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This review synthesises past research into how machine and deep learning can

improve the cyto- and histopathology processing pipelines for thyroid cancer

diagnosis. The current gold-standard preoperative technique of fine-needle

aspiration cytology has high interobserver variability, often returns

indeterminate samples and cannot reliably identify some pathologies;

histopathology analysis addresses these issues to an extent, but it requires

surgical resection of the suspicious lesions so cannot influence preoperative

decisions. Motivated by these issues, as well as by the chronic shortage of trained

pathologists, much research has been conducted into how artificial intelligence

could improve current pipelines and reduce the pressure on clinicians. Many past

studies have indicated the significant potential of automated image analysis in

classifying thyroid lesions, particularly for those of papillary thyroid carcinoma,

but these have generally been retrospective, so questions remain about both the

practical efficacy of these automated tools and the realities of integrating them

into clinical workflows. Furthermore, the nature of thyroid lesion classification is

significantly more nuanced in practice than many current studies have

addressed, and this, along with the heterogeneous nature of processing

pipelines in different laboratories, means that no solution has proven itself

robust enough for clinical adoption. There are, therefore, multiple avenues for

future research: examine the practical implementation of these algorithms as

pathologist decision-support systems; improve interpretability, which is

necessary for developing trust with clinicians and regulators; and investigate

multiclassification on diverse multicentre datasets, aiming for methods that

demonstrate high performance in a process- and equipment-agnostic manner.
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1 Introduction

1.1 Thyroid cancer

The thyroid is a small, butterfly-shaped gland in the neck on

which nodules – small fluid or solid lumps – can develop. These

nodules are detectable with palpation in about 2–6% of the

population and with ultrasound in around 19–67% (1). Most are

benign, but approximately 5% are cancerous (2).

There are four main types of thyroid cancer – papillary (PTC),

follicular (FTC), anaplastic (ATC) and medullary (MTC) thyroid

carcinoma (3) – which account for 70–90%, 5-10%, 2% and <2% of

cases, respectively (4–6)Variants/subtypes exist, such as the

follicular or tall cell variants of PTC. An additional diagnosis of

particular note is that of ‘noninvasive follicular thyroid neoplasm

with papillary-like nuclear features’ (NIFTPs). This term was

introduced in 2016 to replace the noninvasive encapsulated

follicular variant of PTC (EFV-PTC): despite NIFTPs having cells

resembling those of PTC, they have low malignant potential, and

effectively distinguishing between NIFTPs and classic PTC can aid

in therapy de-escalation (3, 7, 8).

Benign nodules are usually represented by non-neoplastic

(multinodular hyperplasia/goitre, cysts) and neoplastic [follicular

adenoma (FA)] lesions.

1.1.1 Diagnosis and treatment
Generally, thyroid nodules are discovered incidentally during a

routine health check, through clinical examination of another

condition, or by the patient (9). Nodules are typically investigated

using ultrasound first to check composition, size, location,

echogenicity and calcification amongst other parameters (3, 10),

and depending on the results, patients may be recommended for

fine-needle aspiration (FNA) cytology. The latter is the gold-
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standard preoperative diagnosis technique and has a reported

sensitivity and specificity of 68–98 and 56–100%, respectively (11).

The Bethesda System (TBS) for Reporting Thyroid

Cytopathology is a widely adopted reporting system for FNA

samples (Table 1) (10, 12). National adaptations exist to cater to

local need, such as the Thy1–5 system used in the UK (14), with

broad equivalences between systems. Around 10% of acquired FNAs

are unsatisfactory for diagnosis (TBS1) due to parameters like

obscuring blood, poor cell preservation, and insufficient cell

sampling (15, 16), with the recommendation to repeat the biopsy

with ultrasound guidance. For some malignancies cytological

diagnosis is challenging (17–20), resulting in both high

interobserver variability (21, 22) and an estimated 15–30%

returning an indeterminate result (TBS3 or 4) (11, 16). For such a

finding, the respective risk of malignancy were given in a meta-

analysis as up to 30.5% for TBS3 and up to 28.9% for TBS4 (13) (15).

The relatively high risk often motivates diagnostic surgery in the form

of either a lobectomy or thyroidectomy (10, 23), with analysis of the

excised tissues the gold standard for diagnosis. Surgical excision is the

recommended course of action for malignant nodules, but a large

proportion of diagnostic surgeries are evidently unnecessary. Surgery

carries risks (24), can cause substantial distress and anxiety, and in

many cases necessitates lifelong thyroxine replacement therapy (10).

Many patients experience this needlessly.

Furthermore, manual analysis of the biopsy and tissue samples

is laborious, with the time pressure it places on pathologists

exacerbated by increased workloads and the chronic shortage of

trained staff (25). Better methods of malignancy prediction are

necessary throughout the diagnostic pipeline to alleviate this

pressure, decrease the number of unnecessary surgeries, and

improve general patient well-being.

Molecular testing has been proposed to augment malignancy

prediction for cytologically indeterminate nodules, with many studies
TABLE 1 The Bethesda System for reporting thyroid cytopathology (12).

Category Diagnostic Category Predicted TBS Risk of
Malignancy if NIFTP ≠

CA (%)

Risk of malignancy when non-inva-
sive follicular thyroid neoplasm is
considered cancer.

Usual
Managementa

TBS1 Nondiagnostic or unsatisfactory 5–10 2.0-19.1 Repeat FNA with
ultrasound guidance

TBS2 Benign 0–3 0.7-8.0 Clinical and
sonographic follow
up

TBS3 Atypia of undetermined
significance or follicular lesion of
undetermined significance

6–18 9.2-30.5 Repeat FNA,
molecular testing,
or lobectomy

TBS4 Follicular neoplasm or suspicious
for a follicular neoplasm

10–40 28.9 Molecular testing,
lobectomy

TBS5 Suspicious for malignancy 45–60 79.6 Near-total
thyroidectomy or
lobectomy

TBS6 Malignant 94–96 99.1 Near-total
thyroidectomy or
lobectomy
aActual management may depend on other factors (e.g. clinical, sonographic) besides the FNA interpretation. NIFTP, noninvasive follicular thyroid neoplasm with papillary-like nuclear features;
CA, carcinoma; FNA, fine-needle aspiration. Risk of malignancy are from a meta-analysis conducted by Huy Gia Vuong et al. (13).
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reporting success (26–29). While such methods certainly have a place

in thyroid cancer diagnosis, concerns exist that these tests generally

reduce the risk of cancer presence rather than guarantee its absence

(30), are restricted to few highly specialised and centralised

laboratories (31), and augment the total cost of healthcare (32),

which inhibits clinical adoption in resource-constrained settings.

Motivated by the above, much research has been conducted into

how techniques utilising artificial intelligence (AI) may improve the

existing clinical workflow.
1.2 Artificial intelligence

1.2.1 Background
AI is a field that involves teaching computers and machines how

to make decisions and solve problems intelligently (33).

Historically, it was concerned with computationally reproducing

capabilities of the human brain, although modern AI is less focused

on mimicking biological processes and more about solving complex

problems regardless of biological inspiration (34).

Machine learning (ML) is a branch of AI defined as the study of

computer algorithms that automatically improve through

experience (35). Data is used to train these algorithms to perform

a task – for example, regression, classification or clustering – in a

way that optimises some performance metric without the need for

explicit programming.

Deep learning (DL) is a branch of ML adept at automatically

discovering patterns directly from raw data (36). It concerns the

application of neural networks – the learning is ‘deep’ as these

networks comprise many layers that in turn consist of many

computational neurons – and has demonstrated high

performance at tasks involving unstructured data, such as image

analysis (37) and speech recognition (38).

AI research has increased in recent years due to the greater

availability of large datasets, improved processing power –

particularly with the introduction of graphics processing units

(GPUs) for massively parallel computation (39) – and the

increased availability of open-source software libraries that ease

algorithm implementation.

1.2.2 Biomedical applications
ML and DL are particularly applicable to biomedicine, as they

can be used to discover patterns unseen by humans (such as in drug

discovery and genetic analysis), assist biomedical image analysis to

reduce the pressure on clinicians, and predict outcomes from

clinical data (40). For instance, they have been employed to

estimate unknown bio-interactions between drug compounds and

biological targets (41), predict adverse events in drug discovery (42),

predict sequence specificities in DNA- and RNA-binding proteins

(43, 44), automate the interpretation of echocardiograms (45),

automate the classification of organ- or body part-specific images

(46), and both screen for (47, 48), and predict mortality and

hospitalisation in, heart failure (49).

ML and DL have also been applied successfully to many other

cancers: to automatically classify nodules from CT images (50) and

predict the presence of mutations from histopathology images (51)
Frontiers in Oncology 03
in lung cancer, to predict axillary lymph node status from

ultrasound images (52) and link tumour morphology and

spatially localised gene expression from histopathology images

(53) in breast cancer, and to classify and segment suspicious

lesions from MRI (54) and automate Gleason grading of biopsies

(55) in prostate cancer.

Within thyroid cancer, ML and DL have been applied to other

imaging modalities: to diagnose cervical lymph node metastasis in

CT images (56) and for computer-aided diagnosis and risk

stratification of thyroid nodules in ultrasound scans (57–59).

Although thyroid cancer evaluation is mainly concerned with

image analysis, models also exist for diagnosis (26–29), risk

stratification (57) and prediction of lymph node metastases (58)

from DNA- and RNA-sequencing data.

This review shall focus on the application of ML and DL to

thyroid cancer cyto- and histopathology. Research studies were

identified by searching PubMed with terms including thyroid

cancer, machine learning, deep learning and artificial intelligence.

Further studies were identified from references within suitable

papers and reviewer recommendation. In order to capture the

recent literature only studies published since 2017 have been

summarised, with references to older papers provided.
2 Current applications

Current research concentrates on thyroid nodule classification.

This can be broad – for instance, classifying nodules as benign or

malignant – or more granular, with differential diagnoses given for

the specific nodule type. Broadly, approaches for both cyto- and

histopathology can be split based on whether they utilise traditional

ML or DL; Figure 1 shows typical processing pipelines for digitised

whole-slide images (WSIs) in both cases. The WSI is first patched

into smaller cell regions; this can be done by a pathologist, who may

highlight informative regions and annotate them (as, for instance,

benign or suspicious for malignancy), or automatically, where

usually the slide-level diagnosis is cascaded down to the patches.

For ML-based pipelines, the nuclei are then segmented (which may

utilise DL or other techniques), their features are extracted and

aggregated, and an ML algorithm is used to classify the patch based

on the feature values. For DL-based pipelines, datasets are generally

augmented before being fed into a convolutional neural network

(CNN). Local patch-level classifications can then be aggregated into

a global WSI-level diagnosis.

Other research areas include the effective segmentation of

follicular cells, evaluation of how screening software may improve

pathologist workflow, prediction of both genetic mutational status

and lymph node metastases.
2.1 Cytopathology

Table 2 summarises research published since 2017 that applies

AI to thyroid cancer cytopathology. The aims vary between studies

– for example, some try to distinguish between benign and

malignant nodules of all types, while others focus on
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differentiating FTC from FA – as do the techniques employed, the

natures and sizes of the datasets, and whether evaluation metrics are

calculated on a slide/patient or extracted image level. The results are

therefore not directly comparable but have nevertheless

been provided.

Older papers from 1996–2014, where less advanced and

sophisticated methods were employed include Karakitsos et al.

(72, 73), Harms et al. (74), Ippolito et al. (75), Cochand-Priollet

et al. (76), Shapiro et al. (77), Daskalakis et al. (78), Zoulias et al.

(79), Varlatzidou et al. (80), Gopinath et al. (81–84), Saylam et al.

(85) and Huang et al. (86).

2.1.1 Machine learning-based methods
2.1.1.1 Classification of carcinomas

Margari et al. (61) used classification and regression trees

(CARTs) to evaluate thyroid lesions and extract human-

understandable knowledge of the diagnostic process. The study

included 521 cases of benign (261), malignant (256) and

indeterminate (4) nodules confirmed using histology. Categorical

cytomorphological characteristics were extracted and used to develop

two models: CART-C for predicting TBS category and CART-H for

the histological diagnosis of benign or malignant. CART-C achieved

91.0% accuracy when predicting TBS category; if TBS3 was used as a

cut-off to classify nodules as either benign or malignant, CART-C

achieved a respective sensitivity and specificity of 88.5% and 79.7%,

and if TBS4 was used, the same values were 78.1% and 94.4%. These

results were not statistically different from those of pathologists.

CART-H achieved 93.0% accuracy, 92.4% sensitivity and 93.6%

specificity when predicting the histological diagnosis.

Maleki et al. (64) worked to differentiate classic PTC from

NIFTPs and noninvasive EFV-PTC using a support vector machine

(SVM) trained on textual descriptions. Surgical pathology cases

with one of the diagnoses, an FNA matching the tumour, and an

available microscopic description were selected, which resulted in

59 cases (29 PTC, 30 NIFTP/EFV-PTC). A total of 59 different
Frontiers in Oncology 04
cytomorphological phrases were extracted from the microscopic

descriptions; these were condensed into 32 categories (with, for

instance, oncocytic cells and oncocyte reduced to one category). The

classifier was then trained using all cases except for one randomly

selected case each of PTC and NIFTP, which were used for

evaluation; this was done for all possible iterations of excluded

pairs. The classifier achieved 76.1% accuracy, 72.6% sensitivity and

81.6% specificity. Key phrases associated with NIFTPs were ‘scant

colloid’, ‘microfollicular pattern’, ‘oncocyte’, ‘crowded’ and ‘small

follicular cell’; those associated with PTC were ‘papillary’, ‘pale

chromatin’, ‘focal’, ‘prominent nucleoli’, and ‘nuclear groove’.

2.1.1.2 Other Research Areas

Yao et al. (70) evaluated ThinPrep, an existing preparation

technique optimised for digital pathology and ML algorithms, as a

means of improving diagnostic accuracy and reproducibility for

TBS3 cases. Their study used 40 FNAs (20 benign, 20 FA)

confirmed with histology; morphological differences between

these two cases are known to be more subjective, with less

reproducible diagnoses. A total of 800 images were extracted – 20

from each case, 10 mid-power (100x) and 10 high-power (400x) –

with each image reviewed by a cytopathologist to evaluate adequate

cellularity and assign a TBS category. Traditional computer vision-

based techniques were used to extract 86 low-level nuclear features,

and these were grouped to form 3 mid- and 3 high-level features

based on the authors’ cytomorphological knowledge. Gradient

boosting and extra trees classifiers were trained separately on the

mid- and high-power magnifications. The top-performing model

was trained on the mid-power set and achieved 71% accuracy, 72%

precision and 71% recall on the test set, with FA considered the

positive class. By comparison, the cytopathologist achieved 63%

accuracy, 57% precision and 95% recall, indicating a more cautious

approach at the expense of broader accuracy.

Since the advent of CNNs and the subsequent growth of DL-

based approaches for cytological classification, authors utilising
FIGURE 1

Typical processing pipelines. The WSI was taken from The Cancer Genome Atlas (project ID: TCGA-THCA), and nuclei segmentation was performed
using nucleAIzer (59). WSI, whole-slide image; ML, machine learning; DL, deep learning; CNN, convolutional neural network.
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traditional ML have applied it in less conventional cases, such as

through utilising CARTs and text-based features instead. The

moderate success of Maleki et al. (64) and Yao et al. (70) suggest

that ML has some potential to address difficult preoperative

challenges, although improvements remain necessary.

2.1.2 Deep learning-based methods
2.1.2.1 Classification of carcinomas

Savala et al. (60) employed a neural network to differentiate cases

of FA (26) and FTC (31). Images prepared with two different WSI

stains –May Grünwald-Giemsa (MGG) and haematoxylin and eosin

(H&E) – were included, and histology was used as the gold standard,
Frontiers in Oncology 05
where 90% of FTC cases were found to be minimally invasive. Single-

cell images were extracted manually – around 100 for each case –

individual nuclear features were then computed with image

processing software, and mean values for various morphometric

and densitometric features were included for each collective

sample. The validation and test sets contained nine samples each;

the former was classified with an accuracy of 78%, sensitivity of 75%

and specificity of 80%, and the latter was classified perfectly. Despite

this perfect test classification, further investigation is required: the test

set was small, and the large discrepancy between the results achieved

on the same-sized validation and test sets highlights the natural

variance expected at such scales.
TABLE 2 A summary of recent research applying AI to thyroid cytology specimens.

Study Year Aim Technique Level Sample
Size

Reported
Metrics

Results

Savala et al.
(60)

2018 FTC vs FA Neural network Slide 57 Accuracy 100%

Margari et al.
(61)

2018 Predict TBS diagnosis Classification and
regression trees

Slide 521 Accuracy 91%

Benign vs malignant Accuracy
Sensitivity
Specificity

93.0%
92.4%
93.6%

Sanyal et al.
(62)

2018 PTC vs non-PTC CNN Image 370 Accuracy
Sensitivity
Specificity

85.1%
90.5%
83.3%

Guan et al.
(63)

2019 PTC vs benign CNN Slide 279 Accuracy 95.0%

Image 887 Accuracy
Sensitivity
Specificity

97.7%
100%
94.9%

Maleki et al.
(64)

2019 PTC vs NIFTPs and
noninvasive EFV-PTC

Support vector machine Slide 59 Accuracy
Sensitivity
Specificity

76.1%
72.6%
81.6%

Fragopoulos
et al. (65)

2020 Benign vs malignant Neural network Slide 447 Accuracy
Sensitivity
Specificity

95.1%
95.0%
95.1%

Elliott Range
et al. (66)

2020 Benign vs malignant Two CNNs Slide 908 Sensitivity
Specificity
AUROC

92.0%
90.5%
0.932

Zhu et al.
(67)

2021 Efficient follicular cell segmentation CNN Slide 43 Pixel Accuracy 99.3% in
49.5 s

Image 6,900 Pixel Accuracy 98.7% in
97.4 s

Lin et al. (68) 2021 Fast segmentation of PTC CNN Slide 131 Accuracy
Precision
Recall

99%
86%
94%

Dov et al.
(69)

2021 Benign vs malignant Two CNNs Slide 908 AUROC
Average Precision

0.870
74.3%

Yao et al.
(70)

2022 Benign vs FA Gradient boosting and
extra trees classifiers

Image 800 AUROC
Accuracy
Precision
Recall

0.75
71%
72%
71%

Dov et al.
(71)

2022 Assess pathologist performance when using and
not using a decision-support system

Screening software
utilising two CNNs

Slide 109 Pairwise weighted
kappa statistic

0.924
fro
FTC, follicular thyroid carcinoma; FA, follicular adenoma; TBS, The Bethesda System; PTC, papillary thyroid carcinoma; CNN, convolutional neural network; NIFTP, noninvasive follicular
thyroid neoplasm with papillary-like nuclear features; EFV-PTC, encapsulated follicular variant of papillary thyroid cancer; AUROC, area under the receiver operating characteristic curve.
The level column describes whether metrics were calculated for full slides or extracted images.
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Sanyal et al. (62) used a CNN to classify PTC and non-PTC

samples. Only cases where a cytological diagnosis was reached were

included, and diagnoses were confirmed with histology; borderline

cases were excluded. For model training, 20 cytology slides (either

Romanowsky- or Papanicolaou-stained) were selected from two

different centres, and two different digital microscopes were used to

extract 370 512x512 pixel images (184 PTC, 186 non-PTC; 209 at

10x and 161 at 40x magnification) focusing on diagnostic areas of

interest. A separate test set was developed by selecting 87 regions

from ten smears that displayed either PTC (21) or non-PTC (78)

behaviour, with all regions photographed at 10x and 40x

magnification. The CNN classified these images separately, and

when using or-based decision criteria (where, if a sample was

classified as PTC at either magnification, the sample-level

classification was PTC), the CNN achieved an image-level

accuracy of 85.1%, sensitivity of 90.5% and specificity of 83.3%.

Guan et al. (63) employed a VGG16-based CNN via transfer

learning to differentiate PTC from benign thyroid nodules. The

study included 279 H&E-stained cytological slides (159 PTC, 120

benign). All PTC cases were classified as either TBS5 or 6 and had

typical PTC features and a histologically confirmed diagnosis; all

benign images were classified as TBS2, but the patients did not

undergo surgery, so histological diagnosis was unavailable. Each

larger image was manually segmented into several smaller 224x224

pixel fragments that contained the cells, which gave 887 images in

total (476 PTC, 411 benign), and this dataset was augmented by a

factor of eight through flips and rotations. The CNN achieved

97.7% accuracy, 100% sensitivity and 94.9% specificity on an image

level and 95% accuracy on a patient level. Nuclear features were also

automatically extracted and compared with t-tests; the number of

contours, the cell perimeter and area, and mean pixel intensity were

all statistically bigger for malignant cells. A limitation of the study is

that it only included slides categorised as TBS2, 5 or 6 – images that

FNA would generally catch – and the authors advised that future

studies investigate CNN performance on indeterminate cases (TBS3

or 4) and other types of thyroid cancer.

Fragopoulos et al. (65) implemented a neural network to classify

liquid-based cytology WSIs as either benign or malignant. The

study included 447 (288 benign, 159 malignant) samples, all with a

gold-standard histological diagnosis. Nuclei borders were manually

highlighted from each slide, and morphological features (geometric

and densitometric) were subsequently extracted for 41,324 nuclei.

The model trained to classify these individually and employed

radial basis function layers instead of more typical activation

functions. A slide-level diagnosis was determined through a

majority vote, which was based on either the number or

percentage of nuclei classified as malignant with percentages

more performant. The best model achieved 95.0% accuracy,

95.0% sensitivity and 95.1% specificity.

Elliott Range et al. (66) developed a system comprising two

CNNs to predict malignancy from cytopathology WSIs, which

eliminated the need to manually identify informative regions of

cells as seen in other implementations. The study included 908

Papanicolaou-stained FNAs with a confirmed histopathological

diagnosis. Nondiagnostic FNA and histopathology cases that were

not either benign or malignant were excluded. The first CNN was
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used to locate informative regions of follicular groups; the second

analysed these follicular groups and gave a TBS classification and

associated diagnosis of benign or malignant. To develop the training

set for the first CNN, a pathologist manually labelled informative

regions. Noninformative regions were randomly selected areas of

the scan; most of the scan is noninformative, so this had a high

probability of providing regions that did not contain follicular cells.

This CNN was trained, applied to each WSI, and used to extract the

1,000 identified regions identified with the highest probability of

being informative; these 1,000 regions were then used to train the

second CNN, which classified local regions as either benign or

malignant and aggregated these into one global-level prediction for

the final pathology. Both CNNs were trained using transfer learning

and were based on VGG11. The system achieved an accuracy of

90.8%, sensitivity of 92.0%, specificity of 90.5%, and an AUROC of

0.932, the last of which was at the level of the original pathologist’s

diagnosis (0.931). The authors found that combining their system

with the original diagnosis improved the AUROC to 0.962,

highlighting the potential of AI as an ancillary test.

Dov et al. (69) expanded the above work in Elliot Range et al.

(66) by using weakly supervised learning for intervention-free

thyroid-malignancy prediction from the same WSI dataset.

Typically, cytopathology slides have a unique substructure with

informative instances sparsely distributed throughout the slide, and

the location and evaluation of these instances pose a challenge. They

used a technique based on maximum likelihood estimation to

propagate slide-level labels to local regions, using the propagated

labels as ‘noisy’ labels, which led to an improved training strategy.

They found that their two-stage algorithm – which was similar to

that used in the previous work (66) – achieved expert-level human

performance with an AUROC of 0.870 ± 0.017 for the best-

performing implementation.

2.1.2.2 Other Research Areas

Zhu et al. (67) [and Tao et al. (87)] worked towards efficient

follicular cell segmentation fromWSIs. The study included 43 WSIs

(17 PTC, 26 benign), and 6,900 patches were cropped from 13 of

these (all PTC) and used to train a DeepLabv3-based semantic

segmentation model. The study did not employ transfer learning;

the model was instead trained directly with the dataset. The authors

added a classification branch that could designate patches as being

an area of follicular cells, colloid or background; areas identified as

containing follicular cells were then fed into the semantic

segmentation structure, which improved efficiency – up to 93% of

segmentation time was reduced by skipping the areas of colloid or

background. When applied to 30 test WSIs, the hybrid

segmentation model achieved a pixel accuracy of 99.3% in 49.5

seconds; it outperformed a fully convolutional network, U-Net and

DeepLabv3, which achieved pixel accuracies of 96.3%, 96.3% and

97.7% in 370.8, 146.4 and 712.6 seconds, respectively.

Lin et al. (68) developed a fast-screening method for PTC

segmentation from WSIs. The study included 131 Papanicolaou-

stained FNA (120) and ThinPrep (11) PTC cytological slides, and

ground truth annotations of PTC areas were provided by two expert

pathologists. Each WSI was first preprocessed to discard areas of

background, patched, and finally segmented by a CNN with a
frontiersin.org

https://doi.org/10.3389/fonc.2023.958310
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Slabaugh et al. 10.3389/fonc.2023.958310
VGG16 backbone. Their system achieved 99% accuracy, 86%

precision and 94% sensitivity, which outperformed U-Net and

SegNet benchmarks, and could process WSIs 7.8x and 9.1x faster

than those methods, respectively.

Dov et al. (71) further expanded on their earlier work by examining

the clinical impact of an AI-based screening software, with their study

measuring concordance between pathologist evaluation on 109

Papanicolaou-stained FNA biopsies (84 benign, 25 malignant) with

and without using the tool. Labels were determined based on surgical

pathology results. Initially, the pathologist evaluated the dataset

independently, and after a washout period of 117 days, the same

pathologist examined the same dataset with the assistance of the

software. The system comprised a VGG11-based CNN screening

algorithm trained as in the authors’ earlier work (66), with their

software presenting a selection of 100 regions of interest to the

pathologist through a graphical user interface, as well as a suggested

prediction for malignancy. The concordance of results was measured

with pairwise weighted kappa statistics; that for the assigned TBS

category when the pathologist did and did not use the software was

0.924, indicating almost perfect concordance.When using the software,

the average time spent per FNAwas 81.6 seconds, and although similar

statistics for the pathologist’s independent evaluation were not

provided, this low case time highlights how effective a decision-

support system can be at improving pathologist workflow.

The above presents compelling evidence that CNNs in particular

can improve the thyroid cancer diagnosis pipeline. Most studies have

focused on identifying PTC or predicting malignancy in general, but

there is evidence to suggest that FTC and FA can be identified using

nuclear features alone (60, 88, 89), a task that typically poses challenges

during manual slide analysis, thus implementation of AI approaches

have the potential to support cytology diagnoses that could be currently

difficult or not possible Algorithms that obviate the requirement for

manual patching and feature extraction are of particular interest (66):

solutions that require less human intervention have greater potential to

ease clinical workloads. The most recent paper by Dov et al. (71) is also

notable, as it investigates the actual impact such AI methods can have

once translated to the clinic, a welcome step forward from the more

commonly observed retrospective analysis.
2.2 Histopathology

Table 3 summarises research published since 2017 that applies

AI to thyroid cancer histopathology. As with the research for

cytopathology, the aims and datasets of each study vary, as do the

levels at which the evaluation metrics are calculated, so the results

are not directly comparable but have nevertheless been provided.

Older papers that implement less advanced approaches include

Wang et al. (89), Ozolek et al. (88), Kim et al. (102) and Jothi and

Rajam (103).

2.2.1 Machine learning-based methods
2.2.1.1 Classification of carcinomas

Jothi and Rajam (90) implemented a system to differentiate

PTC from normal thyroid tissue. Images were manually acquired by
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a pathologist from 12 tissue samples (4 normal thyroid, 8 PTC),

with 219 images taken in total (64 normal thyroid, 155 PTC). Nuclei

were segmented automatically using particle swarm optimisation-

based Otsu’s multilevel thresholding, and morphological and

texture features were extracted from each nucleus. The

classification was performed on individual nuclei, and an

ensemble learning model comprising a linear SVM, a quadratic

SVM, and a closest-matching-rule algorithm achieved 99.5%

accuracy, 100% sensitivity and 98.6% specificity on an image level.

Histopathology research has progressed from utilising

traditional ML approaches, as evidenced by the lack of studies

over the last five years.

2.2.2 Deep learning-based methods
2.2.2.1 Classification of carcinomas

Wang et al. (91) employed transfer learning to train two CNNs

– Inception-ResNet-v2 and VGG19 – to classify thyroid nodules

into multiple groups (normal thyroid tissue, adenoma, nodular

goitre, PTC, FTC, MTC and ATC). The dataset comprised 806

H&E-stained histological images labelled by two senior

pathologists: each gave an overall class for the WSI as well as a

specific area of interest that influenced the classification. Cases of

disagreement were discarded, meaning that the CNNs were not

tested on these more difficult borderline cases. Each WSI was

automatically segmented into 15 patches of nuclei: the Laplacian

of Gaussian filter was used to highlight the nuclei in the WSI, one

nucleus was selected at random to be the centre of a patch of size

448 x 448 pixels, and if the patch contained greater than 10% of the

nuclei in the original image, it was extracted. The final dataset

comprised 11,715 patches. The VGG19 model achieved an average

patch-level accuracy of 97.3% and slide-level accuracy of 98.4%; it

classified all malignant patches with an accuracy of above 97% and

performed worst at identifying normal thyroid tissue, although it

only mistook this for other benign classifications (goitre or

adenoma). Although in this study the slides were ‘carefully

selected’, the majority of the misclassifications involving adenoma

and goitre were attributed to a lack of relevant features in the

segmented patches , a consequence of the automatic

method employed.

Liu et al. (94) trained an Inception Residual CNN as a feature

extractor and combined it with an SVM to classify PTC from benign

thyroid tissue. The study included 693 H&E tissue samples (261

benign, 432 PTC) each imaged at four magnifications (4x, 10x, 20x,

40x), giving 1,044 and 1,728 in each group, respectively, and images

at the different magnifications were evaluated both separately and

collectively. The authors implemented a colour transform to map

each image into the same colour space, reducing the difference

between tissue specimens from different staining intensities. Their

algorithm performed best on the 40x magnified set, on which it

achieved 98.6% accuracy.

El-Hossiny et al. (96) developed a system of two cascaded CNNs

to classify WSIs: the first classified the thyroid tumours into PTC,

FTC and FA, and the second subtyped those classified as FTC into

four different subclasses. The study included 24 WSIs (9 PTC, 10

FTC, 5 FA), which were segmented into 18,653 512x512 pixel
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patches; 5% overlap was added to each side to increase this to

564x564 pixels, and the patches were subsequently scaled to give a

final size of 282x282 pixels. Individual patches were manually

labelled by pathologists and, following standard image

augmentation, were used to train the two CNNs. Their algorithm

achieved an overall patch-level accuracy of 94.7%.

Han et al. (97) focused on the autoclassification of patches from

WSIs and used a multi-magnification method to classify PTC and

normal thyroid lesions: images were taken at both 20x and 40x

magnification to allow a CNN to mimic the diagnostic process of

pathologists, where images are examined at a lower magnification

with any suspicious areas examined more closely with a higher

magnification. An experienced pathologist identified areas of PTC

and normal thyroid in 55 tissue slides; the final dataset comprised

16,500 images (7,928 normal tissue, 8,572 PTC). The authors

incorporated active learning by developing an algorithm that

could identify unlabelled samples with high uncertainty and
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therefore a high potential to be informative. They then employed

a VGG-f-based CNN to highlight which regions within the 20x-

magnified images were most discriminative before extracting these

patches at 40x magnification and feeding these samples into another

CNN. If one of these 40x-magnified patches was identified as PTC,

the eight surrounding patches were also tested to confirm the

diagnosis. The top performing algorithm achieved 95.8%

sensitivity and 95.1% specificity on an image level.

Böhland et al. (99) tested two approaches of designating samples

as PTC-like (NIFTP, follicular variant of PTC, PTC) and non-PTC-

like (FA, FTC). The first was feature-based and involved nuclei

segmentation with DL, feature extraction, and classification with

ML algorithms; the second involved direct classification where the

images were fed into a CNN without the intermediary steps. They

tested the methods on two datasets: the Tharun and Thompson

dataset, which contained manually selected H&E-stained images

from 156 thyroid tumours that were classified by two pathologists
TABLE 3 A summary of recent research applying AI to histology specimens.

Study Year Aim Technique Level Sample
Size

Reported
Metrics

Results

Jothi and
Rajam (90)

2017 PTC vs normal thyroid Ensemble learning with two support vector
machines and a closest-matching-rule classifier

Image 219 Accuracy
Sensitivity
Specificity

99.5%
100%
98.6%

Wang
et al. (91)

2019 Multiclassification of thyroid
nodules

CNN Slide 806 Accuracy 98.4%

Image 11,715 Accuracy 97.3%

Tsou and
Wu (92)

2019 Predict BRAF or RAS mutational
status

CNN Slide 103 Accuracy 95.2%

Image 2,595 AUROC 0.951

Dolezal
et al. (93)

2020 Classify NIFTP, PTC-EFG, and
PTC as BRAF- or RAS-like

CNN Slide 612 – –

Predict BRAF-RAS score and use
it to discriminate NIFTP status

Slide 497 AUROC 0.99

Liu et al.
(94)

2021 PTC vs normal thyroid CNN Image 2,772 Accuracy 98.6%

Esce et al.
(95)

2021 Identify lymph nodal metastases CNN Slide 174 Sensitivity
Specificity
AUROC

94%
100%
0.964

El-Hossiny
et al. (96)

2021 Multiclassification of thyroid
nodules

Cascaded CNNs Image 18,653 Accuracy 94.7%

Han et al.
(97)

2021 PTC vs normal thyroid CNN Image 16,500 Sensitivity
Specificity

95.8%
95.1%

Anand
et al. (98)

2021 Predict BRAF mutational status Weakly supervised CNN Slide 529 AUROC 0.98

Böhland
et al. (99)

2021 PTC-like (PTC, NIFTP and FV-
PTC) vs non-PTC-like (FA, FTC)

CNNs and machine learning algorithms
applied to two datasets

Slide 156 Accuracy 89.7%

Slide 133 Accuracy 83.5%

Deng et al.
(100)

2022 PTC vs non-PTC Ensemble of a CNN and random forest Image 610 Accuracy
Sensitivity
Specificity
AUROC

93.8%
85.9%
97.2%
0.982

Stenman
et al. (101)

2022 Quantification of tall cells in PTC Two CNNs Image 2,970 Sensitivity
Specificity

93.7%
94.5%
fro
PTC, papillary thyroid carcinoma; CNN, convolutional neural network; BRAF, RAS, gene types; AUROC, area under the receiver operating characteristic curve; NIFTP, noninvasive follicular
thyroid neoplasm with papillary-like nuclear features; PTC-EFG, papillary thyroid carcinoma with extensive follicular growth; FV-PTC, follicular variant of papillary thyroid carcinoma.
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with consensus on every case; and the Nikiforov Box A, which

contained 133 images that were submitted by six institutions as

potential EFV-PTC, with the idea to define NIFTP out of these. The

Nikiforov Box A, therefore, was considered by the authors to contain

many borderline cases and identified as a more difficult dataset to

classify. For each of 147 images in the Tharun and Thompson dataset,

ten smaller images without overlap were extracted from neoplastic

areas; for the other nine, fewer patches were extracted, as the

neoplastic area was not large enough to facilitate ten. The feature-

based classification method achieved an accuracy of 89.7% and 83.5%

on the Tharun and Thompson dataset and Nikiforov Box A,

respectively, and the DL-based method an accuracy of 89.1% and

77.4%, respectively – at the level of expert pathologists.

Deng et al. (100) used a multimodal approach to classify PTC

from non-PTC. The study included 610 H&E-stained pathology

samples (426 PTC, 184 non-PTC) from which two senior

pathologists selected regions of interest and made diagnoses;

samples were excluded in cases of disagreement. One patch was

selected from each sample, and a ResNet50-based CNN was trained

on these patches following standard image augmentation. A

random forest was trained on the accompanying text-based

features from laboratory tests for both thyroid function and

ultrasound examination. The models’ predictions were then

combined, which resulted in 93.8% accuracy, 85.9% sensitivity

and 97.2% specificity; notably, the ensembled system achieved

better results than either the CNN or random forest in isolation.

2.2.2.2 Prediction of genetic mutational status

Tsou et al. (92) used transfer learning to train a CNN based on

the Inception-v3 model to classify PTCs into having either

BRAFV600E or RAS mutations. Tumours with the BRAFV600E

mutation characterise PTC and the tall cell variant of PTC,

whereas those with the RAS mutation characterise follicular

variant of PTC, so the hypothesis was that features of the

histopathology images could predict these genetic mutations.

From 103 H&E-stained slides taken from The Cancer Genome

Atlas (TCGA), an expert pathologist manually selected 2595

patches, giving 25 patches per slide on average. A patch was

labelled only if the model’s predicted probability was above 0.8,

and a slide was classified only if at least 80% of the patches derived

from the slide favoured one classification. With this exclusion rule,

the model achieved 95.2% accuracy on the test set.

Dolezal et al. (93) theorised that the BRS (BRAF-RAS) score

could help in identifying NIFTPs and aid in therapy de-escalation as

mentioned above. Two pathologists digitally annotated an internal

dataset of 115 H&E-stained images with regions encircling

tumours; these were subsequently extracted and used to train an

Xception-based CNN to predict tumour subtype out of NIFTP, PTC

with extensive follicular growth, and PTC. The CNN was tested on a

dataset from TCGA comprising 497 images, and between NIFTP

and PTC with extensive follicular growth, tumours were 8.5x more

likely to have an NIFTP prediction if they had a positive BRS (RAS-

like) score. They further hypothesised that a predicted BRS score

could aid in classification and trained a model on the 497 TCGA

slides before testing on the internal cohort. NIFTPs were near-
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universally predicted to have RAS-like BRS, and as a discriminator

of NIFTP status, the predicted BRS had an AUROC of 0.99 when all

samples were included and 0.97 when restricted to NIFTPs and

PTC with extensive follicular growth – the former had a mean

predicted BRS of 0.35 and the latter -0.49.

Anand et al. (98) used a weakly supervised neural network to

predict BRAF mutational status – which is associated with worse

clinical features and outcomes – without regional annotations, as

expert knowledge for labelling informative regions in such a task is

unreliable; indeed, the authors first tried a supervised learning

approach but found its performance limited by definitive labels for

regions that were irrelevant or ambiguous. They employed attention-

based multiple-instance learning, which can extract informative

regions in large images, by using a VGG16-based CNN with an

added attention module. The model was trained on a dataset

comprising tumours from 85 patients; for each patient, 1–3

malignant microarray spots and one microarray spot of normal

tissue were available, and each spot was augmented 50 times using

flips and rotations. The model was tested on 444 samples sourced

from TCGA where the authors sampled tumour-only regions using

another neural network trained to localise the tumour region – this

was as the training dataset had a greater proportion of tumour

samples – and achieved an AUROC of 0.98. The authors also took the

output of the attention module to generate a heatmap of informative

regions: a BRAF probability was assigned to non-overlapping patches

of the spot image and smoothed using a Gaussian spatial filter, giving

a visualisation of high-attention regions and their probability for

being BRAF-positive or -negative. They found high concordance with

the informative regions and features typically associated with the

BRAF mutation, such as papillary histology and oncocytic cells, with

such visualisations aiding the move towards interpretable AI.

2.2.2.3 Other research areas

Esce et al. (95) used a CNN to predict the presence of nodal

metastases, which have prognostic importance but are often not

sampled during initial surgery. A total of 174 primary tumour

samples were included – 104 with regional metastases and 70

without. Study pathologists manually annotated regions to test

two methods: one with the regions including only the tumour,

and a second including the tumour and a regional transition zone.

Smaller image patches were randomly selected from within the

annotated zones and used for training and analysis. The second

method – which included the transition zone – could predict nodal

metastases with 96.3% accuracy, 93.6% sensitivity and 100%

specificity and outperformed the case when the WSIs were fed

directly into the algorithm, which was attributed to poor

preservation of some areas of the tissue sample.

Stenman et al. (101) trained a CNN to quantify the proportion of

tall cells in PTC; the tall-cell variant of PTC correlates with less

favourable outcomes, but the clinical definition (at least 30% of

epithelial cells 2–3 times as tall as they are wide) results in

substantial interobserver variability. Their study included 190 PTC

samples: 70 from one hospital and 30 from TCGA were used for

system development, and 90 sourced from another hospital were used

for external validation. The system comprised two algorithms
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working in sequence – the first segmented areas of tumour tissue, and

the second identified regions of tall cells within the tumour – and

were trained using 2970 manually annotated regions of interest.

When evaluated on the external set, their algorithm could detect

tall cells with 93.7% sensitivity and 94.5% specificity.

In this research, CNNs have shown great potential for automatic

diagnosis when applied to histopathology samples. In their study,

Wang et al. (91) achieved multiclassification to high accuracy, and

although their algorithm was limited by the exclusion of borderline

cases, it was more granular than comparable studies focusing on, for

example, identifying only PTC or malignancy. Furthermore, the

algorithm that could identify discriminative regions within images

in the study of Han et al. (97) has the potential to expedite pathologist

workflow, although one limitation is that it used patches for input

instead of working directly on WSIs. Notably, the four of the above

studies sourced tissue samples from TCGA, compelling evidence for

how open-source, multimodal datasets can facilitate new avenues for

research. The work of Dolezal et al. (93) introduced a potential

avenue for NIFTP identification, although it remains to be seen if

such a technique could work on preoperative samples. Importantly,

the introduction of the attention mechanism seen in the work of

Anand et al. (98) is a further step towards explainability, the lack of

which is a barrier to clinical integration.
3 Discussion

This review has identified a plethora of compelling evidence

suggesting that AI can improve the cyto- and histopathology

processing pipelines for thyroid cancer diagnosis and risk

stratification. Current issues with thyroid FNA biopsies –

including high interobserver variability (21, 22), a significant

proportion returning indeterminate samples (11, 16), and the fact

that some pathologies cannot be reliably classified using cytological

criteria (76) – necessitate such improvements; histopathology

analysis addresses these to an extent but requires surgical

resection so cannot guide preoperative decisions. It is important

to note that there is a substantial observer variation not only in

thyroid cytology but also in thyroid histopathology (104–107).

Additionally, given the chronic shortage of trained pathologists

(25), technologies that can reduce the demand for clinicians’ time

should be welcomed and readily adopted. The issue is pertinent

given the unprecedented pressure under which health services must

currently operate; exacerbated by the COVID-19 pandemic, the

number of NHS patients awaiting elective care is at a record high of

six million as of November 2021 (108). AI technologies must not, of

course, be rushed through without proper evaluation; indeed, just

how AI-based medical devices are evaluated has rightly come into

question recently (109). Great care must be taken to ensure

solutions are effective, transferable, robust and free of biases

(110); the latter has, for example, caused notable issues with

algorithms designed to detect skin cancer (111).

While AI-based methods certainly show promise within thyroid

cancer, there is a lack of research into the clinical realisability of such

methods, except for the study of Dov et al. (71). Future studies could

aim to elucidate further the extent to which pathologists could rely on
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these systems for ancillary decision-making and guided investigation.

Examining performance on a test set gives an idea of accuracy and

transferability, but these models could certainly not be integrated to

replace human-based pathological analysis immediately; rather,

confidence must be developed gradually through the deployment of

trust-building AI-enhanced workflows. Somewhat to that end, and

certainly in line with the necessary recent emphasis on developing

explainable AI, some of the more recent studies have investigated the

areas that guide CNNs towards their classification (69, 97, 98); the

production of informative-instance heatmaps could direct clinicians to

discriminative areas and expedite their investigation. Thyroid

pathology studies could take inspiration from recent advances in

other areas of pathology (112, 113) to further develop these ideas.

Multi-task architectures could also help in this respect:

implementations could provide both a global classification and these

heatmaps, and one could imagine an additional arm that utilises

natural language processing, where AI is used to interact with

human language, to provide a textual justification, all of which could

foster clinical confidence in the diagnostic result. Further research is

certainly welcome in this area: interpretability is important for

establishing the necessary trust with clinicians and regulators, and

exploration into the practicalities of how these technologies could

improve routine examination would assist clinical adoption (40).

Notably, much of the past research has focused on binary

classification and PTC given the latter’s predominance over other

malignancies, but the examination of thyroid FNA and surgical

specimens is significantly more nuanced than many past studies

have addressed. The research conducted by Wang et al. (91) is one

exception with the authors achieving high accuracy when

attempting multiclassification, although a limitation was the

exclusion of cases on which the study pathologists disagreed.

Additionally, given that laboratory datasets are often

heterogeneous – different labs often use different methods of cell

and tissue preparation, fixation, staining and imaging – algorithms

must typically be adapted to suit the clinical needs of each lab (99).

To be truly generalisable and robust, a method should be capable of

handling these institutional differences. Some studies have begun to

address this – by, for example, examining datasets with multiple

stains and from different institutions (60, 62, 99), or by

implementing a colour transform for different staining intensities

(94) – but future studies that include diverse multicentre datasets

and demonstrate high performance in a process- and equipment-

agnostic manner are encouraged. Federated learning and domain

adaptation are two avenues that warrant further investigation in this

respect: they have been applied in other areas of pathology to

improve interlaboratory transferability (114, 115).

Additionally, although much of the past research has focused on

the diagnostic classification of cyto- and histopathology specimens,

other avenues that investigate different areas of thyroid cancer

therapy certainly exist. The prediction of nodal metastases in the

work of Esce et al. (95) is an example with real clinical relevance: the

authors themselves posit the idea of a real-time algorithm that could

guide a decision on whether or not to perform a central neck

dissection. Furthermore, although the classification of NIFTPs has

been studied to an extent (64, 93, 99), it has proven a challenging area

of research and, given the significant potential for reliable NIFTP
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identification to aid in therapy de-escalation, this necessitates further

studies into how AI technologies could improve current processes.

Many of the methods reviewed here require representative

labels to be assigned to the extracted patches. The models

themselves often do not take an entire WSI as input; instead, they

make predictions on these smaller segmented images before

aggregating these individual predictions into a patient- or slide-

level prediction. To generate such a training set of labelled patches –

where WSIs are generally examined manually for informative

regions by pathologists – is laborious and costly work that

requires expert knowledge. In some studies, researchers have

automatically patched areas of the WSIs and have circumvented

the requirement for manual annotation of the segmented images by

assigning the original WSI diagnosis (91) – a consequence of such

an approach is that representative features of the slide-level

diagnosis will not exist in all patches, as it is common for cyto- or

histopathology WSIs to contain areas of both normal tissue and the

pathology should there be one. Furthermore, to implement some of

the current models in clinical practice, a pathologist may have to

manually identify the representative regions to use as inputs. As

explored above, some studies have addressed this with new

approaches, including automatic informative region identification,

active learning and weakly supervised multiple-instance learning

(66, 67, 69, 87, 97, 98); future studies could further research such

techniques that bring diagnostic pipelines closer to true automation.

In summary, while AI has shown great potential to improve the

thyroid cancer diagnosis pipeline, current research suffers from

several limitations: a lack of focus on clinical integration of AI-based

methods and how they can improve workflows in practice;

utilisation of patch-level labels, for which training set acquisition

can be laborious and costly; and a focus on binary classification and

PTC, as opposed to multiclassification of all subtypes. These

limitations highlight avenues for future research: evaluate the

practical potential of an algorithm to assist clinical decision-

making; expand the current research on explainability, which can

help to build trust with clinicians and regulators; further investigate

techniques that require only a slide-level label and can direct

pathologists to regions of interest; and examine large multicentre
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datasets to develop robust techniques that are agnostic to the

processes and equipment of individual laboratories.
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