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Deep learning-based prediction
of deliverable adaptive plans for
MR-guided adaptive radiotherapy:
A feasibility study

Laura Buchanan, Saleh Hamdan, Ying Zhang, Xinfeng Chen
and X. Allen Li*

Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States

Purpose: Fast and automated plan generation is desirable in radiation therapy (RT),
in particular, for MR-guided online adaptive RT (MRgOART) or real-time
(intrafractional) adaptive RT (MRgRART), to reduce replanning time. The purpose
of this study is to investigate the feasibility of using deep learning to quickly
predict deliverable adaptive plans based on a target dose distribution for
MRgOART/MRgRART.

Methods: A conditional generative adversarial network (cGAN) was trained to
predict the MLC leaf sequence corresponding to a target dose distribution based
on reference plan created prior to MRgOART using a 1.5T MR-Linac. The training
dataset included 50 ground truth dose distributions and corresponding beam
parameters (aperture shapes and weights) created during MRgOART for 10
pancreatic cancer patients (each with five fractions). The model input was the
dose distribution from each individual beam and the output was the predicted
corresponding field segments with specific shape and weight. Patient-based
leave-one-out-cross-validation was employed and for each model trained, four
(44 training beams) out of five fractionated plans of the left-out patient were set
aside for testing purposes. We deliberately kept a single fractionated plan in the
training dataset so that the model could learn to replan the patient based on a prior
plan. The model performance was evaluated by calculating the gamma passing
rate of the ground truth dose vs. the dose from the predicted adaptive plan and
calculating max and mean dose metrics.

Results: The average gamma passing rate (95%, 3mm/3%) among 10 test cases was
88%. In general, we observed 95% of the prescription dose to PTV achieved with an
average 7.6% increase of max and mean dose, respectively, to OARs for predicted
replans. Complete adaptive plans were predicted in <20 s usinga GTX 1660TI GPU.
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Conclusion: We have proposed and demonstrated a deep learning method to
generate adaptive plans automatically and rapidly for MRgOART. With further
developments using large datasets and the inclusion of patient contours, the
method may be implemented to accelerate MRgOART process or even to

facilitate MRgRART.

KEYWORDS

adaptive radiation therapy, MR-guided adaptive radiation therapy, online replanning,
real-time adaptation, deep-learning

1 Introduction

With the introduction of the MR-Linac into the clinic has come
the opportunity for robust MR-guided online adaptive radiation
therapy (MRgOART), which is performed by adapting the reference
treatment plan created based on the simulation image to the anatomy,
e.g., the contours of the lesion and organs at risk (OARs), of the day
and delivering the adaptive plan to the patient for the fraction (1, 2). A
fast and robust online adaptive replanning process is highly desirable
to take full advantage of the MR-Linac capabilities. The process is
complex, including daily image acquisition, image segmentation, plan
generation, and plan evaluation and verification. With the current
technologies, the MREOART process takes 30-90 minutes (3, 4). A
contributing factor to this lengthy process is the plan generation time,
which can take up to 20 minutes. Such a labor intensive and time-
consuming replanning process has prevented MRgOART from
entering routine clinical practice.

During the treatment delivery of MRgOART, the non-ionizing
radiation nature of MRI allows for continuous 2D (cine) or periodic
3D imaging, permitting localization of tumor targets and/or OARs
(5). It has been well documented that intrafraction anatomical
changes exist in various tumor sites and such changes can lead to
substantial differences between the intended dose distribution and the
delivered dose distribution (6, 7). Particularly in the abdomen,
movement of abdominal organs due to digestion can be difficult to
predict, and real-time management of these intrafraction variations of
the tumor, OARs, and air cavities is crucial in MRgOART to ensure
accurate delivery of the intended dose. A desirable approach, termed
real-time adaptive radiation therapy (RART), is to adapt the
treatment plan in near real-time (at least a few times) based on the
recent image during one treatment session. Ultra-fast plan generation
is essential to facilitate RART. An approach to reduce plan generation
time is to use a library of plans created oftline, avoiding the lengthy
inverse plan optimization commonly used in conventional treatment
planning systems (TPS). In the online process, the most suitable plan
is selected from the library for the daily anatomy and then the dose
from the atlas patient is mapped to the new patient using a machine
learning approach based on radiomic features to estimate the dose in
each voxel of the patient (8). Taking it a step further, the target dose
distribution derived from the atlas patient is also used in commercial
dose mimicking software (RaySearch Laboratories, Stockholm,
Sweden) using a collapsed cone convolution dose engine (9).
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Spurred by recent advances in computational power and high-
level neural networks APIs, deep learning (DL) is rapidly changing
the field of radiation oncology by offering big data-driven approaches
to solve complex problems including auto segmentation, dose
prediction, quality assurance, and automated treatment planning
(10-12). Recent progress has been made in predicting a desirable
dose distribution for a given patient anatomy using DL-based
approaches (13-19). Using the patient contours as input, patient-
specific dose distributions can be generated without the need of an
inverse plan optimization process. To our knowledge, there has not
been effort reported to convert such a desirable dose distribution to a
deliverable plan in terms of beam parameters, e.g., beam angles,
aperture shapes, and aperture weights [monitor unit (MU) number]
using a stand-alone DL model.

Several recent studies have developed DL networks to convert a
desirable dose distribution to a fluence map. For example, Wang et. Al
(20) used two convolutional neural networks (CNN) to (1) predict a
desirable dose distribution based on patient anatomy and (2) translate
the predicted dose distribution to a fluence map. Lee et al. (21) trained
a deep neural network to directly predict fluence maps based on
patient anatomy for intensity modulated radiotherapy (IMRT)
prostrate cases. Ma et. Al (22) developed a DL network to predict
volumetric arc therapy (VMAT) fluence maps for both head and neck
cases as well as prostate cases in less than 1 s. However, in all these
studies the fluence map must be transported into a conventional
treatment planning system (TPS) to perform multi-leaf collimator
(MLC) sequencing and calculate a final dose calculation. This
additional step requires extra time and effort on the part of
the planner.

Here, we propose a novel, fast plan generation method
particularly for online adaptive replanning, where a previous plan
based on either simulation (reference) image or the daily image of a
previous fraction is available. The method uses a DL network to
rapidly predict an MLC leaf sequence based on a desirable dose
distribution and previous plan. Our newly proposed method bypasses
the fluence map prediction and converts a target dose distribution
directly to a deliverable leaf sequence, e.g., field segment shapes and
weights (MUs).

We further propose that future clinical implementation of our
method will utilize transfer learning. This will allow the model to be
continuously updated with the most recent high-quality plans
generated based on the recent image sets during the treatment. On

frontiersin.org


https://doi.org/10.3389/fonc.2023.939951
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Buchanan et al.

the day of treatment, a daily MR image would first be acquired and
registered to the recent image to determine if MRgOART is
warranted. If the decision to proceed with adaptive planning is
made, a dose prediction would be made using methods outlined in
several previous works (13-19), which are not within the scope of our
present study. The dose prediction serves as the input to our proposed
model to predict a deliverable plan which includes aperture shapes
and corresponding MU numbers using the deep learning models that
are the scope of this paper. Our proposed method avoids the lengthy
fluence map and segment shape/weight reoptimization. Using deep
learning, we may be able to generate deliverable plans in a few seconds
rather than the tens of minutes currently required. Such an ultra-fast
generation of deliverable plans may be used for online adaptive
replanning to address inter-fractional variations or even real-time
adaptation for intra-fractional changes.

This paper demonstrates the feasibility of our proposed method
and is organized as follows: Section 2 will describe the proposed
methods and the data used, including study design, data collections
and pre-processing, the patient cohort used for training and testing as
well as the validation method, and the auto-plan generation step.
Results obtained will be presented in Section 3, and discussions on
how the proposed method may be applied to MRgOART will be
provided in Section 4. Section 5 will conclude with the strengths and
weaknesses of this study as well as what the next steps will be.

2 Materials and methods

2.1 Study design

Every beam in a step-and-shoot IMRT plan is composed of
several individual field segments, and each field segment has a
specific shape defined by the MLC openings and MU weight. Field
segments can be thought of as a series of simple 2D images. As shown
in Figure 1, if viewed from the beam’s eye view, the sum of the field
segments delivered by the LINAC for a single beam approximately
resembles the 2D representation of the dose deposited by that beam.
Therefore, we hypothesized that individual field segments could be
predicted if given a target dose distribution of a single beam, framing
the problem as an image-to-image translation task. In our study, we
model the relationship between the total dose deposited by a single
beam and the individual field segments that correspond to that beam.

FIGURE 1
Left: 2D dose map of single beam viewed from beam'’s eye view. Right
Sum of individual ground truth field segments projected at isocenter
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Deep neural networks can easily learn the mapping from one
input image to another image as in semantic segmentation (23).
Specifically, conditional generative adversarial networks (cGANs)
have a robust architecture fit for a variety of image-to-image
translation tasks. Our network architecture is adapted from the
pix2pix architecture (24), which was found to be effective on a wide
range of image translation problems including semantic labels to
photos, photos to semantic labels, and map to aerial photos.
Mahmood et al. (25) used the pix2pix architecture to predict 3D
dose distributions of oropharyngeal cancer patients from patient
contours and the planning CT. The adaptability of the cGAN
architecture is because the model learns a loss that is specific to
each application, without the need for manual tuning typical of stand-
alone convolutional neural networks. It was also shown that
acceptable results can be obtained using as little as 400
training images.

In general, a GAN is composed of two neural networks: a
generator (G) and discriminator (D). Training a ¢cGAN can be
thought of as a two-player game, where G tries to generate images
that cannot be distinguished from synthetic ones, and D is trained to
classify images as either a true sample from the training data or a
synthetic image produced by the generator. The cGAN loss is defined
as

Loss,an (G, D) = > [log D(x,y)] + > [log(1 - D(x, G(x))] (1)
Xy Xy

During training, G and D update their weights one at a time in an
adversarial manner such that D is trained to maximize the log
probability of real images, D(x,y), and the log of the inverse
probability of synthetic images, 1 - D(x,G(x)). In other words, the
discriminator “wins” the game when it detects the synthetic images
100% of the time. On the other hand, G is trained to minimize the L1
loss between the synthetic images and ground truth images. Training
is complete when an equilibrium is reached between the G and D loss.
The final objective function, F, is defined as

F = arg mingmaxpLoss.gan (G, D) + ALoss;(G) (2)

where A is a hyperparameter that gives weight to the L1 loss of
the generator.

The G and D architectures of our model are adapted from Isola
et al. For the generator, we used 6 down-sampling blocks that each
consist of a convolution (kernel = 4x4, stride = 2x2), batch
normalization, and a leaky ReLU activation function. The up-
sampling blocks used transposed convolutions (kernel = 4x4,
stride = 2x2), batch normalization, and a ReLU activation function.
The generator architecture is like UNet (26) with skip connections
between the down-sampling and up-sampling blocks to encourage the
learning of both high and low-level features. Like the original Isola
paper, instead of introducing a random noise vector as additional
input data, random dropout was used in the generator to introduce
noise and prevent over-fitting of the data.

The TPS (Monaco, Elekta AB) used a Monte Carlo algorithm to
optimize a ground truth plan based on a patient’s anatomy (an image
set and contours of lesion and OARs). For our study, the ground truth
dose distribution defined the target dose distribution and was used to
train the model. However, once the model is trained, any target dose
distribution that considers the patient’s anatomy could be used as
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input to the model. The outputs of the model were the individual field
segment shapes with specific MU numbers corresponding to each
beam. These data were used to generate new MLC control points to
form a newly predicted RTPlan dicom. The predicted plan was then
transferred back into the TPS to calculate what the dose would have
been if delivered to the test patient. DVH comparison and gamma
analysis (3%, 3mm, 5% threshold) between the target dose
distribution and recalculated dose distribution from the predicted
plan were performed to assess the predicted plan quality. This
workflow is summarized in Figure 2.

2.2 Data collection and preprocessing

A total of 50 daily adaptive step-and-shoot IMRT plans, including
dose distributions and aperture shapes and weights, created for 10
pancreatic cancer patients (each with five treatment fractions) during
routine MRgOART with an MR-Linac (Unity, Elekta AB), were
retrospectively selected as the ground truth data for the DL model
training and testing. The prescription dose for eight of the ten patients
was 35 Gy delivered in five fractions, with V(3500 c¢Gy) = 95% for
PTV coverage of six of these eight, and the remaining two of these
eight prescribed 68% and 97.4% PTV coverage. Two of the ten
patients were prescribed 33 Gy with V(3300 cGy) = 95% for PTV
coverage to be delivered in five fractions. Nine of the 10 cases were
pancreatic head tumors and one case was a pancreatic tail tumor. All
plans consisted of the same 11 beam angles (5°, 25°, 60°, 90°, 155°,
175°,195°% 260°, 290°, 310°, 345°), and were optimized using an online
replanning TPS (Monaco, Elekta).

A summary of the pre-processing steps can be visualized in
Figure 3. The ground truth 3D dose distribution from individual
beams was extracted from the RTDose dicom and was resampled to
the same dimensions and size as the daily planning MRI using
MATLAB’s 3D interpolation. Then, the dose from each beam was
shifted so that beam isocenter corresponds to the point of rotation for
MATLAB’s rotation functions. The shifted dose distribution was then
rotated towards the beam’s eye view (BEV), and summed along the
BEV axis to form a 2D dose map. The 2D dose map was then
resampled to [128,128,1] and rescaled between zero and one.
Simultaneously, the MLC control points that define the
corresponding field segment shape of each beam were extracted
from the RTPlan dicom. For this collection of plans, the minimum
number of segments per beam was one and the maximum segments

10.3389/fonc.2023.939951

per beam used was 12. The individual field segment shapes were
reconstructed from MLC leaf positions as binary masks projected at
isocenter where points blocked by the MLCs were zero and points in
the open field were one using the matRad package for obtaining field
shapes with 7.15 mm wide leaves. From the planning documents, the
MU weight was multiplied by the binary matrix so that all points in
the open field are the same MU value. These preprocessing steps
resulted in registered 2D dose maps and MLC weighted apertures so
that the DL network may learn the correct spatial relationship
between dose and aperture shapes. Then each field segment was
placed into a separate output channel. Since the number of ground
truth field segments varied across each beam and patient, we fixed the
number of output channels at six. If there were not enough segments
to fill all channels, zero-padded matrices were used as a place holder.
The final output of the model was resampled to [128,128,6]. All data
preparation was completed using Matlab2019b (MathWorks).

2.3 Training, validation, and testing of deep
learning models

The input and output of the generator were the 2D dose map and
individual field segments, respectively. The input to the discriminator
was the 2D dose map paired with either the ground truth field
segments or the predicted field segments. While the generator
penalized predicted field segments different from the ground truth,
the discriminator was trained to classify NxN patches of the generator
output as either synthetic or real data. This discriminator was trained
on using 70x70 patch size was used as this was found to be a good
compromise between computation time and performance. Since the
model was conditioned on the 2D dose map from individual beams as
opposed to the complete dose distribution from all 11 beams per plan,
the training dataset size increased from 50 to 550. Patient-based leave-
one-out-cross-validation was employed to test the robustness of the
model, resulting in 10 separate models. For each model trained, four
(44 training beams) out of five fractionated plans of the left-out
patient were set aside for testing purposes. We deliberately kept a
single fractionated plan in the training dataset so that the model could
learn to replan the patient based on a prior plan. This validation
strategy shows the feasibility of using our method to predict beam
parameters for a new patient that is to be treated. To implement the
method, an initial plan would be developed using conventional
methods, and utilizing transfer learning, the model would be

Ground
Truth Plan

Training
Dataset

Training Trained Predicted

Session Model Plan

TPS

Ground
Truth
Dose

{\_
—| Testing Dataset I

TPS

DVHand Gamma
Analysis

FIGURE 2
High-level workflow of study design.
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Assign MU weight
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Register . - .
- -
FIGURE 3

Sum, Resize, Rescale
Pre-processing workflow of training data.

updated to include data from this conventionally produced plan.
Future adaptive daily plans would be generated with the trained
model using the daily image acquired and the corresponding dose
distribution. The model was trained until stable; that is when the
generator loss was approximately equal to the discriminator loss.
Thus, we achieved stability using 200 epochs, a learning rate of 102,
and a beta_1 rate of 0.5 using the TensorFlow Adam optimizer.
Several techniques commonly known to promote GAN stability were
implemented. For example, instead of using zeros to label synthetic
data and ones to label real data, we used randomly generated “soft
labels” with values between 0 and 1.2. We also made the labels noisy
by randomly mislabeling synthetic and real data. In addition, we
implemented spectral normalization in the discriminator, as this is
known to improve the performance of the discriminator (Miyato,
2018). The GAN network was trained using the Adam optimizer with
a learning rate of 0.0001. The loss function of the generator and
discriminator was the mean absolute error and binary cross-entropy,
respectively. Training and testing were performed using a GTX
1660TI GPU. After training, each model was tested on the
remaining four fractions (44 training beams) of the respective
test patient.
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2.4 Plan generation

To convert field segment shape to MLC control points, the
predicted field segments were overlayed on a 57.2 (linac X-axis) cm
x 22 (linac Y-axis) cm grid representing the maximum field size of the
Unity MR-Linac at isocenter. Beam shaping for the Unity allows leaf
movement along the linac Y-axis and diaphragm movement along the
linac X-axis. Thus, the X-axis of the predicted field segment was
resampled to the projected leaf width at the machine isocenter.
Custom code written in Matlab was used to detect the edges of the
field segment shape along the X- and Y-axes and find the
corresponding grid coordinates. A 2% intensity threshold was
applied to the predicted field segment to reduce low-intensity noise.
The MU weights for each field segment were assigned based on the
maximum intensity of the predicted field segment. All points inside
each open field segment were forced to the maximum intensity value.
Finally, the RTPlan dicom file from the first fraction was overwritten
with the new MLC control points and MU weights. The new RTplan
dicom was loaded back into the Monaco TPS and the corresponding
dose distribution was calculated on the daily MRIL

3 Results

To validate our method, each of the ten models was evaluated on
the remaining four fractions (44 training beams) of each patient’s
treatment course. The dose distributions of the corresponding
predicted plans were computed using the Monaco TPS. DVH
analysis and gamma passing rates of the predicted dose
distributions were compared to the ground truth plan’s dose
distribution. Mean and max dose metrics were used to calculate the
percent difference between the predicted plan and ground truth plan
that was generated during MRgOART. The percent difference for the
mean and max dose metrics and ROI were averaged across all four
remaining test fractions of each patient. The distribution of the mean
and max dose metrics across all patients is plotted in Figures 4 and 5.
While the predicted plans maintain desired PTV coverage relative to
the ground truth plans, the max and mean doses of the OARs are, on
average, higher than the predicted plans by up to 7.6% (Table 1).

The gamma passing rate (3%,3mm,5% threshold) was calculated
between the predicted and ground truth plans for each fraction and
test case (Table 2). Average gamma passing rates among all cases
ranged from 80 to 95%.

Figure 6 shows the DVH of the predicted plan and the ground
truth plan of a better-performing test case. The corresponding center
slices through each dose distribution and the subtraction is shown
below, which demonstrates the similarity between predicted and
ground truth plans.

The computation time required to predict field segment shapes
and MU numbers for all 11 beams of each predicted plan was
approximately 14 seconds (s). The conversion to a deliver RT
dicom plan was an additional 6 s, for a total of approximately 20 s
to automatically predict a deliverable plan.

Figure 7 shows an example of the predicted versus ground truth
field segment shape and the corresponding MLC banks. As
demonstrated in the figure, the outer boundaries of the field
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PTV Stomach

Liver Small Bowel

Stomach

Liver Small Bowel

segment shape define the MLC control point locations. Custom
Matlab (MathWorks) code was written to automatically detect the
boundaries of the predicted field segment shapes and convert the
shape to MLC control points.

Finally, Figure 8 demonstrates the high need for replanning to
adapt to daily anatomy. Shown is the DVH of the predicted plan, the
ground truth plan, and the reposition plan recalculated on daily MRI
by shifting (repositioning) the reference plan based on the rigid-body
registration of reference and the daily images. The predicted plan
quality is comparable to the ground truth quality, but the DVH from
the reposition plan does not have adequate PTV coverage. Although
the predicted plan has slightly worse dose metrics compared to the
ground truth plan, it is better than the reposition plan.

4 Discussion

This is an exploratory feasibility study investigating the potential
of fast prediction of deliverable plan parameters based on DL, that
may be potentially used for MRgOART or even RART. To the best of
our knowledge, this is the first study that uses a cGAN to predict leaf
sequencing, e.g., field segment shapes and MU numbers. Our work
builds upon previous studies that use DL to predict desirable dose
distributions based on patient anatomy (13-19). Given a new target
dose distribution and reference plan, our newly proposed method can
translate the target dose distribution to a deliverable plan with
encouraging results. We believe that the agreement between the
predicted and ground truth plans as well as the quality of the

TABLE 1 Average max and mean dose percent difference (ground truth — predicted) of replans.

Colon Cord + 5mm Duodenum Kidneys Liver Small Bowel Stomach
Max Dose -4.2% -7.1% -5.2% -3.3% -4.8% -1.9% -7.6% -4.4%
Mean Dose -6.7% -5.7% -6.3% -5.5% 7.1% -1.5% -7.6% -5.7%
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TABLE 2 Gamma Analysis (3%,3mm,5% threshold): Percent passing rate of the predicted plan and ground truth plan.

e

88% 81% 100% 85% 87% 99% 82% 87% 88% 93%
FX3 93% 86% 89% 84% 92% 94% 89% 77% 95% 87%
FX4 89% 69% 95% 90% 99% 88% - 78% 90% 89%
FX5 89% 84% 94% 95% 86% 84% 85% 97% 95% 81%
Average 90% 80% 95% 88% 91% 91% 85% 85% 92% 88%

Dose [Gy]

Predicted - Ground Truth

FIGURE 6

Top - DVH comparison for test case with average performance relative to Gamma passing rate: solid line = ground truth plan, dashed line = predicted
plan. PTV (red), duodenum (yellow), colon (magenta), cord + 5mm (white), liver (green), small bowel (cyan), stomach (pink), kidneys (black). Bottom -
center slice through ground truth dose distribution and predicted dose distribution and difference for a test case. The black contour is the PTV location.
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FIGURE 7
Side-by-side comparison of ground truth (left) and predicted (right) field segment shapes (top) and corresponding MLC control banks (bottom) of an

example test case. The boundaries of the predicted and ground truth field segment shapes were used to define the corresponding MLC control points.
The dashed lines along the horizontal axis of the two bottom plots represent the jaw positions, while the MLC leaf positions are represented along the

vertical axis.
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FIGURE 8

DVH comparison between ground truth plan (solid lines), predicted
plan (large dashed lines), and reposition plan (small dashed lines)
recalculated on daily MRI for PTV (red), duodenum (yellow), colon
(magenta), cord + 5mm (white), liver (green), small bowel (cyan),
stomach (pink), kidneys (black).

predicted plans can be improved with larger training datasets and
incorporating the patient-specific anatomy (contours of lesion and
OARs) as a part of model input. The greatest advantage of using DL to
automatically predict deliverable adaptive plans is the little amount of
time that is required. Each beam was sequenced in approximately 1 s.
The computation time to predict treatment plans increases with the
number of beams, but not plan complexity.

A key aspect of our method is that this is a replanning method,
and not general planning from scratch. This allows the previously
generated reference plan to be used as part of the training data,
encouraging the network to learn from prior data. Also, because it is a
replan, all beam angles of the newly predicted plan are unchanged
from the reference plan. This eliminates the need to optimize beam
angles, reducing the overall planning time.

In our feasibility study, we have elected to train our model using
fractions that consistently have the same angles, with each fraction
having 11 beams. Due to our current implementation being in the
exploratory phase of our project, we found it reasonable to control for
variabilities in angles and number of beams to isolate the impacts to
deep learning of these variables. The plans we used to train our model
are common in our clinic for treating Pancreatic cancer patients using
SBRT. Future studies will utilize transfer learning to adapt our trained
model to more patients, potentially having variable angles and
number of beams. Our current goal is to show that our method is
feasible as we adapt our models to more complicated set ups.

We have also chosen to train our model based on 2D cumulative
projections of the 3D dose distribution as inputs. 3D dose distribution
may be decomposed into 2D projections along relevant beam planes;
thus our method may be practically implemented given a target dose
distribution. There are currently vigorous efforts at predicting 3D
dose distributions using patient anatomy (13-19), but these efforts
have not been robustly translated to direct predictions of beam
parameters for deliverable plans. Our current study is a step
towards closing this gap, and future studies will incorporate patient
anatomy directly.

Frontiers in Oncology

10.3389/fonc.2023.939951

With further development, the proposed method may be used for
online replanning, and even for real-time intrafractional adaptation.
In particular, we expect that as data from more patients is
incorporated in the training of our deep learning models, the
accuracy of our predictions will increase. We have observed this
effect as we increased the limited number of patients we used for this
study. Combining with on-gong efforts to speed up all other
components of the replanning process, e.g., fast daily image
acquisition and processing, robust auto-segmentation, automatic
plan evaluation and verification, the present deep-learning adaptive
plan generation method would substantially improve the efficiency
of MRgOART.

5 Conclusion

Our findings indicate that it is feasible to use DL to predict
deliverable adaptive plans quickly and automatically for online (or
even real-time) adaptive replanning, without the need for a
conventional lengthy inverse plan optimization process. Further
studies using larger training dataset sizes and with the inclusion of
patient-specific contours to the input of the network are needed to
improve the accuracy and quality of the predicted adaptive plans.
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