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Gastric cancer (GC) is one of the most common neoplastic malignancies, which

permutes a fourth of cancer-related mortality globally. RNA modification plays a

significant role in tumorigenesis, the underlying molecular mechanism of how

different RNA modifications directly affect the tumor microenvironment (TME) in

GC is unclear. Here, we profiled the genetic and transcriptional alterations of RNA

modification genes (RMGs) in GC samples from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) cohorts. Through the unsupervised

clustering algorithm, we identified three distinct RNA modification clusters and

found that they participate in different biological pathways and starkly correlate

with the clinicopathological characteristics, immune cell infiltration, and prognosis

of GC patients. Subsequently, univariate Cox regression analysis unveiled 298 of

684 subtype-related differentially expressed genes (DEGs) are tightly interwoven to

prognosis. In addition, we conducted the principal component analysis to develop

the RM_Score system, which was used to quantify and predict the prognostic value

of RNAmodification in GC. Our analysis indicated that patients with high RM_Score

were characterized by higher tumor mutational burden, mutation frequency, and

microsatellite instability which were more susceptible to immunotherapy and had

a favorable prognosis. Altogether, our study uncovered RNA modification

signatures that may have a potential role in the TME and prediction of

clinicopathological characteristics. Identification of these RNA modifications may

provide a new understanding of immunotherapy strategies for gastric cancer.
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1 Introduction

Gastric cancer (GC) is one of the most prevalent cancers and the

third leading cause of cancer-related deaths, with a variety of factors that

ordinarily facilitate its occurrence (1, 2). Although therapeutic

approaches in radiotherapy and chemotherapy are improving clinically,

the myriad of GC patients who are diagnosed in the advanced stage do

not benefit from it (3). Consequently, in clinical practice, improving the

sensitivity of early diagnostic tools and treatment with effective drugs are

the most useful strategies for increasing the survival rate. Previous studies

have demonstrated that changes in structural genomics have an

inextricable correlation with cancers, and certain genetic changes (e.g.,

mutation and duplication) may have a perceptible effect on the

progression of GC patients (4). Accumulating studies have revealed

that DNA copy number variations (CNV) have a significant role in gene

expression and tumorigenesis of GC, acting as a crucial influential factor

on oncogenic pathways (5, 6).

Post-transcriptional modification is an essential regulatory section in

the progression of many diseases and ubiquitously exists in virtually all

cellular RNAs (7, 8). As yet, more than 150 different types of post-

transcriptional RNA modifications have been found (9). N6-methyl

adenosine (m6A) methylation is a newly recognized epigenetic

modification and one of the most abundant forms of RNA

modifications in eukaryotic cells. The formation and removal of m6A

modification were a sort of dynamic reversible processes, which were

implemented by methyltransferases known as “writers” (RBM15,

ZC3H13, METTL3, METTL14, WTAP, and KIAA1429) and

demethylases also called “erasers” (FTO and ALKBH5) (10). There is a

growing body of literature supporting that m6A modification is involved

in a series of bioprocesses regulations, including RNA translation,

degradation, nuclear output, and disease states, especially in tumor

malignant progression and immunomodulatory abnormalities (11–16).

The N1-Methyladenosine (m1A) modification, present in a minority of

mRNAs, is regulated by the enzymes known as”writers” of TRMT61A,

TRMT61B, TRMT10C, and TRMT6. m1A modification usually plays a

translational repression role that can have a devastating effect on base

pairing, and also affects the tertiary structure of ribosomes through

ribosomal scanning or translation (17, 18). The alternative

polyadenylation (APA) is a ubiquitous RNA modification that can

shear mRNA and adds poly(A) tails (19), it plays an essential role in

regulating the stability and translation efficiency of target RNA. The

synthesis of poly(A) are regulated by CPSF1, CPSF2, CPSF3, CPSF4,

CSTF1, CSTF2, CSTF3 CFI, PCF11, CLP1, NUDT21, and PABPN1

protein complex (20). Additionally, adenosine-to-inosine (A-to-I) RNA

editing, a crucial form of RNA modification, emerges in coding/non-

coding regions of mRNAs and is mediated by adenosine deaminase,

which frequently works on ADAR1 and ADAR2 (21, 22). Increasing

research asserted that RNA modifications were tightly associated with

human diseases, and the misregulation of RNA modification pathways

may lead to cancer onset (7, 23). The interaction of different RNA

modifications have not been fully elucidated. Therefore, we focused on

the above four types of RNA modification to investigate the effect of

distinct RNA modification patterns on gastric cancer.

Recently, immunotherapy has revolutionized the treatment strategies

for multiple cancer, including gastric cancer. Although immunotherapy

could elicit greater durable responses compared with conventional

chemotherapy in advanced cancer patients, only a small number of
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patients can obtain positive responses and benefit from it (24). It is well

known that immunotherapy responses were typically dependent on the

immune cells inside the complex tumor microenvironment (TME). The

TME, an integral part of tumor cells, can widely implicate tumorigenesis

by regulating different signaling pathways (25). Growing studies have

revealed the special crosstalk between RNA modification and the TME

that the epigenetic modification of eukaryotic mRNA potentially relied

on the TME infiltrating immune cells (26, 27). It has been reported that

METTL3-mediated m6A methylation accelerated the activation and

maturation of dendritic cells (28). The specific depletion of METTL3

resulted in the decreased expression of costimulatory molecules CD40

and CD80, impairing the capacity of stimulating T cell activation in turn

(29). In addition, overexpression of METTL3 can facilitate GCmalignant

progression via angiogenesis and glycolysis signaling pathways (30).

However, the limitation of technology contributed to most studies

focusing on only one or two RNA modification regulators and cell

types, whereas the antitumor effect is regulated by various tumor factors

interacting under high coordination. Therefore, identifying the

infiltration characterizations of TME immune cells mediated by RNA

modification regulators will help us enhance insight into the immune

regulation of TME in gastric cancer.

This study was designed to assess the expression profiles of 26 RMGs

in 373 TCGA-STAD and 433 GEO samples of gastric cancer. We

presented a comprehensive overview of RNA modification patterns

and evaluated the relationship between those patterns and

characteristics of TME immune cell infiltration. Interestingly, the TME

characteristics of the three RNA modification patterns highly coincided

with the immune-excluded, immune-desert, and immune-inflamed

phenotypes (29). Moreover, we established a set of score schemes to

quantify the RNA modification patterns in individual tumors and

forecast the clinical characteristics and prognostic outcomes. Our study

suggested that RNA modification plays a crucial role in the formation of

the tumor immunemicroenvironment and is integral in the development

of therapeutic intervention plans for patients with GC.
2 Materials and methods

2.1 Data sources and pro-processing

Public gene expression data (fragments per kilobase million, FPKM),

genome mutation data, copy number variation data, and complete

clinical annotations of GC, containing 343 tumor patients and 30

normal control samples, were derived from TCGA database (https://

portal.gdc.cancer.gov/). The gastric adenocarcinoma datasets GSE84437

(433 tumor samples), GSE63089 (90 samples), and GSE27342 (160

samples) were downloaded from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/). Since the sample size of GSE84437 is greater than

GSE63089 and GSE27342, we used GSE84437 for initial analysis to

improve the accuracy and reliability of the analysis, and datasets

GSE63089 and GSE27342 were used to validate the mRNA expression

of hub genes. 26 RNA modification genes have been described in the

study of Chen et al. The fpkm function of the “limma” package was

performed to transform FPKM values of gene expression into transcripts

per kilobasemillion (TPM) values (31), which wasmore in commonwith

the data of the GEO chip. The “maftools” R package was used to draw the

waterfall plots of RMGs mutation frequencies. The diagram of the
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location of RMGs alteration on 23 chromosomes was generated via the

“RCircos” package.
2.2 Consensus clustering analysis of
RNA modulators

The 26 RMGs, including 7 m6A modification genes (METTL3,

METTL14, WTAP, RBM15, RBM15B, ZC3H13, VIRMA), 4 m1A

modification genes (TRMT61A, TRMT10C, TRMT61B, TRMT6), 12

APA modification genes (CPSF1, CPSF2, CPSF3, CPSF4, CSTF1,

CSTF2, CSTF3, CFI, PCF11, CLP1, NUDT21, PABPN1), and 3 A-I

modification genes (ADAR, ADARB1, ADARB2). We used the

unsupervised clustering analysis to determine distinct RNA

modification patterns in gastric cancer based on the expression

profiles of 26 RMGs and categorize patients for subsequent analysis.

The consensus clustering algorithm was performed to determine the

cluster number and stability (32). The “ConsensusClusterPlus” R

package was utilized to implement the above steps and 1000 replicates

were performed to ensure the stability of the categorization (33).
2.3 Clinical characteristics analysis based on
different RNA modification patterns

To investigate the relationships between different RNA modification

patterns and clinical characteristics, the clinical data (age, sex, TNM stage,

survival status) was integrated into our study. The “c2.cp.kegg.v6.2

symbol” gene set that downloaded from the Molecular Signatures

Database (MSigDB) (http://www.broad.mit.edu/gsea/msigdb/) (34) for

running Gene Set Variation Analysis (GSVA) enrichment analysis, and

“GSVA” R package was applied to identify the differences among three

RNA modification patterns and biological characteristics. Adjusted P-

value < 0.05 was viewed to be statistically significant. We used the Cox

regression model to evaluate the survival prognostic of GC patients in

different RNA modification patterns. The “survival” and “survminer” R

packages were used for the generation of survival curves.
2.4 The TME cell infiltrating characteristics
analysis

The gene set of TME infiltration immune cell has been described

in the study of Charoentong et al. (35), which harbors numerous

human immune cell subtypes such as activated CD8 T cell, activated

dendritic cell, activated B cell, macrophage, mast cells, monocyte,

natural killer T cell, and regulatory T cells. The relative abundance of

each TME cell infiltration in each cluster was calculated by the single-

sample gene-set enrichment analysis (ssGSEA) algorithm and

represented by enrichment scores (29, 36).
2.5 Identification of DEGs and construction
of RNA modification scoring system

We used the empirical Bayesian approach of the “limma” R package

to identify DEGs among three RNAmodification clusters under adjusted
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P-value < 0.001 conditions. Gene ontology (GO) functional annotation

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of those signature genes were conducted by using

the “clusterProfler” R package with FDR < 0.01 condition, and then the

results were visualized by the “ggplot2” R package. Next univariate Cox

regression analysis was utilized to identify the marked prognostic-related

genes between the clusters. Then, the principal component analysis

(PCA) was used to build the RM_Score. Both principal components 1

and 2 were selected as signature scores, the advantage of this approach

was that the score concentrated on the set with the largest blocks of highly

correlated (or anti-correlated) genes in the set, while reducing the weight

to genes that are not tracked with other set members. The RM_score is

defined below:

RM _ Score = S(PC1i + PC2i)

Where i is the expression of RNA modification phenotype-related

genes. Finally, patients were classified into the high RM_Score group

and low RM_Score group for deeper analysis according to the

maximally selected rank statistics.
2.6 Correlation of the RM_Score and
immune infiltration, tumor mutation burden,
and microsatellite instability

We used the log-rank tests and Kaplan–Meier curves analysis to

explore the prognostic value of the RM_Score. P-value < 0.001 was

regarded to be statistically significant. Stratified analysis was used to

determine whether the RM_Score maintained its predictive capacity in

different groups. The ssGSEA algorithm was performed to estimate the

infiltration of immune cells between the two distinct RM_Score groups.

The Chi-square tests were applied to analyze the correlation of RM_Score

and clinical characteristics. In addition, the Wilcoxon ranked-sum test

was used to determine the differential expression of PD-1, and PD-L1 in

the two RM_Score groups. Moreover, through the Spearman correlation

analysis, the potential relationship between RM_Score and tumor

mutational burden (TMB) was characterized as well as microsatellite

instability (MSI).
2.7 Protein-protein interactions network
construct and hub genes expression
validation

We used the STRING database (https://cn.string-db.org/ ) to

construct the protein-protein interactions (PPI) network of the 26

RMGs. The network was visualized by Cytoscape and the hub genes

among 26 RMGs were screened by the cytoHubba plug-in of

Cytoscape. The datasets of GSE63089 and GSE27342 were used for

validation of the hub gene mRNA expression. The protein expression

of hub genes in normal gastric and tumor tissue was investigated by

employing The Human Protein Atlas (https://www.proteinatlas.org/).
2.8 Statistical analysis

The correlation coefficients between the infiltration of TME cells

and the expression of RMGs were calculated via Spearman and
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distance correlation analyses. Wilcoxon rank-sum test and chi-square

test were used to perform difference comparisons of continuous

variables and classified variables between two groups, respectively.

Difference comparisons among three or more groups were analyzed

by One-way ANOVA and Kruskal-Wallis test (29, 37). The

“survminer” R package was used for determining the optimum cut-

off point for each dataset subgroup based on the relationship of

RM_Score and survival in patients. On the basis of maximally selected

log-rank statistics, the “surv-cutpoint” function was used to

dichotomize RM_Score, GC patients were classified into the high

RM_Score group and the low RM_Score group subsequently. For

prognostic analysis, the Kaplan-Meier approach was carried out to

generate survival curves and the significance of differences among

groups was determined by log-rank tests. Univariate regression

analyses were adopted to calculate the hazard ratios (HR) for

RMGs and RNA modification signature genes. Identification of

independent prognostic factors was applied through a multivariable

Cox regression model. We used the “waterfall” function of the

“maftools” R package to present the mutation landscape in patients

with high and low RM_Score groups in the TCGA-STAD cohort. All

statistical analyses were carried out with R 4.1.0 software. P-value <

0.05 was considered as statistical significance.
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3 Results

3.1 Genetic and transcriptional alterations of
RMGs in GC

To characterize the genetic and transcriptional changes of RMGs,

we first analyzed the mutation frequencies of the 26 RMGs (Table S1).

25.64% of the GC samples in the TCGA cohort harbor gene alteration

in these RMGs (Figure 1A). For that ZC3H13 harbors the highest

mutation rate, we then divided the patients into two groups according

to the ZC3H13 mutation profiles and found that METTL3 expression

was significantly higher in the mutation group, whereas the

expression of CFI and ADARB2 was remarkably increased in the

wild group, suggesting ZC3H13 may be a regulator in mRNA

expression (Figure S1). The somatic CNV of 26 RMGs was

explored, and almost RMGs displayed CNV alterations (Figure 1B).

The CNV alteration sites of RMGs on the chromosomes were shown

in Figure 1C. We then assessed the RMGs expression between GC and

normal tissues. Results revealed that the expression levels of almost all

the RMGs were ubiquitously elevated in GC compared to normal

tissues (Figure 1D). Furthermore, survival analysis showed that most

of the RMGs have a strong correlation with the survival outcome of
A B

DC

FIGURE 1

Genetic and transcriptional alterations of RNA modification regulators in gastric cancer. (A) Waterfall diagram of RMGs mutation frequency in TCGA-
STAD cohort. (B) Histogram plot showing the CNV frequency of each gene based on statistical analysis among copy number of RMGs. Red dots indicate
an increase in copy number, and green dots represent a reduction in copy number. (C) Circle diagram of the alterations sites of RNA modification-
related genes CNV on 23 chromosomes. (D) Box plot displaying the expression distributions of RMGs between normal and tumor samples. Red or blue
dots represent tumor and normal samples, respectively. *P-value < 0.05, **P-value < 0.01, ***P-value < 0.001.
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GC patients (Figures S2A–D). Collectively, these results unveiled the

distinct characteristics of RMGs in both genetic alterations and

transcriptional changes in GC and revealed that the up-regulated

RMGs expression partly contributed to CNV alteration.
3.2 RMGs subtypes and clinicopathological
analysis

To identify the subtypes of RMGs in GC, we integrated the data

set GSE84437 and TCGA-GC in our study, and the Cox regression

was used to reveal the survival prognostic values, and the prognosis

interaction networks diagram based on multivariate Cox regression

analysis suggested that five RMGs were positively correlated to each

other (Figure 2A; Table S2). Subsequently, GC patients were

categorized into different distinct RNA modification clusters, and

the unsupervised clustering showed that k = 3 seemed to be the

optimized choice (Figures 2B, C). The prognostic analysis showed

that patients in RM_cluster B had a superior survival rate to those in

RM_clusters A and C (Figure 2D). Heatmap indicated that the

clinicopathologic characteristics of GC patients were discrepant

strikingly, and the expression levels of most RMGs were markedly

deficient in RM_cluster A and enriched in RM_cluster B (Figure 2E).

Furthermore, GSVA enrichment analysis was performed to

investigate the differences among three RNA modification patterns

and biological characteristics. Notably, RM_cluster A was mainly

concentrated in complement and coagulation cascades, dilated

cardiomyopathy, and calcium signaling pathways; RM_cluster B

was initially associated with pyrimidine metabolism, RNA

polymerase, and oocyte meiosis signaling pathways; RM_cluster C

was highly enriched in the immune-related pathways, including the

complement and coagulation cascades, ECM receptor interaction,

leukocyte transendothelial migration, and cytokine-cytokine receptor

interaction signaling pathways (Figures 3A–C). These results

suggested that the three categorized RMGs patterns had

significantly different biological characteristics and could

discriminate the prognosis of GC patients.
3.3 Characteristics of TME, and biological
processes in three distinct RNA
modification patterns

The ssGSEA enrichment analysis was conducted to explore the

infiltration characteristics of the immune cells among the three RNA

modification patterns. The distribution of infiltration abundance of

immune cells among three RNA modification patterns was

significantly different (Figure 4A). PCA analysis showed the RNA

modification profiles among the three distinct subtypes were

markedly different (Figure 4B). To further investigate the potential

biological characteristics of each RM_cluster, we confirmed 684

overlapping genes from the three RM_clusters based on these RNA

modification-related DEGs (Figure 4C). After that, functional

annotations of these overlapping genes were carried out by GO and

KEGG enrichment analysis. The histogram of GO analysis showed

that the 684 overlapping genes were mainly enriched in organelle

fission, nuclear division, chromosomal region, spindle, ATPase
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activity, and tubulin binding (Figure 4D). The KEGG enrichment

analysis indicated that these genes were major engaged in cell cycle,

oocyte meiosis, nucleocytoplasmic transport, and ribosome

biogenesis in eukaryotes (Figure 4E), indicating that RNA

modification subtype-related genes play a significant role in cell

division or growth.
3.4 Identification of RMGs signature and
functional annotation

To further ascertain the potential biological signature of the

RMGs subtypes, 298 prognostic-related genes were identified from

the three RM_clusters. Applying the unsupervised clustering

algorithm, GC patients were classified into three genomic

phenotypes (gene cluster I, gene cluster II, and gene cluster III)

based on the 298 prognostic-related genes (Figures S3A–L). The

heatmap of clinicopathologic characteristics and genetic

modification patterns revealed that the expression abundance of the

298 genes was significantly reversed difference in gene cluster III and

gene cluster I (Figure 5A). Survival analysis suggested that patients in

gene cluster I had the best survival outcome, while patients in clusters

III had the worst (Figure 5B). Additionally, the expression profiles of

RMGs were significantly different among three gene clusters, which

was parallel to the three RNA modification patterns results

(Figure 5C). To quantify the three distinct RNA modification

patterns in each GC patient, we established the RM_Score system,

and GC patients were divided into RM_Score high and RM_Score low

groups. The Sankey diagram showed the flow of the RM_Score and

the last survival outcome of GC patients (Figure 5D). Correlation

analysis of RM_Score and immune cells implied the T cell, and mast

cell was tightly negatively correlated with RM_Score (Figure 5E). In

addition, we found that RM_Score high patients had a better survival

prognosis, which is in line with the Sankey diagram that most of the

high score patients flow into the alive outcome (Figure 5F).

Furthermore, the difference in RM_Score has been assessed in three

RM_clusters and three gene clusters, which indicated that the highest

RM_Score were in RM_cluster B and gene cluster I, respectively

(Figures 5G, H). These results implied RM_Scores had a close

correlation with the RMGs subtype and could be a suitable marker

for predicting survival status.
3.5 Characteristics of RNA modifications in
TMB and immune functions

We next investigated the application of RM_Score on the

prediction of TMB, and tumor immunology. Results showed the

RM_Scores were positively correlated with TMB, which was tightly

associated with the response to immunotherapy (Figures 6A, B). The

waterfall plots revealed that the mutation frequency of the high

RM_Score group (94.29%) was markedly more frequent than that

in the low RM_Score group (Figures 6C, D). Simultaneously, when

the RM_Score was integrated with TMB, patients with both high

RM_Score and TMB exhibited the best survival outcome (Figure 6E).

Previous studies have unveiled RNA modification involved in a series

of fundamenta l b ioprocesses , espec ia l ly in mal ignant
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immunomodulatory abnormalities (38, 39). To explore the function

of RM_Score in immune regulation, the infiltration abundance of

immune cells was estimated in two distinct RM_Score groups. The

infiltration levels of activated mast cells and neutrophils were elevated

in the high RM_Score group (Figures S4A, B). Simultaneously, the

immune-related functions differed ubiquitously in two RM_Score

groups (Figure S4C). Results of the relationship between RM_Score

and immune checkpoints manifested PD-1 and PD-L1 expressed

higher in the low RM_Score group than in the high RM_Score group,

and the expression of PD-1 was negatively correlated with RM_Score
Frontiers in Oncology 06
(Figures S4D–G). These results suggested high RM_Score patients

might be more sensitive to immunotherapy and benefit from it.
3.6 Clinical characteristics and immune
subtypes based on RM_Score

To disclose the link between RM_Score and clinical

characteristics and immune subtypes, correlation analysis was

conducted, and we observed the grade, stage, and T stage of GC
A B

D

E

C

FIGURE 2

RMGs subtypes, clinicopathological and biological characteristics analysis. (A) Interaction networks diagram showing the positively correlated RNA
modification genes in prognosis. The purple and green semicircles represent risk and favorable factors, respectively. (B) Consensus matrix heatmap of
three clusters (k = 3) and their corresponding area. (C) The CDF curves when taking different k values. (D) Survival rate of gastric cancer patients in three
RM_clusters based on univariate analysis. (E) Clinicopathologic characteristics and expression levels of RMGs among the three distinct RM_clusters. *P-
value < 0.05.
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patients significantly differed in the two RM_Score groups (Figures

S5A, B). Beyond that, to acquire whether the RM_Score impacted the

immune subtypes, GC patients in both RM_Score groups were

categorized into different immune subtype clusters (C1, C2, C3, and

C4). The chi-square test displayed the apparent differences in

immune subtypes in RM_Score groups, and the majority of GC

patients were in immune subtype C2 (Figure S5C). Studies

illustrated the immune subtype C2 dominated by IFN-g, had a high

proliferation rate and correlated with highly mutated gastric cancer

largely (40). These results demonstrated that RM_Score might be a
Frontiers in Oncology 07
potential prognostic biomarker in evaluating clinicopathologic

features and assessing the therapeutic value of immunotherapy.
3.7 RM_Score in the role of MSI and
immunotherapy

Since immunotherapy can improve the survival outcomes for some

patients, it is crucial to identify which patients were more benefit from it.

Correlationanalysis revealed thatpatients in thehighRM_Scoregrouphad
A

B

C

FIGURE 3

Biological characteristics analysis of three RNA modification clusters. (A) GSVA of the differences in biological pathways between RM_cluster A and B. (B)
Differences in biological features between RM_cluster A and C. (C) Differences in biological features between RM_cluster B and C. Blue, orange, and red
stripes represent three distinct RM_clusters.
frontiersin.org

https://doi.org/10.3389/fonc.2023.905139
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jing et al. 10.3389/fonc.2023.905139
impressive outcomes (Figures 7A, B). Through theKaplan-Meier analysis,

we found that the prognosis of GC patients was not significant in the T1-2

stages, but the high RM_Score group tended to prolong survival was

observed; whereas patients with a high RM_Score had a significantly

favorable survival outcome than patients with a low RM_Score in the

T3-4 stages (Figures 7C, D). Accumulative evidence revealed that high

microsatellite instability (MSI-H) patients were appropriate for

immunotherapy (41, 42). Thus, a comprehensive analysis was performed

to characterize the association between RM_Score and MSI. Results

showed that the high RM_Score group was significantly linked with the

statusofMSI,whichwasaccompaniedbyabetterprognosis (Figures7E,F),

suggesting that high RM_Score group might be appropriate for

immunotherapy, and the RMGs may provide a strong theoretical basis

for combining tumor-targeted therapy with immunotherapy.
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3.8 Expressional validation of three
hub RMGs

To validate the expression of RMGs in GC, the PPI network was

assembled based on the STRING database, and CLP1, CPSF2, and

NUDT21 were identified as the hub genes (Figure 8A). We then

explored the transcription and protein levels of CLP1, CPSF2, and

NUDT21. Scatter plots revealed that CLP1, CPSF2, and NUDT21

expressed significantly higher in tumor tissues than in normal gastric

tissues, which was completely consistent with the results of the TCGA

database (Figures 8B–G). The immunochemistry results showed that

the protein expression levels of CLP1, CPSF2, and NUDT21 were

higher in GC tissues than in normal paracancerous tissues

(Figures 8H–J).
A B

D

E

C

FIGURE 4

Characteristics of immune cell infiltration and function enrichment in three distinct RM_clusters. (A) Immune infiltration level of 23 immune cell types
among the three RM_clusters. (B) Scatter plot of transcriptome features via PCA analysis. (C) Venn plots showing the overlapping genes in three
RM_clusters. (D) GO enrichment analysis of overlapping genes. (E) KEGG enrichment analysis of overlapping genes. *P-value < 0.05, **P-value < 0.01,
***P-value < 0.001, ns represents no statistical significance.
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4 Discussion

Accumulating studies have revealed the paramount roles of RNA

modifications in innate immunity, and antineoplastic activity by

interaction with various regulators, such as methyltransferases, and

demethylases (43–45). Since most previous studies were confined to a

single TME cell and one or two RMGs, therefore, little is known about

the infiltration characteristics of TME cells mediated by integrated

effects of RMGs. Recognition and determination of the role of

different RNA modification patterns in the TME cell infiltration
Frontiers in Oncology 09
may conducive to further insights into the immune responses of the

TME cell in gastric cancer.

In our study, we unveiled the genetic and transcriptional alterations

of 26 RMGs and identified three distinct RNA modification patterns in

gastric cancer. Compared to RM_clusters A, the expression of 26 RMGs

was higher and the patients had superior clinicopathological

characteristics and well prognosis in other two clusters, indicating these

RMGs might potential prognostic factors for GC (46). We observed that

the characteristics of the TME cell infiltration were conspicuously

different among the three RM_clusters. The RM_cluster A
A B

D

E F

G H

C

FIGURE 5

Phenotypic characteristics of the RMGs gene subtypes. (A) Relationships between clinicopathologic characteristics and genetic modification patterns.
(B) Kaplan-Meier curves of the patient’s survival rate among different gene clusters. (C). Expression levels of RMGs in different gene clusters. (D) Sankey
diagrams of genotype distributions in three gene clusters and survival outcomes. (E) Correlation between RM_Score and multiple immune infiltrating
cells. Red and blue represent positive or negative correlations, respectively, and * was considered statistically significant. (F) Kaplan-Meier analysis of
survival probability of patients with gastric cancer in low or high RM_Score group. (G) The differences in RM_Scores among three RM_clusters. (H) The
differences in RM_Scores among three gene clusters. *P-value < 0.05, ***P-value < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.905139
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jing et al. 10.3389/fonc.2023.905139
characterized by a marked innate immune and stromal cell activation,

corresponding to the immune excluded phenotype; the RM_cluster B

was characterized by immunological suppression, which was consistent

with the immune desert phenotype; and the RM_cluster C was

represented as adaptive immune activation, corresponding to an

immunologic inflammatory phenotype (47). Tumors can be divided

into “hot” or “cold” tumors to reflect grading immune infiltration, and

the immune desert phenotype pertains to the “cold” tumor, which lacks

tumor-infiltrating lymphocytes (TILs) in the TME and can cause

immunoediting and T cell escape (47, 48). The immune excluded and

immune-desert phenotypes, which have massive T cell infiltration,

belong to the “hot” tumors. Based on the above definitions, we
Frontiers in Oncology 10
observed that RM_cluster C presented a substantial stroma activation

status (the ECM receptor interaction pathways), which was regarded as T

cell suppressive. Thus, it is not astonishing that patients in RM_cluster C

had activated innate immunity and worse survival outcomes.

As the mRNA transcriptional differences in different RNA

modification patterns were closely associated with immune-related

pathways. We then identified the overlapping genes based on the three

RNA modification patterns. Consistent with the previous scheme, we

identified three gene clusters, which were markedly linked to the

activation of stroma cells and immune cells, suggesting that the RNA

modification patterns involved the shaping of the TME directly.

Consequently, analysis in depth of RNA modification will be
A B

D

E

C

FIGURE 6

The correlation between RM_Score and TMB. (A) Correlations between RM_Score and TMB. (B) Differences in TMB between high and low RM_Score
groups. (C, D) Waterfall plot displays the somatic mutation features that are stratified by high or low RM_Scores. (E) Survival analysis among four groups
of gastric cancer patients according to both levels of TMB and RM_Scores.
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instrumental in discerning the landscapes of the TME cell-infiltrating

features. Considering this, we established the RM_Score system to

quantify RNA modification patterns and validated its predictive ability

in the clinical prognosis of GC patients. We found the RNAmodification

patterns characterized by immune-excluded and immune-inflamed

phenotypes, displayed poor RM_Scores, whereas the RNA modification

pattern that exhibited immune-excluded immunophenotype had a higher

RM_Score. The RM_Score exhibited a strong positive correlation with

immune cells, including CD4 T cells, CD8 T cells, and DCs, which could

further explore the infiltration patterns of the TME. Additionally, GC

patients with high RM_Score had a better survival outcome, indicating
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RM_Score was a credible tool to comprehensively evaluate the RNA

modification patterns in individual tumors and also was a protective

independent prognostic biomarker.

Increasing evidence revealed that patients with high TMB have a

prior likelihood of immunotherapy response, particularly with PD-1/

PD-L1 blockade, in tumor diagnoses based on comprehensive

genomic profiling (49, 50). Our current study showed a

conspicuously positive correlation between the RM_Score and

TMB. Patients with low RM_Score had a lower gene mutation

frequency compared with the patients with high RM_Score, and

patients with both low RM_Score and low TMB showed a worse
A B

D

E F

C

FIGURE 7

The role of RM_Score in MSI and immunotherapy. (A, B) Relationship between GC patients’ status and RM_Scores. (C) Kaplan-Meier analysis of survival
rate in T1-2 cohorts of the GC patients stratified by RM_Score. (D) Kaplan-Meier analysis of survival rate in T3-4 cohorts of the GC patients stratified by
RM_Score. (E) The difference of RM_Scores among three different MSI groups. (F) Stratified analysis of the MSI for GC patients according to RM_Score.
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prognosis, which may be attributed to the immunosuppression

caused by stromal activation (51), implying the nonnegligible role

of different RNA modification patterns in the immunotherapy. We

also confirmed the relationship between RM_Score and MSI status,

which acts as a clinical biomarker and is correlated with immune

checkpoint blockade (52, 53). Consistent with previous studies,

patients with MSI-H subtypes were more sensitive to checkpoint

immunotherapy, a fact that can guide rational treatment in GC (54).

In short, our study showed that the RM_Score might serve as a

promising prognostic biomarker for GC patients. The RM_score could

be used to determine the infiltration characterization of the TME and

identify the immunophenotypes in individual tumors for clinical practice.

More importantly, the RM_Score may have the potential ability to the

evaluation of clinicopathological characteristics, especially in genetic

variation, TMB, and MSI status. These findings provide novel

assessment strategies based on RMGs for immunotherapy in GC.
5 Conclusions

In conclusion, our comprehensive integrated analysis of RNA

modification genes revealed the effects of different RNA modification
Frontiers in Oncology 12
patterns on the infiltration of individual TMEs and immunotherapy in

gastric cancer. The differences in RNA modification patterns may be

tightly tied to the clinicopathological characteristics, immunotherapy,

and prognosis of GC patients.
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SUPPLEMENTARY FIGURE 1

The relative expression abundance of RMGs in ZC3H13 wild (blue) and ZC3H13
mutation (red) groups in GC. (A–D) Expression levels ofm6A (A), APA (B), A-I (C), and
m1A (D) related genes in two distinct groups. m6A, N6-methyladenosine; APA,
alternative polyadenylation; A-I, adenosine-to-inosine; m1A, N1-methyladenosine.

SUPPLEMENTARY FIGURE 2

Survival analysis of GC patients in different RMGs expression groups. (A–D)
Survival analysis of GC patients in alternative polyadenylation modification
genes expression group (A), N6-methyladenosine modification genes

expression group (B), N1-methyladenosine modification gene expression
group (C), adenosine-to-inosine modification gene expression group (D).

SUPPLEMENTARY FIGURE 3

Identification and analysis of DEGs subtypes in GC. (A) CDF curves of different

numbers of consensus clusters. (B) The delta area of different CDF curves. (C)
Heatmap of sample clustering; the vertical axis shows the different k values for

consensus clustering. (D–L)Heatmaps reflect the consensusmatrix for different
k values.

SUPPLEMENTARY FIGURE 4

Evaluation of the immune-related functions between the two RM_Score
groups. (A, B) Different infiltration abundance of 22 immune cells in the two

RM_Score groups. (C) Box plot showing the differences in immune-related
functions between the low and high RM_Score groups. (D, E) PD-L1 or PD-1

expression levels in two distinct RM_Score groups. (F, G) Correlations between
RM_Score and PD-L1 or PD-1 expression, respectively. *P-value < 0.05, ** P-

value < 0.01, ***P-value < 0.001.

SUPPLEMENTARY FIGURE 5

Identification of the clinical and immune subtypes characteristics based on

RM_Score. (A) Distribution of clinical features between two distinct RM_Score
groups in gastric cancer from the TCGA cohort. (B) Distribution of GC patients

from the TCGA cohort between RM_Score and different clinical stages. (C)
Differential distribution of immune subtypes characteristics in GC patients.
***P-value < 0.001.
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