNN was designed for image

classification. The authors employed two well-known pre-trained

deep learning networks, ResNet-50 and VGG-19. However, they

adapted the weights and learning parameters instead of using pre-

existing ones. An upgraded CNN model, “i-Net,” was introduced,

adding convolutional layers and fine-tuning hyperparameters for

better classification accuracy. To prevent overfitting during

training, the authors used data augmentation, dropout

regularization, and batch normalization techniques. The proposed

“i-Net” achieved 99.18% accuracy on the SN-AM dataset,

surpassing ResNet-50 (84.5%) and VGG-19 (93.5%). The model’s
TABLE 2 Strengths and limitations of DL models reported.

Authors
(Year)

Outcome Strengths Limitations

Devi et al.
(2023) (30)

Classification of B-ALL
and MM using CNNs
with
boosting algorithms.

Feature
selection
Use of boosting
algorithms
Reduced
pre-processing

Lack of external
validation
Limited dataset
Complex
segmentation

Duggal
et al.
(2017) (31)

Differentiating
malignant WBCs from
normal WBCs using a
CNN with a SD-Layer.

Stain
deconvolution
Minimal
additional
parameters
Generalization
potential

Lack of external
validation
Stain variation
challenges
Complexity for
large datasets

Huang et al.
(2020) (32)

Distinguishing between
different types of
leukemia using a CNN
with transfer learning.

Multiple
leukemia types
Feasibility for
small datasets
Minimize need
for
segmentation

Lack of external
validation
Misclassification
of leukemias
Limited
interpretability

Ikechukwu
et al.
(2022) (33)

Detection and
classification of B-ALL
and MM using a CNN
with
tuned hyperparameters.

Simplified
architecture
Feature
selection
capability
Real-
time
applicability

Lack of external
validation
Limited dataset
Limited
interpretability

Kavitha
et al.
(2022) (34)

Detection and
classification of B-ALL
and MM using a CNN
with Cat-Swarm
Optimization
algorithms.

Outperforms
ML models
Optimized
hyperparameters
Real-
time
applicability

Lack of external
validation
Limited dataset
Computational
complexity

Kumar
et al.
(2020) (35)

Detection and
classification of B-ALL
and MM using a Dense
CNN with
fewer parameters.

Outperforms
ML models
Feature
extraction
capability
Real-
world
application

Lack of external
validation
Limited dataset
Limited
interpretability

Ordaz-
Gutierrez
et al.
(2013) (36)

Diagnosis of ALL using
fuzzy logic algorithm
and Radial basis
function
neural network.

Handling of
ambiguity
Thorough
cellular
assessment
Detection of
ALL at
early stages

Lack of external
validation
Dependency on
image quality
Specific
cellular features

Rehman
et al.
(2018) (37)

Detection and
classification of ALL
and ALL subtypes (L1,
L2. L3) using CNN.

Rapid diagnosis
Robust
segmentation
Assist
pathologists

Lack of external
validation
Limited dataset
Dependency on
image quality

Yang et al.
(2023) (38)

Diagnosis and
classification of
leukemias using

External
validation
Lightweight
hybrid network

Sensitivity to
data quality
Lack of real-
world scenarios

(Continued)
TABLE 2 Continued

Authors
(Year)

Outcome Strengths Limitations

MobileViTv2 classifier
and MultiPathGAN.

Flexibility
and adaptability

Zhou et al.
(2021) (39)

Diagnosis of ALL in
real clinical scenarios
using an ensemble of
CNN models.

Real-world &
external
validation
Large dataset
Mimics
hematologist
workflow

Single-center
data
Prospective
validation
needed
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generalization was tested, highlighting its potential for clinical

decision support systems. Despite l imitations due to

computational constraints and a smaller dataset, the proposed “i-

Net”model outperformed established models, showing promise for

clinical use.

Furthermore, Kavitha et al. introduce a groundbreaking

methodology for the diagnosis and classification of bone marrow

cancers, with a particular focus on ALL and MM. The proposed

model employs optimized deep CNNs utilizing a novel CAT (Cat

Swarm Optimization) algorithm for hyperparameter tuning (41).

The process involves three essential phases: data preparation, data

augmentation, and classification. The data preparation phase

involves capturing microscopic images from bone marrow

aspirate slides, which are stained using the Jenner-Giemsa

method. These raw images are then pre-processed to create a

dataset that is utilized for both training and testing purposes.

Data augmentation techniques are employed to alleviate

overfitting concerns and augment the model’s ability to

generalize. The architecture of the CNN incorporates

convolutional layers for feature extraction, pooling layers for

dimension reduction, and fully connected layers for accurate

classification. The introduction of the CAT algorithm further

enhances the model’s overall performance by drawing inspiration

from the behaviours of cats, combining seeking and tracing modes

to effectively optimize the network’s parameters. The evaluation of

the proposed approach is conducted using the SN-AM dataset. The

results showcase remarkable achievements, with an outstanding

accuracy of 99.6% attained in accurately predicting ALL. This

performance surpasses that of pre-trained deep learning models,

such as AlexNets, VGG-16 Nets, and U-Nets. The proposed model’s

superiority is further substantiated through comprehensive

comparisons with other machine learning methodologies,

including support vector machines, random forest, and naïve bayes.

Lastly, the study conducted by Kumar et al. introduces a robust

mechanism for classifying B-ALL and MM using CNNs. The study

leverages deep learning techniques to automate the classification

process, eliminating errors associated with manual assessment. The

model is trained on cell images, undergoing preprocessing and

feature extraction. It employs a dense convolutional neural network

(DCNN) framework for classification, depicted in Figure 3, and

achieved an impressive overall accuracy of 97.2%. Notably, the

model demonstrates exceptional precision, sensitivity, specificity,

and F1 score, with a precision of 100%, sensitivity of 93.97%,

specificity of 95.19%, and an F1 score of 96.89%. The CNN

architecture comprises convolution, max-pooling, and fully

connected layers. Data augmentation techniques enhance

generalization, while feature selection relies on the Chi-square

test. Training utilizes an Adam optimizer with a sigmoid cross-

entropy loss function and a learning rate of 0.01. Comparisons with

machine learning methods and transferred learning models like

VGG-16 were conducted. Random Forests achieved an accuracy

of 96.83% on the dataset. However, the proposed CNN model

significantly outperforms these approaches, boasting higher

precision, sensitivity, specificity, and F1 score. Its capacity to

extract features directly from images, coupled with adaptability

across datasets, underscores its advantages. Although
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acknowledging limitations stemming from dataset size, the study

underscores the potential of the proposed model as a reliable tool

for diagnosing bone marrow blood cancers.

3.3.2 ALL diagnosis using retrospectively
collected hospital bone marrow samples

This subsection focuses on another set of studies that address

the diagnosis of ALL through the analysis of retrospectively

collected bone marrow samples from hospital patients. These

studies emphasize the importance of accurate and efficient

diagnosis for different leukemia subtypes.

The article by Duggal et al. presents an innovative convergence

of deep learning techniques and stain deconvolution in the domain

of medical image analysis. While CNNs have proven successful in

medical imaging, the authors highlight a crucial limitation: CNNs

primarily function in the RGB color space, potentially missing the

nuanced tissue-stain interactions crucial for precise diagnostics. To
FIGURE 3

Kumar et al.’s proposed convolutional neural network-
based methodology.
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address this, the study introduces the stain deconvolution layer

(SD-Layer). Positioned at the forefront of CNN architectures, this

layer operates in the optical density (OD) color space. Beer-

Lambert’s law is employed to convert RGB microscopic images

into the OD space, revealing pixel stain quantities that hold key

diagnostic information. The SD-Layer operates on two fronts:

converting RGB to OD space and using backpropagation to

derive optimal stain basis vectors for diverse cell types. OD

images are then deconvolved with these vectors, providing tissue-

specific stain absorption quantities as input for downstream CNN

layers. The study focuses on differentiating malignant WBCs from

normal ones in cancer detection, particularly ALL. Texture-CNN

and CNN (AlexNet) are evaluated using the SD-Layer in two

modes: frozen (fixed stain vectors) and trainable (refined vectors).

Impressively, the SD-Layer, initialized with stain basis vectors from

SVD of the reference image, notably enhances classification

accuracy for both architectures. This enhancement is attributed

not to model capacity but to the biologically meaningful image

representation the SD-Layer offers. With a well-structured dataset

of around 9000 cell nuclei, balanced between normal and malignant

cells and stained with Jenner-Giemsa, the study’s robustness is

underscored. Rigorous training and augmentation techniques yield

high performances on 5-fold cross-validation accuracy in

distinguishing malignant from normal WBCs. The Texture-CNN

achieves 93.20% accuracy and 93.08% F1 score with an additional

SD-Layer, while CNN (AlexNet) achieves 88.5% accuracy and

88.32% F1 score with an additional SD-Layer. SD-Layer bridges

RGB limitations, leveraging the OD space to capture crucial

diagnostic insights. As medical imaging evolves, this study paves

the way for harnessing stain quantities to enhance classification

accuracy and diagnostic efficacy across diverse scenarios.
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Moreover, Rehman et al., proposes a computer-aided system that

combines image processing and deep learning to improve ALL

diagnosis accuracy, depicted in Figure 4. The study focuses on

classifying ALL into its subtypes and distinguishing reactive bone

marrow (normal) using stained bone marrow images. The authors

collect a dataset of bone marrow images from patients with ALL and

normal cases. The images are captured using a digital microscope and

processed to segment the regions of interest. A novel segmentation

technique based on thresholding is introduced, followed by the

application of CNNs for classification. The dataset is split into

training and testing sets to train the CNN model. The researchers

utilize the AlexNet architecture with transfer learning to fine-tune the

model to the new data. To assess the effectiveness of their approach,

the authors perform experiments and compare the results with other

classification methods such as naïve Bayesian, K-nearest neighbor,

and support vector machine. The proposed method achieves an

impressive accuracy of 97.78% on the test dataset. The classification

accuracy is plotted against the number of iterations, demonstrating

that higher accuracy can be achieved with more epochs and a lower

learning rate. The training time is also noted, with the proposed

architecture taking approximately 163.63 seconds for 20 epochs. The

authors highlight the significance of their work, as it provides an

automated solution for accurate ALL diagnosis and classification. By

employing DL techniques, the proposed system improves the

accuracy of classification, which could significantly assist

hematologists and pathologists in their diagnostic processes.

Despite the promising results, this study does have limitations. The

dataset size might impact the generalizability of the model, and

external validation on larger datasets is necessary.

Lastly, Huang et al.’s study addresses leukemia classification and

diagnosis through bone marrow cell morphology, employing CNNs
FIGURE 4

Rehman et al.’s proposed convolutional neural network-based methodology.
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alongside transfer learning. Traditional manual microscopy for

leukemia diagnosis is subjective and error-prone, motivating an

automated, precise approach. Their proposed method utilizes

CNNs for identifying AML, ALL, and chronic myelocytic

leukemia (CML). The researchers obtained microscopy images

from healthy subjects and leukemia patients, implementing

preprocessing techniques like perfect reflection and adaptive

filtering to enhance quality and reduce background noise. They

employed three CNN architectures for classification models on both

raw and preprocessed datasets: Inception-V3, ResNet50, and

DenseNet121. Transfer learning was leveraged to optimize model

performance by extracting features or fine-tuning pre-trained

models. In line with internal validation practices, the dataset is

divided into a training set (991 samples) and a prediction set (331

samples) using a 3:1 ratio. The training set is utilized to train the

models, while the prediction set serves as unseen data for testing the

model’s generalization capability. DenseNet121 excelled among

the CNN architectures, consistently achieving superior

performance. Transfer learning notably expedited model

convergence, significantly boosting accuracy. The study’s outcomes

indicate that the DenseNet121 model on the preprocessed dataset

garnered the highest accuracy at 74.8%. After transfer learning, its

accuracy surged to 95.3%, a notable 20.5% improvement. The model

exhibited accuracy rates of 90% for normal samples, 99% for ALL,

97% for CML, and 95% for AML, demonstrating efficacy in

classifying various leukemia types. Nonetheless, the model faced

challenges distinguishing immature granulocytes and lymphocytes,

affecting AML classification accuracy. Its adaptability to rare

leukemia types remains to be explored. Huang et al.’s study

contributes a rapid, accurate, and objective method for leukemia

diagnosis by merging CNNs with transfer learning. The combination

overcomes the limitations of manual methods, catering to efficient,

precise medical imaging despite small sample sizes. Though it

confronts challenges, like distinguishing specific cell types, the

study offers a promising path towards enhancing leukemia

diagnosis and classification.
3.4 Ensemble and hybrid designs

In this section, we explore studies that utilize ensemble

techniques and hybrid approaches, combining multiple models to

enhance diagnosis accuracy. The subsequent subsections present

the findings from these studies and provide insights into their

contributions to the field.

3.4.1 ALL Diagnosis using a hybrid of fuzzy logic
and radial basis function neural network

This subsection examines the work by Ordaz-Gutierrez et al.,

which introduces an algorithm for diagnosing ALL using a

combination of robust fuzzy logic and radial basis function neural

networks (RBFNN). The primary aim of this research is to develop a

reliable method for diagnosing ALL, particularly in developing

countries like Mexico, where laboratory resources and equipment
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might be limited. The algorithm leverages bone marrow aspirates to

extract specific features related to the disease. The process begins

with acquiring microscopic cell images, which are then converted to

grayscale to eliminate unnecessary color information and reduce

processing time. Histogram equalization enhances image contrast.

The segmentation stage involves utilizing the Sobel edge detection

and mathematical morphology algorithms to isolate cells from the

images. Suitable mathematical expressions are utilized to analyze

cell size, circularity, and nuclei-to-cytoplasm ratio, crucial for ALL

diagnosis. The heart of the method lies in applying fuzzy logic,

chosen for incorporating human knowledge and mathematical

modeling. The algorithm determines if a cell has ALL based on

computed features. Fuzzy membership values combine using

algebraic expressions to generate a diagnosis variable that

classifies cells. To enhance the algorithm, a radial basis function

(RBF) neural network is introduced, improving classification

accuracy. Trained on a dataset, the algorithm achieves high

sensitivity (98.00%) and specificity (91.00%). The results of the

proposed method are promising, outperforming comparative

methods, showing superiority in detection rates. The potential for

real-time diagnosis is highlighted due to efficient feature extraction

and RBF’s computational speed.

3.4.2 Diagnosis of leukemias using a hybrid of
CNN and vision transformer

Here, we delve into the article by Yang et al. which presents a

deep learning-based approach for diagnosing leukemias using bone

marrow aspirates. The study collected 2033 microscopic images of

bone marrow samples, encompassing images for 6 disease types and

1 healthy control, from two Chinese medical websites. These images

were divided into training, validation, and test datasets. To address

variations in staining styles, a novel method called “stain domain

augmentation” was introduced using the MultiPathGAN model.

This technique normalized stain styles and expanded the dataset. A

lightweight hybrid model named MobileViTv2, combining

strengths of CNNs and vision transformers (ViTs), was developed

for disease classification. MobileViTv2 achieved an average

accuracy of 94.28% on the test set, with the highest accuracy

values (98%, 96%, and 96%) obtained for MM, ALL, and

lymphoma, respectively. Patient-level prediction accuracy

averaged 96.72%. The model outperformed both CNNs and ViTs

despite using only 9.8 million parameters. Furthermore,

MobileViTv2 was compared to other deep learning models,

demonstrating its superiority. The model’s effectiveness was also

externally validated on public datasets (ALL-IDB1 and SN-AM),

achieving high accuracy values of 99.75% and 99.72%, respectively.

This indicates its robust generalization ability. While the model

shows promise, there are some limitations. The dataset size is

relatively small, and efforts to collect more images from various

scanning devices could enhance its performance. Additionally, the

model’s application is primarily focused on diagnosing broad

disease categories, not specific subtypes. Future research could

explore finer disease subtype classification and optimization of

the model.
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3.4.3 Leukemia diagnosis using ensemble CNN
models in real clinical scenarios

This subsection explores Zhou et al.’s study, which develops a

deep learning-based system for leukemia diagnosis and evaluates it

using real clinical scenarios. The subsection discusses the unique

aspects of the system, its effectiveness in diagnosing different types

of leukemia, and its practical utility in clinical settings. The

researchers collected 1,732 bone marrow images, containing

27,184 cells, from children with leukemia in a dataset named “AI-

cell platform”. This dataset was used to train a CNN architecture for

the differential count of WBCs. Unlike prior approaches that

preprocess images, this study used raw images without pre-

processing. The developed system mimicked the process of

hematologists by detecting and excluding uncountable and

crushed cells, classifying remaining cells, and making diagnoses

utilizing different configurations of ResNet and ResNeXt

architectures for WBC detection and classification, as depicted in

Figure 5. The ensemble of CNNs, comprising ResNeXt101_32x8d,

ResNeXt50_32x4d, and ResNet50, emerged as the top-performing

configuration. On internal validation using Train-Test Split, the

ensemble model demonstrated very high performances for

classifying WBCs (82.93% accuracy, 86.07% precision, and

82.02% F1 score). On external validation using real-world clinical

samples of bone marrow, the system showed notable performance

in diagnosing ALL (89% accuracy, 86% sensitivity, and 95%

specificity). The validation results reveal significant insights into

the ensemble’s performances and underscore its robustness and its

potential for effectively diagnosing leukemia subtypes. Additionally,

it accurately detected bone marrow metastasis of lymphoma and

neuroblastoma (average accuracy of 82.93%). The system’s

development was unique in using raw clinical images and

replicating the hematologists’ workflow. The CNN differentiated

crush cells, commonly excluded during manual counts, and

demonstrated high accuracy across diverse WBC types.

Furthermore, the system achieved successful ALL diagnosis in

clinical practice, providing evidence of its practical utility.

Comparison with existing studies revealed the uniqueness of this

research in its broader variety of cell types, achieving high accuracy

across complex clinical scenarios. Prior studies often focused on
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single-cell classification or employed pre-processed images,

hindering real-world applications. While this study excelled in

leukemia diagnosis, the limited dataset size for certain cell types

posed challenges. However, the study’s innovative use of ensemble

models mitigated this issue, enhancing overall accuracy.
4 Discussion

Recent advancements in medical image analysis have yielded

remarkable progress in the automated detection and classification

of acute leukemia, a critical hematological malignancy. Deep

learning techniques have emerged as pivotal tools, demonstrating

the potential to revolutionize diagnostic accuracy and efficiency.

Key studies have explored acute leukemia detection and

classification intricacies, addressing essential elements such as

datasets, validation methodologies, and performance metrics.
4.1 Previous literature

The existing literature on AI-based acute lymphoblastic

leukemia (ALL) classification, as discussed in systematic reviews

by Das et al. (42) and Mustaqim et al. (43), reveals notable

limitations that our review seeks to address. While these reviews

have explored recent advancements in AI-based ALL classification,

they primarily emphasize studies and datasets focused on peripheral

blood samples. Although peripheral blood samples provide valuable

insights, the gold standard for leukemia diagnosis has long been

bone marrow samples, given their ability to offer a more

comprehensive understanding of the disease’s characteristics.

Bone marrow samples are particularly crucial for accurately

distinguishing different leukemia subtypes. By including studies

that utilize bone marrow samples in the context of AI-based ALL

classification, our review fills this crucial gap in the literature,

contributing to a more holistic understanding of advancements in

leukemia diagnosis and emphasizing the significance of bone

marrow analysis in achieving accurate and reliable results.

Additionally, Alsalem et al.’s (44) comprehensive review on
FIGURE 5

Zhou et al.’s proposed framework for white blood cell classification.
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automated acute leukemia detection and classification complexities,

while valuable, predominantly focuses on studies applying artificial

intelligence to peripheral blood smear (PBS) samples (45–48).

Similarly, Deshpande et al. (49) adopt an AI-centric approach,

enhancing diagnostic accuracy through microscopic blood cell

analysis. While these approaches contribute significantly to the

field, they underscore the need for a more inclusive examination of

bone marrow samples, as we address in our review. Furthermore,

the literature showcases the effectiveness of deep learning models in

distinguishing acute leukemia subtypes, such as the work by

Anilkumar et al. (50) on automated B cell and T cell acute

lymphoblastic leukemia differentiation using blood smear samples

and Boldú et al.’s (51) introduction of ALNet for effective diagnosis

of acute leukemia lineages using peripheral blood cell images.

Moreover, Ouyang et al.’s (52) proposal of a convolutional neural

network-based acute promyelocytic leukemia diagnosis highlights

the versatility of deep learning across various subtypes. Laosai &

Chamnongthai’s innovative approach using CD markers of blood

cells for automated acute leukemia classification (15) adds another

dimension to the literature. Notably, the significance of well-

annotated datasets, such as ALL-IDB, SN-AM, C-NMC, and

SDCT-AuxNet, in standardizing algorithm evaluation is

acknowledged in the literature (53, 54). Finally, the literature

emphasizes the importance of integrating real-world clinical

scenarios and transfer learning to improve model robustness (55,

56), aspects that our review aims to further elucidate and emphasize

in the context of bone marrow samples.
4.2 Specialized CNN designs

Several studies have been dedicated to the development of

specialized CNN architectures, aiming to enhance the accuracy of

classification. Devi et al. introduced the CLR-CXG model,

synergizing convolutional leaky rectified linear units (ReLU) with

CatBoost and XGBoost boosting algorithms for cancer cell

classification. This integration showcased promising results,

underlining the potential of hybrid models. The “i-Net” model by

Ikechukwu et al. effectively combined pre-trained deep learning

networks, segmentation techniques, and data augmentation to

achieve exceptional accuracy in segmenting and classifying acute

lymphoblastic leukemia (ALL). Kavitha et al. contributed an

optimized deep CNN architecture for diagnosing bone marrow

cancers, leveraging the Cat Swarm optimization (CAT) algorithm

for hyperparameter tuning. By focusing on precise segmentation

and feature extraction using deep CNNs, this study demonstrated

the power of specialized designs in achieving robust classification.

Additionally, Kumar et al. emphasized the automatic detection of

white blood cell cancers, specifically ALL and MM using CNNs.

Their study highlighted the capacity of CNNs to discern pertinent

features within images, effectively enhancing classification accuracy.
4.3 Hybrid and ensemble designs

Hybrid and ensemble methodologies also emerged as valuable

avenues for leukemia diagnosis. Ordaz-Gutierrez et al. introduced a
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practical hybrid approach, uniting the RBFNN with the fuzzy logic

algorithm for ALL diagnosis. This study’s emphasis on resource-

constrained settings underscores the importance of accessible and

effective models. Yang et al. ventured into hybrid modeling by

integrating CNNs with ViTs to diagnose hematologic malignancies

through bone marrow images. By incorporating stain domain

augmentation and hybrid modeling, this study showcased the

potential of blending diverse deep learning techniques. Zhou et al.

devised a deep learning-based system for leukemia diagnosis,

employing an ensemble of multiple CNN models. The exceptional

performance observed in classifying different white blood cell types

and accurately diagnosing ALL in clinical scenarios exemplified the

potential of ensemble techniques for practical medical applications.
4.4 Practical implications and limitations

The discussed studies offer a promising path for improving ALL

diagnosis and classification through specialized CNN designs,

hybrid models, and ensemble techniques. However, recognizing

associated limitations is essential. One of the key limitations of the

reviewed studies is the relatively small dataset sizes. While these

studies demonstrate the potential of DL in ALL diagnosis, the

limited data may raise concerns about the generalizability of the

results. It is noteworthy that only two out of the ten reviewed studies

employed external validation. This is a significant limitation, as

relying solely on internal validation can lead to inflated

performance metrics. To address these limitations, further efforts

are required. This includes exploring larger datasets, refining

segmentation techniques, and assessing clinical feasibility. It is

imperative to develop a comprehensive evaluation framework that

incorporates external validation and real-world clinical testing to

enhance the robustness and generalizability of AI models for ALL

diagnosis and classification. Moreover, considering the complexity

of leukemia diagnosis, incorporating more complex samples, such

as those with 10-15% blast in normal marrow, is vital for a thorough

assessment of deep learning’s potential in distinguishing normal

and malignant blasts.
4.5 Future considerations

Future research endeavors should consider the incorporation of

molecular and genomic data into the analysis pipeline. Combining

these data sources with image-based analyses can potentially

provide a more holistic and accurate assessment of ALL cases.

Furthermore, the development of AI models that can effectively

integrate and interpret both image and molecular/genomic data

represents an exciting avenue for future research in the field. By

confronting limitations and pursuing the identified research

agenda, the field can move into a new era of accurate, efficient,

and accessible methods for diagnosing and classifying leukemia

using bone marrow images. This advancement holds the potential

to revolutionize clinical practices, enabling timely interventions and

personalized treatment strategies. Moreover, establishing

standardized protocols for external validation and benchmarking
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across different datasets and institutions will be instrumental in

establishing the reliability and generalizability of deep learning

models. Ultimately, as these future directions unfold, they will

contribute to the ongoing refinement and deployment of AI-

powered tools in the realm of ALL diagnosis and classification,

improving patient outcomes and advancing the field of medical

image analysis.
5 Conclusion

In conclusion, this review highlights the potential of deep

learning models in enhancing acute lymphoblastic leukaemia

diagnosis and classification. The proposed methodologies could

revolutionize leukaemia diagnostics, providing accurate tools for

early detection and treatment. Specialized CNN architectures,

hybrid models, and ensemble techniques demonstrate the

adaptability of deep learning in medical image analysis. However,

limitations like small datasets and lack of external validation must

be acknowledged. The reported high model performance metrics

might be overestimated without robust validation. Future research

should focus on refining and validating models, utilizing larger

datasets, and conducting clinical feasibility studies. Collaborative

efforts could integrate AI tools for precise leukaemia diagnosis,

advancing patient care and reshaping medical imaging diagnostics.
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