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Targeting breast cancer stem
cells directly to treat refractory
breast cancer

Liping Pan1†, Juan Han2† and Ming Lin2*

1Wuhan Center for Clinical Laboratory, Wuhan, China, 2Department of Pediatrics, Union Hospital, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China
For patients with refractory breast cancer (BC), integrative immunotherapies are

emerging as a critical component of treatment. However, many patients remain

unresponsive to treatment or relapse after a period. Different cells andmediators in

the tumor microenvironment (TME) play important roles in the progression of BC,

and cancer stem cells (CSCs) are deemed the main cause of relapse. Their

characteristics depend on their interactions with their microenvironment as well

as on the inducing factors and elements in this environment. Strategies to

modulate the immune system in the TME of BC that are aimed at reversing the

suppressive networks within it and eradicating residual CSCs are, thus, essential for

improving the current therapeutic efficacy of BC. This review focuses on the

development of immunoresistance in BCs and discusses the strategies that can

modulate the immune system and target breast CSCs directly to treat BC including

immunotherapy with immune checkpoint blockades.

KEYWORDS

breast cancer, immunotherapy, cancer stem cells, immunoresistance, oncology
Introduction

Breast cancer (BC) is one of the most commonly diagnosed cancer types among women

globally, with 2.26 million new cases diagnosed in 2020, according to the World Cancer

Research Fund. It is the second leading cause of cancer death in women living in developed

countries. However, with advances in detection and treatment, death rates from BC have

been declining, and more recent advancements in BC immunotherapy have opened new

avenues for reducing the death rate further. BC could be classified into five distinct subtypes:

luminal A, luminal B, basal-like, normal breast-like, and HER-2 enriched (1) and

traditionally, mammography has been used as a gold standard in the screening of BC (2).

Most women with breast cancer in stages I, II, or III are treated with surgery, often followed

by radiation therapy, while for women with stage IV breast cancer, systemic drug therapies

are the main treatments (3). Although treatment with trastuzumab and other human

epidermal growth factor receptor 2 (HER2)-directed therapies are associated with

significant efficacy, only patients with the highest levels of HER2 expression, representing

approximately 20% of patients with BC, have the potential to respond. Moreover, many

patients expressing high levels of HER2 progress or relapse despite receiving the best HER2-
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directed treatments, and thus require novel treatment approaches.

Additionally, for patients with estrogen receptor-positive (ER+) or

progesterone receptor-positive (PR+) BC who are refractory to

endocrine therapy, or patients who have triple negative BC,

targeted therapeutic options remain quite limited. Consequently,

new therapeutic strategies for BC are needed to improve clinical

outcomes for patients with BC, particularly those with advanced

disease. Other immunotherapies are currently being tested in BC

clinical trials and several have already shown impressive results.
Interactions between breast cancer
stem cells and the immune system

The mammary gland stroma and, in particular, immune cells play

a critical role during the organogenesis of the gland (4). Innate

immune cells are important positive regulators of the mammary

gland terminal end bud (TEB) elongation and branching (5).

Macrophages and eosinophils drive TEB invasion within the

mammary fat pad environment, and mast cells help the branching

process by releasing serine-proteases (6). Csf1op/op mice, with a

homozygous Csf1 mutation, have a severe reduction of macrophages.

Mammary stem cell (MaSC) transplantation assays into Csf1op/op

macrophage-depleted mammary fat pads showed a compromised

epithelial regeneration ability, demonstrating the macrophage

supportive function of MaSCs. Additionally, macrophage
Frontiers in Oncology 02
infiltration during mammary gland involution is critical for an

adequate clearing of dead epithelial cells in the involuting gland

and should not affect the stem cell pool for future pregnancy cycles.

Macrophages fluctuate during mammary gland development,

reaching higher levels during lactat ion-involution and

tumorigenesis (7). These mammary gland macrophages secrete

natural interferon alpha (IFN-a) and mediate a differential effect on

luminal progenitor/mature cells compared to the MaSCs. While

MaSCs are protected from the suppressive intrinsic effects of IFN-a
(cell cycle arrest, apoptosis, and differentiation), the luminal cells are

highly sensitive to terminal differentiation upon IFN-a cellular

response (7) (Figure 1). Therefore, the interplay of immune cells

diverges between stem cells and differentiated cells, and this is critical

for mammary gland repopulation.

The adaptive immune system can also regulate luminal

differentiation in the mammary gland (Figure 1).

While multiple studies have revealed the important roles played

by immune cells and other stromal components in the mammary

gland, the MaSC niche remained elusive until very recently. Gli2+

stromal cells have been shown to form a supportive niche for MaSCs,

supplying them with insulin-like growth factor 1 and Wnt2B in

response to the secretion of estrogens and growth hormones (8).

Importantly, another very recent study has identified a macrophageal

niche for MaSCs, wherein DLL1+ MaSCs directly interact with Notch

in macrophages (9). This direct interaction triggers the expression of

Wnt factors in macrophages, which are secreted and feed back to
FIGURE 1

Potential strategy for directly targeting BCSCs to relieve immunoresistance. BCSC, breast cancer stem cells; iPSCs, induced pluripotent stem cells; CSCs,
cancer stem cells; ADC, antibody-drug conjugate; SSEA4, stage-specific embryonic antigen 4.
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MaSCs maintaining their stemness (Figure 1). This further

demonstrates the critical interplay between immune cells and stem

cells during mammary gland development.
Targeting the tumor microenvironment

BC comprises a heterogeneous group of malignancies derived

from the ductal epithelium. The tumor microenvironment (TME) of

BC is a complex combination of different cell types and molecules,

and it is now considered critical in tumor progression and therapeutic

responses (10). Several signal transduction pathways, including Wnt/

b/catenin, hedgehog, Notch, BMPs, and PI3K/Akt/NFkB, are

deregulated in breast cancer stem cells (CSCs). These signaling

pathways stimulate proliferation, migration, invasion, EMT,

chemotherapy, and radiotherapy resistance in CSCs. miRNAs also

through several signaling pathways can regulate the stemness features

and tumorigenesis of CSCs (11). Several studies have demonstrated

that CSCs are at the root of tumorigenesis, metastasis, and recurrence,

and the behavior of CSCs is highly influenced by their

microenvironment (12–16). In recent years, the direct targeting of

CSCs has made significant progress (17–21). However, due to the

heterogeneity of CSCs and the complex interplay between CSCs and

the TME, the translation of this progress into clinical success is still

limited. Improvement in the efficacy of BC therapy therefore depends

on finding strategies to modulate the immune system in the TME that

will reverse or neutralize the suppressive networks within it.
Upregulation of co-inhibitory
molecules

Co-immunosuppressive/co-inhibitory molecules in the TME,

including programmed cell death protein 1 (PD-1), cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) (CD152), lymphocyte-

activation gene 3 (LAG-3), 2B4, CD160, and TIM-3, can dampen the

antitumor mechanism by helping tumor cells escape from host

immune surveillance. A significant proportion of BCs express co-

inhibitory molecules, and the interaction between the inhibitory

receptors and their ligands can be blocked by immune checkpoint

inhibitors. Monoclonal antibodies blocking immune checkpoints

have already shown potential in clinical trials against multiple solid

tumors (22). The United States Food and Drug Administration (FDA)

has approved several related drugs that target CTLA-4, PD-1, and its

ligand PD-L1, for the treatment of advanced melanoma, non-small

cell lung cancer, Hodgkin’s lymphoma, and head and neck cancer

(23–27). However, modest results have been observed in BC, where

tumors are rarely hypermutated.

Surface-accessible CTLA-4 is largely confined to the TME (28),

and its expression is associated with the progression of BC and the

effect of therapy. Several studies have indicated that upregulated

expression of CTLA-4 enhances BC progression and reduces the

therapeutic response (22, 29–31). Ipilimumab was the first immune

checkpoint inhibitor approved by the FDA, in 2011, for the treatment

of late-stage melanoma. It is a monoclonal antibody that attaches to

the CTLA-4 protein receptor to inhibit CTLA-4, and its use has
Frontiers in Oncology 03
improved 1-year overall survival rates from approximately 35% a

decade ago to approximately 95% (32).

It was generally believed that anti-CTLA-4 antibodies caused

tumor rejection by promoting the priming of naïve T cells through

blocking the inhibitory B7-CTLA-4 signaling in peripheral lymphoid

organs. However, this prevailing hypothesis has been questioned in

recent years. One study found that CTLA-4 antibodies induced tumor

rejection by selective depletion of regulatory T cells (Tregs) in the

TME rather than blocking B7-CTLA-4 interaction in the lymphoid

organs (12, 33). It has also been observed that some therapies,

especially immunotherapy, may lead to immunological changes in

the TME (13, 34), and one study found significantly greater protein

expression of PD1, PD-L1, and VISTA in prostate tumors after anti-

CTLA-4 (ipilimumab) therapy (14, 35). Other studies combining the

inhibition of PD-1 and CTLA-4 in solid tumors have highlighted the

potential to further enhance the clinical benefits of monotherapies by

combining agents with synergistic mechanisms of action (36–38).

Preclinical studies also suggest the possibility that radiotherapy can

enhance the efficacy of a CTLA-4 blockade in BC (39). One study

treated murine melanoma tumor models with a CSC-dendritic cell

vaccine, combined with PD-L1 and CTLA-4, and the triple

combination treatment significantly enhanced the eradication of

CSCs (40). Nolan recently reported that dual checkpoint blockade,

anti-PD-1 and anti-CTLA-4, profoundly attenuated the growth of

Brca1-deficient BC tumors in vivo (41). However, due to the

heterogeneity of BC, it has yet to be determined whether different

strategies are required to effectively treat different BC subtypes.

In addition to anti-CTLA-4, anti-PD-1/PD-L1 is another immune

checkpoint inhibitor that has emerged as an important therapeutic

tool in the treatment of cancer in recent years. For the first time

pembrolizumab, an anti-PD-1 monoclonal antibody, has been

approved in cancer treatments that are based on the tumor

biomarkers of high microsatellite instability or mismatch repair

deficiency, regardless of the tumor’s original location (42). Tumors

with these biomarkers are most commonly found in colorectal,

endometrial, and gastrointestinal cancers, but also less commonly

appear in cancers arising in places such as the breast, prostate,

bladder, and thyroid gland (43–49).

Programmed cell death protein–ligand 1, which is induced in the

TME in response to inflammatory signals, is expressed and

upregulated in some subtypes of BC, such as triple-negative breast

cancer (TNBC), basal BC, and HER2-positive BC (47–51). High PD-

L1 expression levels are associated with negative prognostic features

such as large tumor size, high grade, lack of estrogen receptor,

progesterone receptor, and HER2, and a high proliferative rate (52).

However, poor prognosis malignancies with PD-L1 expression may

mark cancers as susceptible to PD-1/PD-L1 inhibitor therapies (53–

55). Several studies have reported that PD-L1 expression is

significantly associated with a better disease-free survival rate in

BCs (56, 57). Plasticity of CSCs and heterogeneity in PD-L1

expression profile are factors influencing responses to therapy.

Besides, a positive link between dietary lipids with PD-L1

upregulation and increased proportion of CSCs is indicative of the

necessity of modifying patient intakes for strengthening the power of

immune system against cancer and improving the efficacy of

immunotherapy (58). In view of this, immunotherapies combined

with PD-1/PD-L1 antibodies have become a potentially curative
frontiersin.org

https://doi.org/10.3389/fonc.2023.981247
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pan et al. 10.3389/fonc.2023.981247
treatment option for advanced BC. The synergistic effect of anti-PD-1

agent on trastuzumab therapy has been demonstrated in a HER2-

positive BC mouse model (59), and another study found that the

combination of ado-trastuzumab emtansine (T-DM1) and anti-

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) or anti-PD-1

antibodies elicited responses in HER2+ BC xenografts that had

previously been resistant to T-DM1 monotherapy (60). While these

studies have suggested that a subgroup of patients with BC might

benefit from immunotherapy targeting PD-1 and/or PD-L1, the

expression of PD-1 on the T cells in the TME and that of PD-L1

on CSCs is not yet well-defined.
Tumor infiltrating lymphocytes

Tumor infiltrating lymphocytes (TILs) within the tumor

environment represent the formation of an immune response to the

tumor, and TILs from a patient can be manipulated to be used as

treatment for that patient. A previous study demonstrated that the use

of a lower dose of interleukin 2 (IL-2) in the context of adoptive cell

therapy with TILs was well tolerated and clinically effective in

metastatic melanoma patients (23, 61).

There is an accumulation of evidence suggesting that TILs present

in BC prior to treatment can predict a positive response to therapy

and are associated with an improved prognosis (7, 25–28, 62–64). A

meta-analysis study evaluating the predictive role of TILs with respect

to neoadjuvant chemotherapy in BC showed that a 10% increment of

TILs in stomal or intratumoral sites in a pre-treatment biopsy

indicated an increase in the pathologic complete response (pCR)

rate (65). Furthermore, several studies reported that lymphocyte

predominant BC (involving more than 50% or 60% of lymphocytic

infiltration) was associated with an exceptionally high rate of pCR in

patients, compared with those without any tumor lymphocytic

infiltration (29, 30, 66, 67). Specifically, in a univariate analysis,

higher levels of CD8+, CD4+ T, and forkhead box P3+ (FOXP3+)

T lymphocytes in the pre-treatment biopsy were correlated with the

pCR rate, while CD3+ and lymphocytes in the pre-treatment biopsy

were not predictive (65). The tumor cell compartment and the

surrounding stromal microenvironment is a subject of continuous

modification across the different stages of cancer progression. It is

well-known that the microenvironment will change after

chemotherapy, as will the TILs subset. It was found that CD3+ and

CD8+ infiltrates remained stable during neoadjuvant chemotherapy,

while FOXP3+ infiltrate strongly declined (68). The above-mentioned

studies indicate that a particular combination of TIL subsets before

and after chemotherapy may be a more sensitive predictor for

recurrence and survival than a single T lymphocyte type, but more

studies are needed to confirm this.

Different subtypes of BC have different levels of TIL infiltrate, and

the tumor mutational burden and the presence of TILs are higher

among TNBC and HER2+ BCs than other subtypes (69), which

clearly correlates with clinical outcomes. In the advanced

trastuzumab-resistant HER2-positive BC (known as PANACEA)

phase Ib/II study, the efficacy of anti-PD-1 pembrolizumab in

combination with trastuzumab was evaluated in metastatic HER2+

BC patients. The results showed that the vast majority of patients had

low numbers of TILs in the metastatic niche, even though those with
Frontiers in Oncology 04
TILs above 5% in the tumor sample were associated with objective

response rates (ORR) of 39% vs. 5% in those patients with lower TILs

(<5%) (70). In contrast, the pCR of patients with low TILs (0–10%) in

TNBC and HER2+ BC was not as good as that of patients who

manifested high TIL levels at diagnosis (22, 71), suggesting that

treatment using these TILs may be an option for these patients.

Furthermore, Nadire et al. reported that compared to the HER2-

negative BC stem cells, HER2+/CD44+/CD24−/low cells showed a

more aggressive phenotype and in vivo tumorigenesis with an

enhanced resistance to radiation, indicating that HER2-expressing

breast cancer stem cells (BCSCs) may be effective targets for the

treatment of recurrent tumors (72). The increased recruitment of

TILs and their intratumoral expansion, with the combination of IL-2

variant targeting fibroblast activation protein-alpha with anti-HER2

drugs, may help to better position immunotherapy in HER2+ BC in

the future. Furthermore, the use of immune-modulating therapeutic

approaches to treat other BC subtypes warrants further investigation,

and the role that TILs can play is a promising one.
Target regulatory T cells

Regulatory T cells represent only a minor subset of CD4+ T cells

and appear to play an important role in cancer immunology (73).

Previous work has clearly established that Tregs are increased in most

human solid tumors, and the accumulation of Tregs in the TME may

prevent the protective antitumor immunity of immune cells and the

optimal functioning of the TME. More importantly, Tregs at a tumor

site overexpress inhibitory receptors CTLA-4, PD-1, TIM-3, and

LAG-3 and up-regulate expression of TGF-b-associated LAP and

GARP molecules and NRP-1 (32, 74), further enhancing their

capability to suppress antitumor functions and, thus, contributing

to tumor escape from the host immune system.

As an important component of the TME, Tregs are involved in

regulating the stemness of tumor cells, and they are associated with

CSCs in BC. One study found that CD4+ CD25+ Tregs increased the

aldehyde dehydrogenase (ALDH)+ population of mouse BC cells,

promoted their sphere formation, and enhanced the expression of

stemness gene sex determining region Y-box 2 (Sox2). On the other

hand, Sox2-overexpression tumor cells activated NF-kB-CCL1
signaling to recruit Tregs (75). Another study reported that

Oct4high breast CSCs could interact with MSCs to polarize the T-

cell response, in which CD4+, CD25+, and FOXP3+ Tregs increased

while Th17 decreased. This interaction required C-X-C chemokine

receptor type 4 and connexin 43-dependant gap junctional

intercellular communication (GJIC). Since GJIC between CSCs and

MSCs allows the CSCs to maintain dormancy (76), the interaction

will allow the cancer cells to survive and establish dormancy, which

may be the main reason for recurrence (77). These findings reveal the

functional interaction between Tregs and CSCs and indicate that

targeting the communication between them is a promising strategy in

BC therapy.

Another recent study analyzed the features of 100 patients with

untreated BC and reported that FOXP3+ Treg cells accumulating in

tumor sites were associated with aggressive BC phenotypes, such as

TNBC, and also correlated with higher grade lesions across all subsets

(78). All the relevant studies have indicated that the elimination or
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silencing of Tregs could be a desirable therapeutic objective for BC

and that surface molecules expressed by Tregs can be specifically

targeted by (daclizumab: anti-CD25 Ab) Abs or pharmacological

inhibitors. To date, a variety of agents, including Abs and IL-2 fusion

toxins such as denileukin diftitox (Ontak), or drugs, such as

cyclophosphamide or tyrosine kinase inhibitors (sunitinib), have

been tested in preclinical in vitro studies with human cells (79–84).

Some studies reported the efficiency in depleting Tregs and the

tolerance of the above drugs in patients with cancer, and others

reported a boosted immune response (4, 5). A clinical trial of

daclizumab was performed in patients with metastatic BC, in

combination with an experimental cancer vaccine, and robust CD8

+ and CD4+ T cell priming and the boosting of vaccine antigens were

observed (6). However, to date, obvious clinical benefits have not been

observed in patients who received Tregs depletion treatment. This

may be due to the inadequate depletion efficacy of the drugs, the

innate resistance of Treg to certain drugs, the selective sensitivity of

some but not all Treg subsets to the drugs being used, or the ability of

the host to rapidly re-populate the depleted Treg. More selective

strategies that eliminate only those that mediate the suppression of

antitumor immunity are needed. In 2016, Plitas et al. found that

CCR8 was differentially expressed by the entire tumor–resident Treg

cell population, which indicated that targeting CCR8 may be a

promising means by which to selectively deplete Tregs in the TME,

although the role of CCR8 in Treg function remains unclear (78).

More markers specific to human immunosuppressive Tregs are yet to

be defined.
Targeting breast cancer stem
cells directly

Preclinical and clinical research has indicated that conventional

chemotherapy and endocrine treatment lead to the significant

enrichment of BCSCs and eventually contribute to drug resistance

(10, 12, 13). Though the exact origin of BCSCs on five molecular

subtypes of BC determined by gene expression profiling has stirred

much controversy (14), the immunoresistance imposed by BCSCs has

undoubtedly been one of the major mechanisms responsible for

treatment failure. It would be a highly promising strategy to

specifically target BCSCs with immunotherapy to lessen

immunoresistance and eradicate the roots of BC. The next

generation agents for this cellular compartment of BC are being

developed to directly target specific antigen, protein, and immune

inhibitory molecules that govern the stemness as well as the fate of

BCSCs (summarized in Figure 1).
Tumor associated antigen-
targeted vaccines

As the most potent antigen-presenting cells, dendritic cells (DCs) are

widely used as tools for anticancer vaccination. For example, DCs pulsed

with CD44 peptide effectively killed human BCSCs in vitro by enhancing

T cell stimulation and generating potent cytotoxic T lymphocytes (CTL)

(15). Since CSC lysates contain all the antigens responsible for stemness,
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theoretically, it is an ideal antigen source for vaccine generation. In 2012,

a CSC lysate-DC vaccine was first reported to induce significant

protective immunity in melanoma and head and neck cancer in vivo

(16). Afterwards, Pham et al. demonstrated that BCSC lysate-pulsed DC

vaccine lengthened the survival of BC humanized mice (17). This is

supported by the unpublished data of the authors, which showed that

4T1 ALDHhigh BCSC lysate-DC vaccine enhanced the killing capacity of

CTLs with regard to ALDHhigh 4T1 BCSCs in vitro and reduced lung

metastasis in vivo. These results suggested its efficacy should be

investigated in a clinical trial. A phase I/II clinical trial in China

evaluated the safety of ALDHhigh CSCs lysates-DC vaccine in

metastatic BC (NCT02063893), but the result has still not been published.

In addition to ALDH being a CSC marker, inhibiting ALDH activity

was found to block irradiation-induced stemness and decrease breast

tumor growth and metastasis (18), which provided a rationale for

utilizing it as a target for immunotherapy. The stimulation of CD8+ T

cells with ALDH1A1 peptide-pulsed APC recognized and eliminated the

ALDHhigh CSCs and inhibited tumor growth and metastases in various

solid tumors, including BC (19). The authors’ ongoing study shows that

an ALDH 1A1+1A3 peptide-DC vaccine elicits significantly stronger T

cell and B cell immune responses against the tumor, compared with an

ALDH1A1 or ALDH1A3 peptide-DC vaccine alone.

Novel vaccine carriers are now emerging, and, in one study, stage-

specific embryonic antigen 4 (SSEA4) was specifically overexpressed

on BC cells and BCSCs, and carbohydrate-based and SSEA4-targeted

vaccines combining a glycolipid adjuvant showed induced

immunoglobulin G (IgG) antibodies specifically bound to SSEA4

and its tetrasaccharide epitope in BC (20). It is widely acknowledged

that induced pluripotent stem cells (iPSCs) can be used as

immunization agents to target CSCs by promoting an anti-tumor

response due to overlapping antigens between iPSCs and cancer cells.

A recent report showed that an autologous iPSC/oligodeoxynucleotide

vaccine mounted strong B and T Cell responses against epitopes and

prevented tumor growth in syngeneic murine DB7 BC, mesothelioma,

and melanoma models (21), indicating that a CSC vaccine could be

used for cancer treatment.
Human epidermal growth factor
receptor 2-targeted immunotherapy

A significant body of evidence has accumulated to support the notion

that HER2 drives tumorigenesis, invasion, and treatment resistance by

regulating BCSCs, even in BCs that do not display HER2 gene

amplification (22–27) Thus, HER2-targeted immunotherapy can

contribute to therapeutic efficacy by directly eliminating BCSCs,

especially in TNBC.

More than 60 clinical trials have focused on a HER2-targeted

vaccine. The most studied immunogenic peptide is E75 (nelipepimut-

S), an HLA-A2- and HLA-A3-binding 9 amino acid peptide derived

from HER2. It has been used in multiple vaccine formulations by

means of loading it on to autologous DCs, or embedding it in longer

peptides capable of enhancing T-cell responses, and combining it with

various immunoadjuvants (28). Early in 2000, in a pilot study,

Brossart et al. suggested that E75-pulsed DCs can induce antigen-

specific CTL responses in heavily pretreated patients with BC (29).
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The final report from a phase I/II clinical trial of the E75 vaccine

showed that it statistically increased the 5-year disease-free survival in

patients with BC who had completed a standard-of-care therapy (n =

108) compared with those who did not receive a vaccine (n = 79)

(89.7% vs. 80.2%, P = 0.08), while local and systemic toxicities were

mild (28). Unlike the E75-pulsed DC vaccine, another HER2-derived

peptide (AE37) pulsed-DC vaccine aimed to primarily elicit the CD4+

T cell response, not the CD8+ T cell response, and was shown to be

safe and capable of generating durable immune responses and

ultimately preventing BC recurrence in a clinical trial (30). Apart

from the use of vaccines in the adjuvant and metastatic setting, it

would be feasible to assess the efficacy of a vaccine as a neoadjuvant

treatment when it is administered prior to surgery. Sharma et al.

demonstrated that 90% (9/10) of patients with breast ductal

carcinoma in situ with HER2-positive subtypes demonstrated a

clinical response to the 6 HER2/neu MHC class II promiscuous-

binding peptide-pulsed DC vaccine, accompanied by a decline and/or

eradication of HER2/neu expression in some patients (31). Of these

clinical trials involving HER2-targeted vaccines, only one three-phase

trial related to E75 has been completed, but the results have not been

published yet. Furthermore, as a new vaccine carrier, the adeno-

associated virus expressing specific HER2-peptide delayed the growth

of the tumor in D2F2/E2 bearing BALB/C mice by establishing an

active immune response (22). And HER2- virus-like particle vaccine

showed promise as a new cost-effective modality for prevention and

treatment of HER2-positive cancer by reducing spontaneous

development of mammary carcinomas by 50%-100% in human

HER2 transgenic mice and inhibited the growth of HER2-positive

tumors implanted in wild-type mice (85).

Despite the fact that trastuzumab-based treatment has attractive

clinical benefits, in one study, 70% of HER2-positive BCs showed

primary resistance to trastuzumab, with the majority of patients

developing secondary resistance during 1–2 years of treatment (32),

which promoted the development and approval of an antibody-drug

conjugate (ADC) and/or anti-HER2 bispecific antibody (HER2Bi), such

as trastuzumab-emtansine. MEDI4276 is an investigational ADC being

developed by MedImmune, and it is characterized by the anti-HER2

antibody backbone conjugated with the cytotoxic anti-microtubule agent

tubulysin. The unpublished data shows that MEDI4276 can inhibit

D2F2/E2 tumor growth and reduce the number of HER2-positive cells

and ALDHhigh CSCs by inducing significant host immune responses of

CD3+ and CD19+ TILs in mouse breast tumor D2/F2 and TNBC 4T1,

with enforced expression of HER2, D2F2/E2, and HER2-4T1. Novel

HER2Bis, targeting the HER2/Her-3 or CD3/HER2, are being developed

with encouraging preclinical or early phase clinical results (32). Fox

example, MM-111, a bispecific HER2/Her-3 antibody fusion protein, has

been developed to overcome the Her-3-mediated resistance to currently

existing anti-HER2 therapies (NCT01304784). Moreover, a dynamic

model of HER2 status was developed for the detection of druggable

targets that may counteract resistance to HER2-targeted therapy due to

HER2 loss and have identified PDGFR-B as a possible target and proved

the ability of sunitinib in delaying growth of tumors that evolved from

HER2-positive to HER2-negative status (86).

Adoptive T-cell therapy has been one of the most exciting fields of

immunotherapy in recent years. Lum et al. have done a great deal of

work on activated T cells (ATC) armed with CD3 and HER2-targeted

bispecific antibody and found they exhibited high levels of specific
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cytotoxicity in breast and prostate cancer. A phase I trial by the same

team demonstrated that eight infusions of HER2Bi-armed ATC, in

combination with low dose IL-2 and granulocyte-macrophage

colony-stimulating factor, induced anti-tumor responses and

increases in Th1 cytokines and IL-12 serum levels, without dose-

limiting toxicities, in patients with HER2-positive and negative BC

(33). The repeated infusions of armed ATCmay help to overcome the

tumor immunosuppressive factors and recruit endogenous immune

cells leading to in situ vaccination (33). Moreover, one ongoing study

by the authors has indicated that mouse tumor-draining lymph node

T cells armed with anti-mCD3/anti-m HER2 bi-specific antibody may

selectively target HER2-positive BCSCs and, thus, prevent metastasis

in a mouse 4T1 xenograft that does not have HER2 gene

amplification, but they have failed to inhibit the HER2-negative

primary tumor. Interestingly, such T cells have prevented

metastasis and significantly inhibited local tumor growth by

targeting both CSCs and non-CSCs in a mouse HER2-4T1 model.

A phase II study is estimating the effect of HER2Bi-armed ATC in

women with stage II–III TNBC without a complete pathologic

response who are receiving a regimen of neoadjuvant

chemotherapy, surgery, and/or irradiation (NCT01147016).

Compared with all above HER-targeted therapy, M.Moasser

believed that to inactivate the driving HER2 oncogene, remains a

holy grail with a potential that greatly exceeds all current HER2

targeting therapeutics (87).
Immune checkpoint inhibitors and
other new emerging antigens

CSCs showed a high expression of PD-L1 in BC, colon cancer,

and glioma (34, 35), and there was a bidirectional effect between the

epithelial-mesenchymal transition status and PD-L1 expression,

especially in cells in the claudin-low subtype of BC (36). Almozyan

et al. found a novel role for PD-L1 in sustaining the stemness of BC

cells in the most immunocompromised mouse model (NOD/SCID/

IL-2R-/-) (37). Another unpublished study by the authors shows that

CSCs can both directly and indirectly inhibit B cell function through

the PD-L1/PD-1 axis on both B cells and Th cells, and anti-PD-L1

could paralyze the suppression of BCSCs on the IgG production

secreted by 4T1 tumor reactive B cells. These results suggest that the

PD-1-PD-L1/PD-L2 signaling axis plays an important role in CSCs-

driven tumor immune resistance. Thus, immunologically targeting

CSCs while simultaneously blocking PD-1/PD-L1 and/or CTLA-4-

mediated immune suppression may significantly enhance the

outcome of current cancer immunotherapies (38).

Integrin b4 is involved in tumor formation, invasion, and

metastasis in BC, and it could be a potential antigen for designing

novel immunotherapies. One more ongoing study by the authors has

shown that an integrin b4 protein-pulsed DC vaccine can significantly

kill ALDHhighb4high 4T1 CSCs and inhibit tumor growth in a Balb/c

mouse 4T1 xenograft model. In addition, CD3 and integrin b4-
targeted bi-specific antibody have demonstrated a significant anti-

tumor effect on this 4T1 model. Transcription factors Oct-4, Sox2,

and nanog are all key regulators of embryonic stem cell maintenance.

Sox2 was identified as a novel antigen in glioma, and targeting a Sox2

vaccine successfully improved glioma T-cell-based immunotherapy
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(36). Furthermore, Sox2, Oct-4, and nanog, mediating tumorigenesis

and metastasis, were upregulated in tamoxifen‐resistant cells and in

patients who did not respond to tamoxifen treatment (40–42).

Thus, the next generation immunotherapies targeting BCSCs

transcription factors, such as vaccines and specific antibodies,

represent a promising hope with regard to immunosuppression and

overcoming treatment resistance in BC.
Opportunities to further boost the anti-
breast cancer immune response

Although stunning successes with cancer immunotherapy have

been achieved with respect to melanoma, lung cancer, and other

malignancies, only modest results have been observed for the

relatively immunological cold breast tumors. The ORRs of PD-L1

or PD-1 monoclonal antibody treatment are in the 12%–19% range

(10, 12, 13), while CTLA-4 blockade appears minimally active (14)

Therefore, advances in immune treatment strategies that can further

boost the anti-BC immune response by altering the immune-

suppressive TME are needed.
Combined immunotherapy

Although clinical trials have validatedmmune-oncology as a new pillar

of anticancer therapy, there is still tremendous potential for synergistic

combinations of immunotherapy agents and for combining

immunotherapy agents with conventional cancer treatments.

The combining blockade of CTLA-4 and PD-1/PD-L1 is synergistic

and is of clinical benefit, and it may serve as a paradigm to guide future

approaches to immune-oncology combination therapy. Meanwhile,

conventional cancer therapies, such as chemotherapy and radiotherapy,

and targeted therapy can not only kill tumor cells, but they also have an

effect on the different components of the immune system, suggesting a

potentially synergistic benefit of combining these therapies with

immunotherapy (15, 16). In a BRCA1-mutant BC mice model, Nolan

et al. found that cisplatin was required for a treatment response to

checkpoint blockade, since no attenuation in tumor growth was observed

with combined anti–PD-1 and anti-CTLA4 therapy alone (41). Very

recently, a phase III study of anti-PD-L1 (atezolizumab) and nab-

paclitaxel in advanced triple-negative BC showed that, among patients

with PD-L1 positive tumors, progression-free survival was statistically

significantly longer in patients treated with the combination of

atezolizumab + nab-paclitaxel compared with those treated with a

placebo + nab-paclitaxel (17). An FDA decision regarding the approval

of combination therapy for certain types of BC is anticipated by 12March

2019. If approved, the chemo combination would become the first cancer

immunotherapy regimen indicated for the treatment of PD-L1-positive

metastatic triple-negative BC.

The use of vaccines is an attractive strategy for the prevention of

BC relapse in patients without measurable cancer but who have a high
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chance of recurrence. Two types of vaccine strategies are being tested

in patients with BC to prevent recurrence: cell-based vaccines and BC

antigen-specific vaccines. However, two vaccination strategies (HER2

peptides and sialyl-Tn- keyhole limpet haemocyanin) that showed

promise in the early phase of testing disappointingly failed to meet the

primary clinical endpoints in randomized studies (17, 18). Strategies

combining checkpoint blocking antibodies and vaccination have a

high potential, but although impressive clinical results have been

obtained with adoptive cell therapy in hematological malignancies,

progress in using chimeric antigen receptor-T cells to treat BC has

been limited.
Conclusion

This review focuses on the development of immunoresistance in

BCs and discusses immunotherapies to treat refractory BC by using

strategies that directly modulate the immune system and BCSCs. Such

strategies include the combination of two checkpoint blocking

antibodies, the addition of checkpoint blocking antibodies to

traditional chemotherapy or radiotherapy, or vaccines.
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