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Objectives: To identify combined clinical, radiomic, and delta-radiomic features

in metastatic gastroesophageal adenocarcinomas (GEAs) that may predict

survival outcomes.

Methods: A total of 166 patients with metastatic GEAs on palliative chemotherapy

with baseline and treatment/follow-up (8–12 weeks) contrast-enhanced CT were

retrospectively identified. Demographic and clinical data were collected. Three-

dimensional whole-lesional radiomic analysis was performed on the treatment/

follow-up scans. “Delta” radiomic features were calculated based on the change in

radiomic parameters compared to the baseline. The univariable analysis (UVA) Cox

proportional hazards model was used to select clinical variables predictive of

overall survival (OS) and progression-free survival (PFS) (p-value <0.05). The

radiomic and “delta” features were then assessed in a multivariable analysis

(MVA) Cox model in combination with clinical features identified on UVA.

Features with a p-value <0.01 in the MVA models were selected to assess their

pairwise correlation. Only non-highly correlated features (Pearson’s correlation

coefficient <0.7) were included in the final model. Leave-one-out cross-validation

method was used, and the 1-year area under the receiver operating characteristic

curve (AUC) was calculated for PFS and OS.

Results:Of the 166 patients (median age of 59.8 years), 114 (69%) were male, 139

(84%) were non-Asian, and 147 (89%) had an Eastern Cooperative Oncology

Group (ECOG) performance status of 0–1. The median PFS and OS on treatment

were 3.6 months (95% CI 2.86, 4.63) and 9 months (95% CI 7.49, 11.04),
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respectively. On UVA, the number of chemotherapy cycles and number of

lesions at the end of treatment were associated with both PFS and OS (p <

0.001). ECOG status was associated with OS (p = 0.0063), but not PFS (p =

0.054). Of the delta-radiomic features, delta conventional HUmin, delta gray-

level zone length matrix (GLZLM) GLNU, and delta GLZLM LGZE were

incorporated into the model for PFS, and delta shape compacity was

incorporated in the model for OS. Of the treatment/follow-up radiomic

features, shape compacity and neighborhood gray-level dependence matrix

(NGLDM) contrast were used in both models. The combined 1-year AUC

(Kaplan–Meier estimator) was 0.82 and 0.81 for PFS and OS, respectively.

Conclusions: A combination of clinical, radiomics, and delta-radiomic features

may predict PFS and OS in GEAs with reasonable accuracy.
KEYWORDS
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Introduction

Gastroesophageal cancer is one of the leading causes of cancer

deaths worldwide. The incidence of adenocarcinomas has significantly

increased in Western countries over the last four decades, partly

attributable to the rise in obesity and gastroesophageal reflux disease

(1). Up to 40% of patients present with stage IV disease (2). While

different therapy options currently appear on the horizon,

chemotherapy is currently the mainstay of treatment in metastatic

gastroesophageal adenocarcinomas (GEAs). However, the prognosis

remains poor with a 1-year and 5-year survival of 30% and 5%,

respectively, in stage IV GEAs (3). To make informed treatment

choices that match patients’ preferences and goals, information

regarding treatment outcomes in terms of survival is necessary.

Current prediction models in GEAs for prognosis rely mostly on

clinical parameters and have been found to be limited (4, 5).

Medical imaging is routinely used to monitor and/or predict

treatment response for cancer treatment. This is based on subjective

analysis of the imaging appearance of the tumor on the baseline CT

(size, invasiveness, and Heterogeneity) and treatment/follow-up CT

after 8–12 weeks of chemotherapy (change in size, change in

heterogeneity, and enhancement) (6). Subjective visual assessment

of CT scans is limited in providing prognostic information due to

the limitation of visual interrogation and interobserver variability.

Radiomics converts medical images (CT scans) into a set of high

dimensional, mineable, and quantitative features (like shape,

texture, and transformation), which provide tumor information

that is not easily identifiable by simple visual analysis (7). CT-

derived radiomic analysis provides biomarkers that have shown

promise in correlation with tumor biology and aggressiveness,

which in turn predict survival (8). While previous studies have

utilized radiomics in the evaluation of treatment response in

neoadjuvant settings in patients with resectable locally advanced
02
GEAs, there is a lack of literature in the palliative setting in

metastatic GEAs (9, 10).

In addition to providing information on internal tumor

heterogeneity, radiomic evaluation on the baseline and treatment/

follow-up CT can provide information regarding tumor response

following chemotherapy. This “delta” radiomic measures change in

radiomic information between the baseline and treatment/follow-up

CT and can detect spatial response variations (11). The relative net

change of radiomic features in longitudinal images may potentially

identify and quantify early therapy-induced changes and thereby

predict survival (11). To our knowledge, the utility of delta-radiomics

in metastatic GEAs has not been previously assessed.

Given the importance of all the mentioned variables in prognosis,

i.e., 1) clinical features and 2) baseline radiomic features (as a

biomarker of tumor heterogeneity and aggressiveness) and 3) delta-

radiomic features (as a biomarker of tumor response to

chemotherapy), it is desirable to have a model combining all these

variables to predict survival. The aim of this study is to identify a

combined clinical, radiomic, and delta-radiomic model that may be

predictive of overall survival and progression-free survival in

metastatic GEAs.
Methods

This retrospective study was approved by the local research

ethics board, and the need for informed consent was waived.

Patients with pathologically proven metastatic gastroesophageal

adenocarcinoma in our tertiary referral center who received

palliative chemotherapy between 2009 and 2020 were identified

from an institutional registry retrospectively. All patients

underwent a “baseline” CT (within 2 months prior to the start of

chemotherapy) and a “treatment/follow-up” scan after 8–12 weeks
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of chemotherapy. Patients without a contrast-enhanced “baseline”

or “treatment/follow-up” portal venous phase CT were excluded.

Overall, 166 patients were identified. Clinical and pathology data

were obtained including patient and tumor characteristics,

treatment, and follow-up data, such as Eastern Cooperative

Oncology Group (ECOG) status at clinical presentation, history

of smoking and alcohol use, and clinical and pathological staging

(according to the 8th edition of the American Joint Committee on

Cancer (AJCC)).
Image analysis

All patients received iodinated intravenous contrast media-

enhanced CT scan in the portal venous phase. All CT scans were

performed on 64 or 320 multidetector scanners (Aquilion 64 or

Aquilion One, Canon (formerly Toshiba) Medical Systems

Corporation, Otawara, Japan). Images were acquired using 120

kVp, gantry rotation speed of 0.5–0.75 s, and automatic mAs setting

with an accepted noise level standard deviation of 13–15 Hounsfield

units. The volumetric acquisition was reconstructed at a 5-mm slice

thickness every 2.5 mm in the axial plane and a 3-mm thickness

every 3 mm in the coronal and sagittal planes. The manufacturer’s

standard soft tissue filter (FC04) was used for the reconstruction.

Intravenous contrast consisted of 100 cc of iopromide (Ultravist

370; Bayer Healthcare, Berlin, Germany) injected at 3 cc/s. The

abdomen was then imaged in the portal venous phase, 70 s after

initiation of contrast bolus injection. The scan acquisition and scan

parameters were stable throughout the study period.
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The digital imaging and communication medical data (400-bit

grayscale) of the CT scans were retrieved from the image archiving

system. Feature extraction software (LIFEx v3.74, CEA-SHFJ,

Orsay, France) was used for manual region-of-interest three-

dimensional segmentation and texture analyses. All segmentations

and feature extraction of the tumor were performed by one author

(AS) with 5 years of experience with gastrointestinal imaging

(Figure 1). All segmentation was three-dimensional and was

performed manually slice by slice to cover the entire tumor

lesion. A total of 76 subdivided texture features were extracted,

including conventional indices (including, but not limited to,

minimum, maximum, average, and standard deviation values),

discretized indices, first-order histogram-based parameters, shape-

derived parameters and texture features from second or higher

order [gray-level co-occurrence matrix (GLCM), gray-level zone

length matrix (GLZLM), neighborhood gray-level dependence

matrix (NGLDM), and gray-level run length matrix (GLRLM)].

Radiomic features were extracted from the segmented regions of

interest (ROIs) in both the baseline and treatment/follow-

up images.
Statistical analysis

Summary statistics were used to describe patient, disease, and

treatment characteristics. The Kaplan–Meier (KM) method was

used to estimate overall survival (OS) and progression-free survival

(PFS) and their 95% confidence interval (CI). Univariable Cox

proportional hazards models were fitted to select clinical variables
FIGURE 1

A 48-year-old man with metastatic gastroesophageal adenocarcinoma. Axial (above) and coronal (below) contrast-enhanced CT images showing
the primary gastroesophageal adenocarcinoma and the contours of segmentation on the (A) baseline and (B) treatment/follow-up (8–12 weeks on
chemotherapy) CT.
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predictive of OS and PFS with a p-value <0.05 indicating

significance. Multivariable Cox proportional hazards models were

fitted to lesion-level data, with robust standard errors via clustering

to account for intra-patient correlation.

To develop the final multivariable model, first, significant

clinical variables with a p-value <0.05 were selected from the

univariable analyses (UVAs). Then, the radiomic features and

“delta” features (defined as change between baseline and

treatment/follow-up scans) were assessed one by one in

multivariable analyses (MVAs) in the presence of the selected

clinical variables. Radiomic features with a p-value <0.01 (here a

more stringent threshold to account for the larger number of

radiomic features than clinical features) were selected to further

assess their pairwise correlation. Only non-highly correlated

features (Pearson’s correlation coefficient <0.7) were included in

the final model.

To validate the performance of the models, leave-one-out cross-

validation at the lesion level was conducted. First, one lesion was

removed and used as validation, and a Cox model with robust

standard errors was trained in the remaining data. Then, the trained

model was used to predict the outcome of the validation lesion.

These steps were repeated for each lesion in turn. The predicted

outcomes of the lesions from all patients were combined to calculate

the receiver operating characteristics (ROC) curve and the 1-year

area under the ROC curve (AUC) with the Kaplan–Meier estimator

using the survivalROC package in R version 4.0.2.
Results

Of the 166 patients included in the study, 114 (69%) were male

and 52 (31%) were female with a median age of 59.8 years (26.9,

80.7). Of the patients, 84% were non-Asian (n = 139). The majority

of patients were ECOG 0 or 1 (32% and 57%, respectively), and 11%

had ECOG 2 or above. The baseline patient characteristics are

shown in Table 1.

All patients had metastatic gastroesophageal adenocarcinoma.

Of the patients, 117 (70%) had locoregional lymph node metastasis,

and 69 (42%) had distant lymph node metastasis. The other

common sites of metastasis were the liver (n = 63, 38%),

peritoneum (n = 56, 34%), bone (n = 31, 19%), and brain (n = 5,

3%). Information regarding the sites of metastasis and the number

of lesions at “baseline” and on the “treatment/follow-up” scans is

summarized in Table 2. The median PFS and OS on treatment were

3.6 months (95% CI 2.86, 4.63) and 9 months, respectively (95% CI

7.49, 11.04) (Figure 2).

On UVA, the number of chemotherapy cycles and the number

of lesions on the follow-up scans were associated with both PFS and

OS (p < 0.001). ECOG status at baseline was associated with OS (p =

0.006), but not PFS (p = 0.054). Similarly, the presence of brain

metastasis was adversely associated with OS (p < 0.001) and not PFS
Frontiers in Oncology 04
(p = 0.078). The rest of the clinical variables were not associated

with either OS or PFS (p > 0.05). The UVA of clinical variables for

PFS and OS is summarized in Supplementary Tables 1, 2.

An MVA Cox proportional hazards model was developed

incorporating the clinical features, radiomic features, and the

“delta” features for PFS and OS. Both these models incorporated

features from all three categories (clinical, baseline radiomic, and

delta features). Of the radiomic features, shape compacity and

NGLDM contrast were used in both models (for OS and PFS). Of

the delta features, delta conventional HUmin, delta GLZLM GLNU,

and delta GLZLM LGZE were incorporated into the model for PFS,

while delta shape compacity was incorporated in the model for OS.

The final models used for PFS and OS including the radiomic

variables are summarized in Tables 3, 4.

The leave-one-out cross-validation method was used, and the 1-year

AUC (Kaplan–Meier estimator) was calculated with the area under the

curve of 0.82 and 0.81 for PFS and OS, respectively (Figure 3).
TABLE 1 Clinical characteristics of patients included in the study.

Characteristics N = 166

Age (years), Median (Min, Max) 59.8 (26.9, 80.7)

Sex

Female 52 (31)

Male 114 (69)

Race

Asian 27 (16)

Non-Asian 139 (84)

Height (m), Median (Min, Max) 1.7 (1.3, 2)

Weight (kg), Median (Min, Max) 70.8 (38.7, 111)

BMI (kg/m2), Median (Min, Max) 24.4 (15.7, 47.4)

Alcohol

Frequent/daily 22 (13)

Occasional 75 (45)

Past 17 (10)

Smoking

Current 22 (13)

Ex-smoker 55 (33)

ECOG

0 53 (32)

1 94 (57)

2 16 (10)

3 3 (2)
BMI, body mass index; ECOG, Eastern Cooperative Oncology Group.
frontiersin.org

https://doi.org/10.3389/fonc.2023.892393
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Krishna et al. 10.3389/fonc.2023.892393

Frontiers in Oncology 05
Discussion

In our current study, we evaluated the value of combining

patient-related clinical variables, with quantitative imaging

variables in survival prediction in patients with metastatic

GEAs. Specifically, we assessed the combined benefit of

rad iomic f ea ture s , wh ich are b iomarker s o f tumor

aggressiveness, along with delta-radiomic features, which are

biomarkers of tumor response to treatment. We found that a

combined model incorporating variables from all three subsets

(clinical, radiomics, and delta-radiomics) has incremental value in

the prediction of survival.

Of the clinical variables, expectedly, higher ECOG status was

associated with poor survival, which is consistent with prior

literature (12). Higher tumor burden on the treatment/follow-up

CT assessed by the number of residual metastatic lesions on the

treatment/follow-up scan was also associated with both poor OS

and PFS. It is already known that high tumor burden in the form of

multiple sites of metastasis and the number of metastasis pre-

treatment is associated with poor survival (13). This is consistent

with emerging knowledge of higher survival in oligometastatic

disease, with some preliminary studies encouraging aggressive

local treatment of oligometastasis to reduce tumor burden to

improve survival (12, 14). However, our study also shows that the

number of metastatic lesions after 8–12 weeks of chemotherapy is

important in the prediction of survival, which underlines the

importance of follow-up imaging not only in terms of radiomic

evaluation. In addition, presence of brain metastasis was shown to

have poor OS but not PFS in our study. It has been previously

shown that patients with gastroesophageal adenocarcinomas are

more likely to have brain metastasis when compared with patients

with esophageal squamous cell carcinomas (15). However, previous

studies have not shown a difference in survival in patients with

brain metastasis in GEAs (16). Finally, our study shows improved
TABLE 2 Details of metastasis and chemotherapy cycles of patients
included in the study.

Characteristics n = 166

Sites of metastasis

Lymph node (locoregional) 117 (70)

Distant lymph node 69 (42)

Liver 63 (38)

Peritoneal 56 (34)

Bone 31 (19)

Brain 5 (3)

Other 54 (33)

Number of chemo cycles, Median (Min, Max) 6 (1, 42)

Number of lesions at baseline

1 52 (31)

2 31 (19)

3 44 (27)

4 18 (11)

5 20 (12)

6 1 (1)

Number of lesions after treatment

None 5 (3)

1 52 (32)

2 28 (17)

3 36 (22)

4 22 (14)

5 23 (14)
FIGURE 2

Kaplan–Meier (KM) curves (red solid lines) for progression-free survival (PFS) and overall survival (OS) of the full cohort, with dashed line indicating
the median.
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PFS and OS association with the number of cycles of chemotherapy,

which is an obvious and expected finding.

Of the radiomic features, NGLDM contrast and shape compacity

were used in both models. NGLDM contrast, which is the intensity

difference between neighboring regions, has been identified as a

marker for intratumoral heterogeneity and is associated with both

PFS and OS (17). Shape compacity (Area^1.5/Volume) reflects how

compact the volume is. The more tubular and elongated the mass is,

the higher the compacity, which in our study was associated with

worse PFS. This is concordant with prior studies showing that a

longer length of tumor is associated with worse PFS (12). A similar

association of compacity with PFS has been identified in gastric

lymphoma (18). Similarly, a higher surface area of the tumor was

associated with worse OS. In addition, high delta shape compacity

was associated with poor OS. A high delta shape compacity would

potentially indicate a tumor with worsening compacity compared to

baseline, which would indicate an increase in tumor length or

development of an infiltrative pattern on treatment. Thus, this is

potentially a quantitative marker for worsening on treatment, which

as expected was associated with worse OS. Delta-compacity has been
Frontiers in Oncology 06
shown to be significant in prior studies of advanced gastric cancer

(19). GLZLM provides information on the size of homogeneous

zones for each gray level in three dimensions. Delta GLZLM GLNU

and delta GLZLM LGZE provide information on changes in

heterogeneity between baseline and the treatment/follow-up CT

and were associated with PFS. Loss of heterogeneity and improving

homogeneity on the treatment/follow-up CT are known indicators of

treatment response (20). Previously, delta GLZLM features have been

shown to be useful in locally advanced hypopharyngeal cancers, and

specifically, delta LGZE has been useful in head and neck cancers (21,

22). Thus, overall, radiomic features and delta-radiomic features

predict survival by providing quantitative information regarding

tumor characteristics and the change in tumor characteristics on

treatment. A combination of these quantitative imaging biomarkers

with clinical features was associated with survival in our study.

It needs to be pointed out there are no other publications

currently available that evaluated “delta” radiomic correlations in

the setting of palliative gastroesophageal cancer. Given the potential

toxicity of chemotherapy, objective measurements of tumor response

are important. Several publications and trials evaluated radiomic
TABLE 3 Multivariable Cox proportional hazards model for progression-free survival.

Covariate HR (95%CI) p-Value

Number of chemo cycles 0.88 (0.81, 0.95) 0.001

Number of lesions after treatment 1.17 (1, 1.38) 0.051

GLZLM ZLNU 0.97 (0.86, 1.1) 0.670

NGLDM contrast 0.97 (0.95, 0.99) 0.014

Delta conventional HUmin 0.89 (0.77, 1.03) 0.110

Delta GLZLM GLNU 1.23 (1.06, 1.42) 0.006

SHAPE compacity 1.28 (1.14, 1.45) <0.001

Delta GLZLM LGZE 1.06 (1.03, 1.09) <0.001
GLZLM, grey-level zone length matrix; ZLNU, zone length non-uniformity; NGLDM, neighborhood grey-level dependence matrix; HU, Hounsfield units; GLNU, gray-level non-uniformity;
LGZE, low gray-level zone emphasis.
Values in bold p<0.05.
TABLE 4 Multivariable Cox proportional hazards model for overall survival.

Covariate HR (95%CI) p-Value

ECOG 1.73 (1.3, 2.3) <0.001

Brain metastasis (vs. no) 7.66 (4.49, 13.07) <0.001

Number of chemo cycles 0.89 (0.85, 0.92) <0.001

Number of lesions after treatment 1.38 (1.21, 1.58) <0.001

Shape compacity 1.09 (0.98, 1.22) 0.1

GLZLM size 0.84 (0.75, 0.95) 0.003

Shape surface (mm2) 1.15 (1.02, 1.29) 0.019

Delta shape compacity 1.33 (1.07, 1.64) 0.009

NGLDM contrast 1.04 (1.01, 1.07) 0.017
ECOG, Eastern Cooperative Oncology Group; GLZLM, grey-level zone length matrix; NGLDM, neighborhood grey-level dependence matrix.
Values in bold p<0.05.
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parameters with the ultimate goal of clinical routine implementation

of radiomic evaluation. Since imaging is performed in a multitude of

follow-up settings, follow-up radiomic evaluation and the clinical

value thereof need to be investigated, too.

Our study has several limitations. Owing to the retrospective

nature of the study cohort from a single center, selection bias cannot

be entirely excluded. Given that the study cohort is relatively small,

we did cross-validation for statistical robustness but no further

validation of our results. In doing so, we would have had to split

our study cohort into training and validation data sets, which would

decrease the overall statistical robustness. Our results need to be

validated externally preferably in prospective multicenter cohorts.

This is especially important because radiomic parameters may be

susceptible to alternate CT scanners, reconstruction algorithms, and

imaging parameters, which may differ in other institutions. However,

some of that variation was accounted for in this study already, as

patients were imaged partly on different scanners. Direct clinical

applicability is currently limited, as the tools to obtain radiomic

parameters are not readily available on routine radiology PACS

platforms and currently need separate workstations and platforms

for image segmentation and feature extraction, however noting that

automated radiomics evaluation tools are already on the horizon.

Radiomic analysis based on baseline and 8–12 weeks’

treatment/follow-up contrast-enhanced CT has the potential to

predict survival in patients with metastatic GEAs treated with

chemotherapy. A combination of clinical (patient/tumor-related

features), radiomic (biomarker for tumor characteristics), and

delta-radiomic (biomarker for tumor response to chemotherapy)

features may predict survival in metastatic GEAs. These models

require further prospective validation.
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One-year area under the curve (AUC) Kaplan–Meier estimator curves based on the multivariable model for progression-free survival (PFS) and
overall survival (OS).
frontiersin.org

https://doi.org/10.3389/fonc.2023.892393
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Krishna et al. 10.3389/fonc.2023.892393
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The reviewer SN declared a past co-authorship with the author

SKr to the handling editor.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Oncology 08
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.892393/

full#supplementary-material
References
1. Bartel M, Brahmbhatt B, Bhurwal A. Incidence of gastroesophageal junction
cancer continues to rise: Analysis of Surveillance, Epidemiology, and End Results
(SEER) database. J Clin Oncol (2019) 37:40–0. doi: 10.1200/JCO.2019.37.4_suppl.40

2. Then EO, Lopez M, Saleem S, Gayam V, Sunkara T, Culliford A, et al. Esophageal
cancer: an updated surveillance epidemiology and end results database analysis. World
J Oncol (2020) 11:55–64. doi: 10.14740/wjon1254

3. Surveillance Research Program. National Cancer Institute. Available at: https://
seer.cancer.gov/explorer/.

4. van den Boorn HG, Engelhardt EG, van Kleef J, Sprangers MAG, van Oijen
MGH, Abu-Hanna A, et al. Prediction models for patients with esophageal or gastric
cancer: A systematic review and meta-analysis. PloS One (2018) 13:e0192310–
e0192310. doi: 10.1371/journal.pone.0192310

5. Gupta V, Coburn N, Kidane B, Hess KR, Compton C, Ringash J, et al. Survival
prediction tools for esophageal and gastroesophageal junction cancer: A systematic
review. J Thorac Cardiovasc Surg (2018) 156:847–56. doi: 10.1016/j.jtcvs.2018.03.146

6. Jayaprakasam VS, Yeh R, Ku GY, Petkovska I, Fuqua JL 3rd, Gollub M, et al. Role
of imaging in esophageal cancer management in 2020: update for radiologists. Am J
Roentgenol (2020) 215:1072–84. doi: 10.2214/AJR.20.22791

7. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they
are data. Radiology (2015) 278:563–77. doi: 10.1148/radiol.2015151169

8. Sah B-R, Owczarczyk K, Siddique M, Cook GJR, Goh V. Radiomics in esophageal
and gastric cancer. Abdominal Radiol (New York) (2019) 44:2048–58. doi: 10.1007/
s00261-018-1724-8

9. Wesdorp NJ, Hellingman T, Jansma EP, van Waesberghe JTM, Boellaard R, Punt
CJA, et al. Advanced analytics and artificial intelligence in gastrointestinal cancer: a
systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol
Imaging (2021) 48:1785–94. doi: 10.1007/s00259-020-05142-w

10. Kao Y-S, Hsu YEN. A meta-analysis for using radiomics to predict complete
pathological response in esophageal cancer patients receiving neoadjuvant
chemoradiation. Vivo (2021) 35:1857. doi: 10.21873/invivo.12448

11. Bera K, Velcheti V, Madabhushi A. Novel quantitative imaging for predicting
response to therapy: techniques and clinical applications. Am Soc Clin Oncol Educ Book
(2018) 2018:1008–18. doi: 10.1200/EDBK_199747

12. Li B, Wang R, Zhang T, Sun X, Jiang C, Li W, et al. Development and validation
of a nomogram prognostic model for esophageal cancer patients with oligometastases.
Sci Rep (2020) 10:11259. doi: 10.1038/s41598-020-68160-6
13. Qiu G, Zhang H, Wang F, Zheng Y, Wang Z, Wang Y. Metastasis patterns and
prognosis of elderly patients with esophageal adenocarcinoma in stage IVB: A
population-based study. Front Oncol (2021) 11:625720–0. doi: 10.3389/
fonc.2021.625720

14. Iwatsuki M, Harada K, Wang X, Bhutani MS, Weston B, Lee JH, et al. The
prognostic factors associated with long-term survival in the patients with synchronous
oligometastatic esophageal adenocarcinoma. J Clin Oncol (2019) 37:e15523–3. doi:
10.1200/JCO.2019.37.15_suppl.e15523

15. Wu SG, Zhang WW, Sun JY, Li FY, Lin Q, He ZY. Patterns of distant metastasis
between histological types in esophageal cancer. Front Oncol (2018) 8:302. doi: 10.3389/
fonc.2018.00302

16. Wu S-G, Zhang W-W, He Z-Y, Sun J-Y, Chen Y-X, Guo L. Sites of metastasis
and overall survival in esophageal cancer: a population-based study. Cancer Manag Res
(2017) 9:781–8. doi: 10.2147/CMAR.S150350

17. Chao J, Bedell V, Lee J, Li MS, Chu P, Yuan YC, et al. Association between
spatial heterogeneity within nonmetastatic gastroesophageal adenocarcinomas and
survival. JAMA Network Open (2020) 3:e203652–e203652. doi: 10.1001/
jamanetworkopen.2020.3652

18. Zhou Y, Ma XL, Pu LT, Zhou RF, Ou XJ, Tian R. Prediction of overall survival
and progression-free survival by the (18)F-FDG PET/CT radiomic features in patients
with primary gastric diffuse large B-cell lymphoma. Contrast Media Mol Imaging
(2019) 2019:5963607. doi: 10.1155/2019/5963607

19. Yoo SH, Kang SY, Yoon J, Kim TY, Cheon GJ, Oh DY. Prospective evaluation of
metabolic intratumoral heterogeneity in patients with advanced gastric cancer receiving
palliative chemotherapy. Sci Rep (2021) 11:296. doi: 10.1038/s41598-020-78963-2

20. Yip C, Davnell F, Kozarski R, Landau DB, Cook GJ, Ross P, et al. Assessment of
changes in tumor heterogeneity following neoadjuvant chemotherapy in primary
esophageal cancer. Dis Esophagus (2015) 28:172–9. doi: 10.1111/dote.12170

21. Carles M, Fechter T, Grosu AL, Sörensen A, Thomann B, Stoian RG, et al. (18)F-
FMISO-PET hypoxia monitoring for head-and-neck cancer patients: radiomics
analyses predict the outcome of chemo-radiotherapy. Cancers (2021) 13:3449. doi:
10.3390/cancers13143449

22. Su CW, Lee JC, Chang YF, Su NW, Lee PH, Dai KY, et al. Delta-volume
radiomics of induction chemotherapy to predict outcome of subsequent
chemoradiotherapy for locally advanced hypopharyngeal cancer. Tumori (2021)
2021:3008916211039018. doi: 10.1177/03008916211039018
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.892393/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.892393/full#supplementary-material
https://doi.org/10.1200/JCO.2019.37.4_suppl.40
https://doi.org/10.14740/wjon1254
https://seer.cancer.gov/explorer/
https://seer.cancer.gov/explorer/
https://doi.org/10.1371/journal.pone.0192310
https://doi.org/10.1016/j.jtcvs.2018.03.146
https://doi.org/10.2214/AJR.20.22791
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/s00261-018-1724-8
https://doi.org/10.1007/s00261-018-1724-8
https://doi.org/10.1007/s00259-020-05142-w
https://doi.org/10.21873/invivo.12448
https://doi.org/10.1200/EDBK_199747
https://doi.org/10.1038/s41598-020-68160-6
https://doi.org/10.3389/fonc.2021.625720
https://doi.org/10.3389/fonc.2021.625720
https://doi.org/10.1200/JCO.2019.37.15_suppl.e15523
https://doi.org/10.3389/fonc.2018.00302
https://doi.org/10.3389/fonc.2018.00302
https://doi.org/10.2147/CMAR.S150350
https://doi.org/10.1001/jamanetworkopen.2020.3652
https://doi.org/10.1001/jamanetworkopen.2020.3652
https://doi.org/10.1155/2019/5963607
https://doi.org/10.1038/s41598-020-78963-2
https://doi.org/10.1111/dote.12170
https://doi.org/10.3390/cancers13143449
https://doi.org/10.1177/03008916211039018
https://doi.org/10.3389/fonc.2023.892393
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Combination of clinical, radiomic, and “delta” radiomic features in survival prediction of metastatic gastroesophageal adenocarcinoma
	Introduction
	Methods
	Image analysis
	Statistical analysis

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Supplementary material
	References


