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Radiation-induced lung injury (RILI) including radiation-induced pneumonitis and

radiation-induced pulmonary fibrosis is a side effect of radiotherapy for thoracic

tumors. Azithromycin is a macrolide with immunomodulatory properties and anti-

inflammatory effects. The immunopathology of RILI that results from irradiation is

robust pro-inflammatory responses with high levels of chemokine and cytokine

expression. In some patients, pulmonary interstitial fibrosis results usually due to an

overactive immune response. Growing clinical studies recently proposed that the

anti-inflammatory and immunomodulatory effects of azithromycin may benefit

patients with acute lung injury. It has been shown potential benefits for patients

with RILI in preclinical studies. Azithromycin has a variety of immunomodulatory

effect to improve the process of disease, including inhibition of pro-inflammatory

cytokines production participating in the regulatory function of macrophages,

changes in autophagy, and inhibition of neutrophil influx. We review the published

evidence of mechanisms of azithromycin, and focus on the potential effect of

azithromycin on the immune response to RILI.

KEYWORDS
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1 Introduction

Radiotherapy is an important treatment strategy for thoracic malignant tumors. However,

as a radiation sensitive organ, the irradiation lung is prone to radiation-induced lung injury

(RILI), including radiation-induced pneumonitis (RIP) and radiation-induced pulmonary

fibrosis (RIPF), which severely reduces the efficacy of radiotherapy and affects the quality

lives of patients (1). Severe RILI induced by irradiation showed a strong pro-inflammatory

response in immunopathology, with various pro-inflammatory and pro-fibrotic cytokines from

damaged and activated cells. In some patients, pulmonary interstitial fibrosis is usually caused
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by an overactive immune response. In addition, severe cases of acute

RIP are characterized by cytokine storms and acute respiratory distress

syndrome (ARDS) requiring immunosuppressive therapy. Cytokines

are considered as important molecular factors involved in the signaling

network in pathological processes. The clinical evidence and

immunopathology of RILI show that radiation leads to changes in

immune function in some individuals, resulting in hyperactive pro-

inflammatory response. Some serious cases need to be treated with

immunosuppressive therapies that can rebalance the immune system.

More and more evidences support macrolides like azithromycin

(AZM) have anti-inflammatory and immunomodulatory properties.

Mechanistic studies demonstrate immunomodulatory activity of

AZM through the regulation of cellular processes involved in

inflammation response via NF-kB signaling pathway (2, 3),

inhibition of neutrophil influx, alteration of macrophage

polarization (3), and autophagy flux (4, 5). Although azithromycin

inhibits a variety of pro-inflammatory pathways, it will not lead to

complete immunosuppression like glucocorticoids and other

immunosuppressive therapies. In contrast, azithromycin shows

immunomodulatory properties by transforming the inflammatory

response dominated by macrophages into an inflammatory response

characterized by the functional aspects of regulation and repair (6).

These effects recall a profound effect for azithromycin on

inflammatory conditions in which the immunomodulatory

characteristics of macrolide antibiotics expand their therapeutic

indications (7). Increasing data support the immunomodulatory

effects of azithromycin on early inflammation, including inhibition

of pro-inflammatory cytokine production, inhibition of neutrophil

influx, induction of regulatory functions of macrophages, and

alterations in autophagy (8).Tang et al. reported a study in which

mice received irradiation followed by azithromycin. They concluded

that azithromycin could ameliorate RILI through modulating the

inflammation and fibrosis, especially in the high-dose group (9). The

role of azithromycin in the treatment of RILI has also been a

paramount concern for radiation oncologists. Here we review the

published evidence of these mechanisms, and focus on the potential

effect of azithromycin on the immune response to RILI, especially

mechanisms that potentially could provide therapeutic benefit.
2 Pathophysiology of the radiation-
induced lung toxicity

RILI in the early stage manifests as radiation-induced pneumonitis

which occurs 1~6 months after radiotherapy while lung fibrosis (After

radiotherapy 6~24 months) develops later (10).RILI occurs in nearly

30% of patients receiving high-dose radiation for therapy of lung

cancer and a proportion of patients have symptomatic lung injury (11).

The pathological mechanisms of RILI are complex and involve

numerous cell types and signaling pathways (12). Previous studies

have focused on radiation-induced vascular endothelial cell damage to

further injury the alveolar-capillary barrier and reduce surfactant

secretion from damaged alveolar-type cells (13, 14). Recently, studies

have found lung macrophages as non-proliferative and highly

differentiated natural immune cells, not only is there a certain

tolerance to the radiation (15), but also it plays an important
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regulatory role in the whole pathological process of RILI (16). Lung

macrophages promote the reactive oxygen-induced reactive oxygen

cascade reaction, and the progress of the effects of inflammatory storm

and the acceleration of fibrosis in RILI.

Radiation injury is a process which physics technology leads to

biological change. In lung tissue it manifests the damage of various

types of cells including lung epithelial. vascular endothelial cells, I

and II type alveolar cells, organized residence macrophages, via the

production of reactive oxygen species and reactive nitrogen species

(ROS/RNS) and inflammatory cytokines by single-strand DNA

breaks and indirect ionization of water moleculars. Normal

alveolar structure is destroyed and alveolar barrier function is

lost. Afterwards, alveolar and interstitial edema is formed, then

inflammatory cells outside like macrophages and neutrophils are

recruited and accumulated here to effect action. Above happen at

early phase. after few months fibroblasts differentiate and

participate in it which leads to chronic radiation injury (17, 18).

Different sources of macrophages involving alveolar macrophages,

interstitial macrophages and foreign macrophages all play

important roles by polarizing different functional macrophages

via various cytokines like interferon-beta (IFN-b) and

Interleukin-4(IL-4) (19). At the initial stage of radiation injury, T

helper cell type 1 (Th-1) cells were activated to release interferon-

beta (IFN-b) stimulated M1 macrophage activation, meanwhile,

Th-2 inflammatory cells were inhibited. When the injury continues

to develop, Th-2-derived cytokines Interleukin-4 (IL-4) and IL-3

are released at the injury site to transform the injury into abnormal

wound healing, it is characterized by the accumulation of M2

macrophages, which ultimately decrease the inflammatory

process. Most medical treatments for RILI mainly choose to act

during early phase in clinical practice (20, 21).
3 Immunomodulatory mechanisms
of azithromycin

3.1 Azithromycin inhibits inflammatory cell
signaling pathways

Azithromycin exerts an anti-inflammatory effect by inhibiting

signaling pathways relevant with inflammatory responses. Previous

studies demonstrated that azithromycin prevents the activation of

nuclear translocation of NF-kB signaling pathway thereby reducing

the up-regulation of pro-inflammatory gene expression (2, 22).

These results also involve in the evaluation of the impact of

azithromycin upon other aspects of inflammatory cell signaling

including suppression of the inflammasome, and inhibition of

phospholipase-A2 (PLA2) (23–25). In THP-1 human monocytic

cells, azithromycin inhibits lipopolysaccharide (LPS)-induced

macrophage-derived chemokine (MDC) expression through c-Jun

N-terminal kinase (JNK) and NF-kB/p65 pathways. Azithromycin

also inhibits the expression of LPS-induced IFN-inducible protein

10 (IP-10/CXCL10), which is a T helper (Th)1-related chemokine

that causes asthma airway inflammation and hypersensitivity

through the MAPK-JNK/ERK and NF-kB/p65 pathways (25).

Decreases in NF-kB DNA binding site were mechanistically
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linked to the suppressed induction of pro-inflammatory genes and

cytokine production in different murine and other models of

inflammatory and infectious diseases in vitro (26). Many potential

immunomodulatory effects of azithromycin have been reported

including down-regulating prolonged inflammation, decreasing

airway mucus secretion, inhibiting bacterial biofilm (27).
3.2 Azithromycin alters macrophage
polarization

Macrophages play pro-inflammatory and anti-inflammatory roles

through classical and alternative activation pathways, Which we refer

to the polarized macrophages as M1 and M2 (28). The former is

characterized by inducible nitric oxide synthase, and the latter is

marked by arginase-1. M1 macrophages have been shown to

participate in pro-inflammatory responses, and M2 macrophages are

the main type of macrophages in pulmonary fibrosis. Based on the

stage of the disease and its interaction with other immune cells,

macrophages are polarized and exert anti or pro inflammatory

reactions. Experiments using the murine macrophage cell line J774

considered that azithromycin can polarize macrophages to a M2

alternative-like phenotype in vitro (29). In macrophages polarized to

a M1 phenotype with IFN-g and LPS, azithromycin inhibited pro-

inflammatory cytokine expression (including IL-12 and IL-6) and

shifted surface receptor expression from M1 phenotype to what

typically observed in alternatively-activated macrophages. A recent

study shed additional light on the mechanism by which azithromycin

polarized macrophages to an alternative, anti-inflammatory phenotype

(3). Incubation result of a murine macrophage cell line or primary

murine macrophages with azithromycin was observed to increase the

overall expression of IkB kinase (IKKb), a molecule involved in

signaling to NF-kB activation. When cells were stimulated with IFN-

g and LPS, azithromycin treatment increased the phosphorylation of
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IKKb despite a reduction in the subsequent signaling resulting in

inhibition of NF- kB translocation into the nucleus (3). A previous

report explained the phenomenon that the over-expression of IKKb
can inhibit signal transducer and activator of transcription-1(STAT-1)

signaling (the pathway responsible for classical macrophage activation

in the presence of IFN-g) (30), investigators then explored this

connection and found that azithromycin inhibited the

phosphorylation of STAT-1, which was dependent upon IKKb.
Induction of the M2 protein arginase was also dependent on this

cross-talk, as IKKb inhibitors reversed the ability of azithromycin to

induce arginase activity (3). This work provides a possible mechanistic

link between NF-kB signaling inhibition and macrophage polarization

by the drug. Figure 1 has shown the mechanism of azithromycin in

RILI patients. According to different sources, we can divide

macrophages into alveolar macrophages(AMs), interstitial

macrophages(IMs) and infiltrating monocyte-derived macrophages.

Kinds of macrophages play different functions in radiation-induced

lung injury Lydia, et al’s study raised that IMs expressed 10-fold more

arginase (Arg)-1 than alveolar macrophages (AMs), and a 40-fold

upregulation of Arg-1 was found in IMs isolated from radiation lung

fibrosis. IMs, but not AMs, were able to induce myofibroblast

activation in vitro by clinical and preclinical research. It suggests us

future study could focus on kinds of macrophages in different phases of

RILI (31).Furthermore, the study from Hodge affirmed that

Azithromycin has an anti-inflammatory properties by improved the

phagocytosis of epithelial cells or neutrophils by AMs from COPD and

decreases levels of pro-inflammatory cytokines are high doses (32).

After ionizing radiation applied to lung tissue, alveolar barrier and

vascular endothelial cells are damaged and vascular permeability is

changed. Kinds of inflammatory cells like monocytes, lymphocytes,

and macrophages are recruited here and released inflammatory

cytokines such as IL-1beita, IL-6, iNOS, IL- 12p40, TNF-a.

Azithromycin can act on macrophages which made IKKb/NF-kB

pathways suppressed. Azithromycin treatment increased the
FIGURE 1

The mechanism of azithromycin in RILI patients. After ionizing radiation applied to lung tissue, alveolar barrier and vascular endothelial cells are
damaged and vascular permeability is changed. Kinds of inflammatory cells like monocytes, lymphocytes, and macrophages are recruited here and
released inflammatory cytokines such as IL-1beita, IL-6, iNOS, IL-12p40, TNF-a. Azithromycin can act on macrophages which made IKKb/NF-kB
pathways suppressed. Azithromycin treatment increased the phosphorylation of IKKb resulting in inhibition of NF- kB translocation into the nucleus
and resulting in inhibit signal transducer and activator of transcription-1(STAT-1) signaling. Both made inflammatory process affected and release of
cytokines is decreased.
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phosphorylation of IKKb resulting in inhibition of NF- kB translocation

into the nucleus and resulting in inhibit signal transducer and activator of

transcription-1(STAT-1) signaling. Both made inflammatory process

affected and release of cytokines is decreased.
3.3 Azithromycin inhibits autophagosome
clearance

Autophagy, as a cellular process induced in both physiological as

well as pathophysiological conditions, is essential for cell survival to

maintain a good balance between protein synthesis and degradation

(33), and also plays a complex role in pathogen elimination and

inflammatory regulation (34). At therapeutic concentrations,

azithromycin was indicated to increase the number of macrophages

autophagosomes (4, 5). This increase in number may be due to

inhibiting the degradation of autophagosomes rather than increasing

their synthesis (4). Azithromycin accomplishes this by inhibiting

lysosomal acidification which thereby inhibits autophagosome

clearance (4). Autophagy induction is considered to have an anti-

fibrotic effect and can be modulated by drugs. The autophagy inducer

rapamycin protects against bleomycin induced lung fibrosis, and

impaired autophagosomes in RIPF may lead to fibrogenesis and

promote fibroblast activation and extracellular matrix production

(35). Recently, a study of interstitial pulmonary fibrosis has shown

that autophagy is reduced after azithromycin treatment and it affects

fibrosis (36). Furthermore, facilitation of autophagy flux has also been

linked to increases in pathogen elimination (37). The association

between autophagy and inflammation contributes to increase more

comprehensive understanding of RILI (38), the impact of azithromycin

at this nexus remains to be studied.
3.4 Azithromycin impacts neutrophils

Azithromycin can directly affect the function of neutrophils.

Neutrophils stimulated by injury related molecular patterns and

other signals, play important, though often destructive, roles in

airway diseases including asthma, Chronic obstructive pulmonary

disease (COPD), and ARDS. Azithromycin exhibits rapid and

prolonged cellular accumulation and has a very long half-life in these

cells (39). It is no doubts that azithromycin as an anti-fibrotic, inhibits

inflammatory process. From Weronika et al’s study, the result

indicated azithromycin regulated the pro-inflammatory ability of the

neutrophils by decreasing respiratory burst and the release of

neutrophil extracellular traps (NETs), which are as methods of

neutrophils to kill pathogens (40). And another report also

demonstrated that the macrolide erythromycin decreases airway

NET formation in mice (41). Azithromycin has also been shown in

pre-clinical studies to decrease IL-8 release and neutrophil airway

infiltration, cause degranulation and degradation of extracellular

myeloperoxidase, and reduce neutrophil oxidative burst (42). Indeed,

azithromycin, frequently used in asthmatic children with lower

respiratory tract infection, inhibits the accumulation of neutrophils in

pulmonary airways by affecting interleukin-17 downstream signal, and

by inhibiting the release of neutrophil mobilizing cytokines:
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macrophage inflammatory protein-2(MIP-2), CXC chemokine

ligand-5(CXCL-5), and granulocyte macrophage colony-stimulating

factor(GM-CSF) (43). In addition, azithromycin attenuates neutrophil

function. It down-regulates chemical attractants and adhesion

molecules in activated vascular endothelial cells, reduces neutrophil

activation, and limits the release of NET (40).
4 The potential impact of
azithromycin on RILI

RILI is a common complication of radiation therapy. Development

of an effective and sensitive drug that selectively decrease damage of

normal lung tissues receiving radiation is an urgent question to be

solved. Researchers focus on azithromycin on account of poly-

pharmacological properties. The potential beneficial effects of

azithromycin in RILI can be explained by some mechanisms

(Figure 2), which includes killing pathogens, inhibiting the

production of pro-inflammatory cytokines and inducing the

regulatory function of macrophages (44). Thus, azithromycin may be

a promising drug for the treatment of RILI which is attributed to its

immunomodulatory properties and very high and stable lung

concentrations (45). Firstly, azithromycin is an effective regulator of

cytokines derived frommonocytes andmacrophages. It may inhibit the

NF-kB signaling pathway to decrease inflammatory responses, and

reduce the production of differentiation markers IL-6, IL-8 and tumor

necrosis factor-alpha (TNF-a) from the classical M1 activated

macrophages and the release of GM-CSF to balance the immune

response after radiation. Secondly, azithromycin affects functions of

macrophages. During the thoracic irradiation, macrophage polarization

triggers inflammatory and immune cells activation and infiltration,

leading to the occurrence of RIP and RIPF. The ultimate pathological

consequences of RILI in lung tissues depends on the relative

equilibrium and activity of M1/M2 macrophages (46). Azithromycin

significantly attenuates the accumulation of M1 macrophages and

modulates the polarization balance of macrophages to reduce the

inflammatory process. Modifications in lung macrophages after

radiation have been both detected during early and late stages of

tissue injury, supporting the notion that azithromycin has important

meanings in treatment of RILI by regulating macrophages. In addition,

azithromycin also enhances host defense and controls inflammatory

related damage by inhibiting neutrophil killing mechanisms and

increasing the number of autophagosomes in macrophages.

Furthermore, the infiltration or exudation of inflammatory cells into

the lung parenchyma seems to play an important role in the

development of RILI. Preliminary evidence suggests that

pharmacological or other interventions may be possible to reverse

the manifestation of the injury and restore function to lung tissues (47).

Currently, the non-antibacterial inflammatory and

immunomodulatory effects of AZM have been demonstrated in a

variety of diseases, such as COPD, asthma, cystic fibrosis, and

idiopathic pulmonary fibrosis (48). Affirming the inflammatory and

immunomodulatory effects of AZM, its use in the treatment of

radiation pneumonitis became possible. Based on the above-

mentioned occurrence of radiation pneumonitis and the
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mechanism of action of AZM in many aspects, there may be

unexpected effects on the treatment of radiation pneumonitis by

utilizing the effect of AZM.
4.1 IL-8/MAPK/ERK/neutrophils
signaling pathway

IL-8 acts as a neutrophil chemokine that promotes neutrophil

migration to sites of inflammation. IL-8 levels are elevated in

patients with radiation pneumonitis, thus, which could be a

potential predictive marker for radiation pneumonitis. Early

intervention of IL-8 may be effective in reducing the occurrence

of radiation pneumonitis. Previous studies have reported that IL-8

has a dose-dependent relationship with AZM. Short-term use of

AZM can lead to an increase in IL-8 while IL-8 levels will decrease

after 5 days of continuous use. The mitogen-activated protein

kinase (MAPK) pathway, extracellular regulated protein kinase

(ERK), c-jun NH2-terminal kinase (JNK), and the p38 MAPK

cascade contribute to IL-8 gene expression (49). Control of IL-8

can be achieved through the use of MAP kinase/ERK kinase

inhibitors, thereby reducing neutrophil chemotaxis (50).
4.2 IL-1b/STAT-1/NF-kB/M2 macrophages
signaling pathway

In the early stage of radiation-induced lung injury, macrophages in

lung tissue showed M1-like phenotype and released pro-inflammatory

factors, such as IL-1b, IL-6, TNF-a, etc., to create an inflammatory

microenvironment. AZM can mediate the STAT-1/NF-kB pathway in

the early stage of RP to polarize macrophages in theM1-like phenotype

to the M2-like phenotype, thereby reducing the degree of

inflammation. The details show in Figure 1. Under the action of

TLR and IL-1, IkB subunit bound to the dimer subunit P50/P65 of NF-
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kB was ubiquitinated and degraded in M1 macrophages. The

combination of IkB subunit with P50/p65 can prevent p50/p65 was

phosphorylated to activate downstream signaling pathway and prevent

its further transcription into the nucleus to bind to the NF-kB DNA

promoter region, which could control the expression of

proinflammatory cytokines and related genes. After the action of

AZM, the IkB subunit will not be degraded by the phosphorylation

of IkKB, and will continue to bind to the NF-kB subunit, preventing

the development of downstream pathways, finally the process inhibits

the release of M1 phenotype inflammatory factors, and promotes M1-

like phenotype macrophages to M2-like phenotype. Based on this, the

early inflammation of radiation pneumonitis can be alleviated (3). The

action of AZMonNF-kB has been reported inmany studies to increase

the credibility of the pathways (51, 52).
4.3 The application of AZM on RILI

AZM’s research on RILI has been reported in the literature. In a

mouse model of radiation pneumonitis, the application of AZM can

significantly reduce the levels of various inflammatory or fibrotic

factors such as IL-1b, IL-6, TNF-a, TGF-b1 in bronchoalveolar

lavage fluid (BAL) and plasma. It also decreased the expression

levels of fibrosis marker mRNAs. AZM has a certain inhibitory

effect on oxidative stress and inflammatory response in the

pathogenesis of radiation pneumonitis. The oxidative damage

marker malondialdehyde (MDA) is also significantly decreased

after the utilization of AZM, and the number of inflammatory

cells in BAL is reduced, and the inflammatory cells in BAL decrease.

Furthermore, researchers found the effect was more significant in

the high-dose group (100 mg/kg/day) (9). The clinical treatment

results of macrolides for radiation pneumonitis show that the

application of macrolides like clarithromycin can reduce the

incidence of any grade and high-grade radiation pneumonitis in

patients, and has a high risk of radiation pneumonitis. Patients with
FIGURE 2

The signaling pathways of AZM on RILI. The left figure shows the changes of macrophage in action of AZM: the IkB subunit will not be degraded by
the phosphorylation of IkKB, and will continue to bind to the NF-kB subunit, preventing the development of downstream pathways, finally the
process inhibits the release of M1 phenotype inflammatory factors, and promotes M1-like phenotype macrophages to M2-like phenotype. The right
figure shows that IL-8 could be regulated by many signaling pathways like ERK1/2/NF-kB, MAPK, JNK etc. LPS, lipopolysaccharide; IFN-g, interferon-
g; TLR, toll-like receptor; MAPK, mitogen-activated protein kinase; JNK, c-Jun N-terminal kinase; IL-8, interleukin; NF-kB, nuclear factor kappa-B;
ERK, extracellular regulated protein kinases; PTK, protein tyrosine kinase; JAK, just another kinase.
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high risks of radiation pneumonitis factors (such as idiopathic

interstitial pneumonia (IIP)) had better treatment effects. The

clinical outcome was observed that IL-8 and total cell counts in

BAL of RP patients treated with clarithromycin were significantly

decreased (7). There is no clinical research report of AZM on

radiation pneumonitis, but based on the therapeutic mechanism of

macrolides and the pathogenesis of RILI, AZM has a great research

value for the treatment of RILI. Despite its promising outcome, the

complications of AZM should be noticed. For example, the use of

AZM should be closely monitored in patients with pre-existing

cardiac problems, arrhythmias, baseline QT prolongation, and

electrolyte disturbances (8).
Conclusion

Pleiotropic mechanisms of azithromycin have raised a large

interest in treating RILI from immune and inflammatory aspects.

However, the immunomodulatory effects of azithromycin are

complex and multifactorial, including affecting macrophage

polarization, neutrophils influx, and cytokines release, and lack of

direct proof for RILI treatment. Whatever, any treatment that

impacts immune function should be carefully applied for patients

with a risk of infection. Immune regulatory function of

azithromycin needs to be further explored in the setting of

RILI, and it is worth noting that basic information of patients

should be reasonably evaluated before utilizing azithromycin in

clinical practice.

Cardiac problems, arrhythmias, baseline QT prolongation, and

electrolyte disturbances (8).
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