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Background: Colon cancer is one of the common cancers, and its prognosis

remains to be improved. The role of cuproptosis as a newly discovered form of

cell death in the development of colon cancer has not been determined.

Methods: Based on 983 colon cancer samples in the TCGA database and the

GEO database, we performed a comprehensive genomic analysis to explore the

molecular subtypes mediated by cuproptosis-related genes. Single-sample gene

set enrichment analysis (ssGSEA) was utilized to quantify the relative abundance

of each cell infiltrate in the TME. A risk score was established using least absolute

shrinkage and selection operator regression (LASSO), and its predictive ability for

colon cancer patients was verified to explore its guiding value for treatment.

Results: We identified two distinct cuproptosis-related molecular subtypes in

colon cancer. These two distinct molecular subtypes can predict

clinicopathological features, prognosis, TME activity, and immune-infiltrating

cells. A risk model was developed and its predictive ability was verified.

Compared with patients in the high-risk score group, patients in the low-risk

score group were characterized by lower tumor microenvironment score, higher

stem cell activity, lower tumor mutational burden, lower microsatellite instability,

higher sensitivity to chemotherapeutics, and better immunotherapy efficacy.

Conclusion: This study contributes to understanding the molecular

characteristics of cuproptosis-related subtypes. We demonstrate a critical role

for cuproptosis genes in colon cancer s in the TME. Our study contributes to the

development of individualized treatment regimens for colon cancer.

KEYWORDS

colon cancer, cuproptosis, gene signature, molecular subtyping, immunity therapy,
tumor microenvironment
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1 Introduction

Colon cancer is the third most common type in the world and

the second leading cause of cancer-related death (1). Among all

pathological subtypes, more than 90% of colorectal cancers are

adenocarcinomas derived from colorectal mucosal epithelial cells.

Cancer classification, prognosis prediction and treatment decisions

by tumor, lymph node, metastasis (TNM) staging system and

degree of histological differentiation have been frequently used.

Because of the high degree of heterogeneity found in colon cancer,

prognosis may vary significantly between patients despite similar

clinical features. At present, the curative effect of surgical resection

of the primary tumor combined with adjuvant chemotherapy for

colon cancer patients through the TNM staging system is not

satisfactory (2, 3). In recent years, with the development of cancer

genomics, the classification of colon cancer has shifted from

traditional histological subtypes to molecular subtypes. Guinney

et al. divided colorectal cancer into four molecular subtypes

including microsatellite unstable immune subtype, typical

subtype, metabolic subtype and mesenchymal subtype through

gene sequencing, and clarified the relationship between different

subtypes and chemoresistance from a molecular perspective (4).

There are also studies that type colon cancer by genetics. Zhu et al.

divided colon cancer into three subtypes by autophagy-related

genes, and demonstrated differences in prognosis and

immunotherapy of different subtypes (5). Although these studies

have deepened the understanding of colon cancer molecular

subtypes, prediction of colon cancer patient prognosis based on

these molecular subtypes remains less than satisfactory. Therefore,

in order to more accurately stratify patients, it is necessary to

develop new molecular subtypes. As a newly discovered way of cell

death, many studies have shown that cuproptosis plays an

important role in the regulation of cell death, which provides a

new direction for the clinical treatment of colon cancer.

Cuproptosis is the direct binding of copper ions to fatty acylated

components of the tricarboxylic acid cycle pathway, resulting in

abnormal aggregation of fatty acylated proteins and loss of iron-

sulfur cluster proteins, leading to proteotoxic stress responses and

ultimately cell death (6). Copper ions and mitochondrial respiration

in colon cancer have been found to be associated with various

biological processes such as proliferation, drug resistance, and

malignant transformation. Fat et al. found that elevated copper

levels can induce oxidative stress in colon cancer cells and lead to

cell apoptosis (7). Reprogramming of glucose metabolism is

characteristic of cancer cells. Reduced mitochondrial respiration

and enhanced glycolysis typically promote metastasis and inhibit

apoptosis (8). In colon cancer, attenuated glycolysis and enhanced

mitochondrial respiration inhibit cell growth (9). Therefore, we

believe that the changes of intracellular copper ions in colon cancer

and the cuproptosis pathways are of great significance for studying

the prognosis of colon cancer patients and developing novel

therapeutic targets.

In this study, we revealed the overall changes of cuproptosis-

related genes (CRGs) at the transcriptional and genetic levels by

downloading the transcriptional census data of colon cancer
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patients from TCGA database and GEO database, and then

assessed the expression profiles of CRGs. First, patients were

separated into two separate subtypes based on CRGs. Patients

were also classified into two genotypes based on the DEG

between the two subtypes. We further developed a scoring system

to predict overall survival (OS) and describe the immune status,

drug susceptibility, and immunotherapy effect of colon cancer.
2 Materials and methods

2.1 Data source

The gene expression profiling data of 437 COAD samples and

corresponding clinical information were downloaded from TCGA

database (https://portal.gdc.cancer.gov/). Gene expression profiling

data included 39 normal samples and 398 tumor samples. Clinical

data included age, gender, histological grade, survival time and

pathological stage (Table 1). The GSE39582 dataset was

downloaded from the Gene Expression Omnibus (GEO), which

includes gene expression information and clinical information for

585 patients (GEO, https://www.ncbi.nlm.nih.gov/geo/). FPKM

values for TCGA colon cancer were converted to transcripts per
TABLE 1 The clinical characteristics of colon cancer patients.

Characteristics Total sample

TCGA cohort(N=385) GSE39582(N=556)

Age

<=60 112 157

>60 273 399

Gender

male 205 307

female 180 249

AJCC Stage

I 66 32

II 151 258

III 103 203

IV 54 59

unknown 11 4

T stage

T1 9 11

T2 68 44

T3 263 360

T4 44 117

T0/Tis 1 4

unknown 0 20

(Continued)
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kilobase million (TPM), as this was considered to be the same

transcript as the microarray in the GEO dataset (10, 11). The two

datasets were combined for subsequent analysis, and batch effects

were eliminated by applying the “Combat” algorithm.
2.2 Gene mutation analysis

Somatic mutation data were downloaded from the TCGA

database and visualized by the “maftools” package in R language.

The waterfall plot shows mutation information for each gene. In the

upper right corner of the waterfall chart, the different mutation

types are marked with different colors.
2.3 Identification of differentially expressed
cuproptosis-related genes

Gene difference analysis was performed using the “limma”

package on the R language. False discovery rate (FDR) <0.05 and

|log2 fold change (log2FC)|≥0.585 were set as cutoff values for
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screening DEGs. The intersection of DEGs and cuproptosis-related

genes was considered as a group of significantly differentially

expressed CRGs.
2.4 Consensus clustering analysis of CRGs

Nineteen genes associated with cuproptosis were identified from

previous studies. Consistent unsupervised clustering analysis was

performed using the R software package “ConsensusClusterPlus” to

classify patients into distinct molecular subtypes based on CRG

expression. And 1000 cycles were carried out to ensure the stability

of the classification (12). This clustering is performed based on the

following criteria: First, the cumulative distribution function (CDF)

curve grows gradually and smoothly. Second, no group has a small

sample size. Then principal component analysis (PCA) based on hub

genes was performed using the “ggplot2” package, and two-

dimensional PCA plots were drawn. Finally, after clustering, intra-

group correlations increase and inter-group correlations decrease. To

investigate the differences of CRGs in biological processes. Gene Set

Variation Analysis (GSVA) was performed using the hallmark gene

set (c2.cp.kegg.v7.2) in the MSigDB database.
2.5 Construction and validation of a
prognostic model based on
cuproptosis-related genes

The prognostic model was constructed based on the target

dataset and randomly divided into a training cohort and a

validation cohort. The initial screen of CRG-related genes

associated with prognosis was further narrowed by least absolute

shrinkage and selection operator (LASSO) analysis using the glmnet

R package. The constructed prognostic model can be simply

expressed as: risk score=∑(b1*Exp1+b2* Exp2 +b3* Exp3+⋯+bn*
Expn) (b: coefficients, Exp: gene expression level), where X

represents the expression level of each CRGs, and Coef represents

the coefficient of relative prognostic CRGs in the multivariate Cox

regression model. From the prognostic model, a prognostic risk

score can be calculated for each colon cancer patient, and

moderation is defined as the boundary between the high- and

low-risk groups. Patients with risk scores above the median were

classified as high risk. Furthermore, the predictive performance of

the constructed predictive model is validated by a validation cohort.
2.6 Tumor microenvironment, stem cell
characteristics and drug
susceptibility analysis.

Infiltration levels of immune cells and stromal cells in different

tumor tissues were analyzed by immune score and stromal score.

Spearman’s correlation was used to test the correlation between risk

scores and these scores. Associations between risk scores and

immune infiltrating subtypes were examined by 2-way ANOVA

analysis. Tumor stem cell signatures extracted from the
TABLE 1 Continued

Characteristics Total sample

TCGA cohort(N=385) GSE39582(N=556)

N

N0 231 295

N1 88 131

N2 66 98

N3 0 6

unknown 0 26

M stage

M0 286 474

M1 54 30

unknown 45 22

Fustat

alive 306 369

dead 79 187

Chemotherapy adjuvant

Y NA 240

N NA 316

Chemotherapy adjuvant type

5FU NA 82

FOLFIRI NA 12

FOLFOX NA 77

unknown NA 69
AJCC, American Joint Committee on Cancer.
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transcriptome and epigenetics of TCGA tumor samples were used

to measure stem cell-like characteristics of tumors. The Spearman

correlation test was used to analyze the correlation between tumor

stemness and risk score. In order to explore the difference in the

treatment effect of chemotherapeutic drugs in the two groups of

patients, we calculated the half-inhibitory concentration (IC50)

value of the commonly used chemotherapeutic drugs using the

“pRRophetic” software package.
2.7 Immunotherapy cohort collection

Imvigor 210 (http://research-pub.gene.com/IMvigor

210CoreBiology) is a cohort of urothelial cancer patients treated

with PD-L1 (12). It has relatively complete survival information,

follow-up information and immunotherapy effective information.

Excluding samples with incomplete clinical data, 298 samples were

finally obtained for follow-up analysis. Raw count data were

normalized using the DEseq2 R package. In addition, differential

analysis of immune checkpoints in high and low risk groups

were performed.
2.8 Statistical analysis

Statistical analysis Wilcoxon test was used to compare DEGs of

tumor tissue and normal samples. Survival and survminer packages

in R language were used for survival analysis. The chi-square test

was used to compare different proportions. Comparison of ssGSEA

scores of immune cells or immune pathways between high-risk and
Frontiers in Oncology 04
low-risk groups was performed by the Mann-Whitney test.

Correlations of prognostic model risk scores or prognostic gene

expression levels with stem cell scores, stromal scores, immune

scores, and drug sensitivity were detected by Spearman or Pearson

correlation analysis. Plots were created using the R software

(version 4.0) of the packages graph, ggplot2, pheatmap, ggpubr

and corrplot. In all statistical results, P<0.05 indicates

statistical significance.
3 Result

3.1 Genetic and transcriptional alterations
of CRGs in colon cancer

A total of 19 CRGs were included in this study. By summarizing

the somatic mutation frequency of 19 CRGs, we found that ATPA7

and NLRP3 had the highest mutation frequency in colon cancer

(5%; Figure 1A). Next, we investigated somatic copy number

alterations in these CRGs. We further compared mRNA

expression levels and found copy number alterations in all 19

CRGs. Among them, ATP7B, MTF1, and NLRP3 had extensive

copy number variation (CNV) increases, while the remaining CRGs

showed CNV decreases (Figure 1B). Figure 1C shows the location of

CNV alterations in GRGs on their respective chromosomes.

Expression levels of most CRGs were found to be negatively

correlated with changes in CNVs. This suggests that CNV may be

associated with regulating the mRNA expression of CRGs. By

analyzing the expression of CRGs between tumor samples and

control samples, we found significant differences in the expression
D

A B

C

FIGURE 1

Genetic and transcriptional alterations in cuproptosis-related genes in colon cancer. (A) Mutation frequencies of 19 cuproptosis-related genes in
colon cancer patients. (B) Frequency of CNV changes in cuproptosis-related genes. (C) Location of CNV alterations in cuproptosis-related genes on
23 chromosomes. (D) Expression distribution of 19 cuproptosis-related genes in normal and colon cancer tissues *p<0.05, ***p<0.001.
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levels of CRGs, suggesting a potential role of CRGs in colon

carcinogenesis (Figure 1D).
3.2 Identification of cuproptosis subtypes
in colon cancer

To fully understand the expression patterns of CRGs in

tumorigenesis, we included 967 patients in TCGA and GEO into

our study for further analysis. Results of Kaplan–Meier analysis

showed the prognostic value of CRGs in colon cancer patients

(Figures S1, S2). Next, the 17 CRGs were constructed into a network

graph, enabling a comprehensive analysis of gene interactions and

interconnections and their impact on the prognosis of colon cancer

patients (Figure 2A). To further explore the expression

characteristics of CRGs in colon cancer, we used a consensus

clustering algorithm to classify colon cancer patients based on the

expression profiles of 17 prognosis-related CRGs (Figure S3). Our

results indicated that k = 2 appeared to be the best choice for

dividing the entire cohort into A subtype (n = 608) and B subtype

(n = 359) (Figure 2B). PCA analysis revealed significant differences

in the transcriptional profiles of CRGs between the two isoforms

(Figure 2C). Kaplan–Meier curves showed that patients with

subtype B had a longer recurrence free survival (RFS) than

patients with subtype A (p = 0.02; Figure 2D). Furthermore,

comparing the clinicopathological features of different subtypes of

colon cancer revealed significant differences in CRG expression and

clinicopathological features (Figure 2E). This further demonstrates

that CRGs can be used to distinguish patients with different

clinical features.
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3.3 Characteristics of TME cell infiltration
and biological function in the
cuproptosis subtypes

To better understand the difference in survival between the 2

clusters. The 2 subtypes were first subjected to GSVA enrichment

analysis to examine their functional and biological differences

(Figure 3A). Through the comparative analysis of the enrichment

of cluster A and cluster B, the results show that cluster A is mainly

enriched in the metabolic pathways of nucleotides and amino acids,

such as RNA degradation, lysine degradation, citrate cycle tca cycle,

selenoamino acid metabolism and valine leucine and isoleucine

degradation; cluster B is mainly related to the metabolic pathways of

sugars, such as glycosaminoglycan degradation, glycosphingolipid

biosynthesis globo series and glycosaminoglycan biosynthesis

chondroitin sulfate. This suggests that metabolism may be more

active in cluster A and gluconeogenesis is involved, which is

consistent with cellular cuproptosis features. Next, to investigate

the role of CRGs in the TME of colon cancer patients, ssGSEA

analysis was used to assess the enrichment fractions of 23 immune

cells in the 2 subtypes. We observed significant differences in the

infiltration of most immune cells between the two subtypes

(Figure 3B). The infiltration level of Activated CD4 T cells in

cluster A was significantly higher than that in cluster B, while

Activated B cell, Activated CD8 T cell, Activated dendritic cell,

CD56dim tural killer cell, Gamma delta T cell, Immature B cell,

Immature dendritic cell, Infiltration of MDSC, Macrophage, Mast

cell, Monocyte, tural killer T cell, tural killer cell, Neutrophil,

Regulatory T cell, T follicular helper cell, Type 1 T helper cell,

Type 17 T helper cell, Type.2 T helper cell significantly reduced.
D
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E

C

FIGURE 2

Identification of cuproptosis subtypes in colon cancer. (A) Interactions between CRGs in colon cancer. Lines connecting PRGs indicate their
interactions. (B) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (C) Principal component analysis shows that the
two subtypes are distinct. (D) Kaplan–Meier curve of OS between the two cuproptosis subtypes. (E) Comparison of the distribution of patients with
different clinicopathological features between the two cuproptosis subtypes.
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3.4 Identification of gene subtypes based
on DEGs

To explore the underlying biological behavior of each ptosis

pattern, we identified 160 DEGs associated with cuproptosis subtypes

using the R package “limma”. We then performed univariate Cx

regression analysis to determine the prognostic value of 160 subtype-

related genes and screened out 27 genes (p < 0.05) associated with RFS

time for subsequent analysis (Table S1). To further validate this

regulatory mechanism, patients were divided into 2 genomic

subtypes based on prognostic genes using a consensus clustering

algorithm (Figure 4A and Figure S3). Kaplan-Meier curves showed

that patients with genotype B had worse RFS than patients with gene

cluster A (p=0.005; (Figure 4B). GSVA enrichment analysis showed

that the gene cluster A was mainly enriched in gluconeogenesis and

metabolic activity-related pathways, including citrate cycle tca cycle,
Frontiers in Oncology 06
pyruvate metabolism, butanoate metabolism, fatty acid metabolism,

valine leucine and isoleucine degradation, etc (Figure 4C). These results

indicate that patients withmetabolically active genomic subtypes have a

better prognosis. And by differential analysis we found that most of the

CRGs were highly expressed in the patients of the gene cluster A

(Figure 4D). This suggests that metabolically active tumor cells can

trigger cuproptosis in cells, thereby improving patient outcomes. In

addition, the gene cluster B pattern correlated with advanced TNM

stage (Figure 4E).
3.5 Construction of a prognostic model

A prognostic model was established based on subtype-related

DEGs. First, we randomly divided patients into training and testing

groups in a 1:1 ratio using the “caret package” in R. LASSO and
A B

FIGURE 3

The immune landscape of two colon cancer subtypes. (A) Differences in pathway activity between the two different subtypes were reflected using
GSVA scores. (B) Abundance of 23 infiltrating immune cell types in the two colon cance subtypes. *p<0.05, ***p<0.001.
D
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C

FIGURE 4

Genotyping based on DEGs. (A) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (B) Kaplan–Meier curve of OS
between two gene subtypes. (C) Differences in pathway activity between the two different subtypes were reflected using GSVA scores.
(D) Differences in expression of CRGs between the two genotypes. (E) Association between clinicopathological features and the two genotypes.
**p<0.01, ***p<0.001.
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multivariate Cox analyses were performed on the 27 prognostic

DEGs associated with ptosis subtypes to further select the best

prognostic markers. Finally, a 3-gene prognosis prediction model

was obtained (Figure 5A). The risk score was calculated as follows:

risk scores = 0.4193*CDKN2A expression level 0.293*HOXC6

expression level+-0.162*PCK1 expression level. Patients were

subdivided into high-risk and low-risk groups according to the

median cutoff value. The results of differential analysis of CRGs

showed that PDHA1, GLS, DLAT, NFE2L2, ATP7A, FDX1,

ATP7B, PDHB, and DLD were highly expressed in the low-risk

group, while DLST, NLRP3, and CDKN2A were low-expressed

(Figure 5B). Subsequently, we analyzed the risk relationship

between score and cuproptosis typing and genotyping. The results

showed that subtype A, which had a better prognosis, had lower risk

scores in cuproptosis subtyping (Figure 5C), and similar results

were obtained in genotyping (Figure 5D). Through independent

prognostic analysis, we identified the correlation between clinical

characteristics, risk score and prognosis (Table 2). Next, we

performed a survival analysis on samples from the total sample,

training set, and validation set, and the results showed that among

the four groups, the prognosis of the low-risk group was better than

that of the high-risk group (p<0.05; Figures 6A, E, K, O).

Furthermore, using the time-dependent ROC curve to analyze the

survival prediction of the prognostic model, the area under the

curve (AUC) in the total sample reached 0.66 at 1 year, 0.665 at 3

years, and 0.683 at 5 years (Figure 6B). The area under the curve

(AUC) in the training group reached 0.756 at 1 year, 0.674 at 3

years, and 0.778 at 5 years (Figure 6H). The area under the curve

(AUC) in the validation group reached 0.578 at 1 year and 0.641 at 3
Frontiers in Oncology 07
years, reaching 0.621 at 5 years (Figure 6L). The area under the

curve (AUC) in the GEO cohort reached 0.590 at 1 year and 0.602 at

3 years, reaching 0.591 at 5 years (Figure 6P). The risk curve shows

that as the risk score increases, the number of deaths of patients in

each group also increases (Figures 6C, I, M, Q). High expression in

the high-risk group, and low expression of protective genes in the

high-risk group (Figures 6D, J, N, R).
3.6 TME and cancer stem cells in high-risk
and low-risk groups

We used the CIBERSORT algorithm to assess the association

between risk score and immune cell abundance. The results showed

that the risk score was positively correlated with T cells follicular

helper, T cells CD8, NK cells activated, and Macrophages M1, and

negatively correlated with T cells CD4 memory resting, Plasma

cells, NK cells resting, and B cells memory (Figures S5A–H). We

also evaluated the relationship between 3 genes in this model and

immune cell abundance. We observed that HOXC6 correlated most

strongly with immune cell abundance (Figure 7A). Furthermore,

the StromalScore, ImmuneScore, and ESTIMATEScore were lower

in the low-risk group than in the high-risk group (Figure 7B).

Cancer stem cells can be measured by RNA stem cell score

(RNAss) based on mRNA expression and DNA stem cell score

(DNAss) based on DNA methylation patterns (13). The correlation

between prognostic gene expression and cancer stem cells was

analyzed, and the results showed that the prognostic model was

negatively correlated with RNAss, but not with DNAss (Figures 7C, D).
D
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C

FIGURE 5

Construction of prognostic features of colon cancer patients. (A) Cross-validation for optimal penalty parameter selection in the LASSO model.
(B) Differences in CRG expression between high and low risk groups. (C) Risk score differences between cuproptosis subtypes. (D) Differences in risk
scores between genotypes. *p<0.05, **p<0.01, ***p<0.001.
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3.7 Drug susceptibility and
immunotherapy analysis

To explore potential treatment options for patients in different

risk groups. We analyzed the sensitivity of colon cancer patients to

commonly used chemotherapeutic agents and showed that the

sensitivity to Camptothecin, Bleomycin, Cisplatin, Etoposide,

Paclitaxel, and Sunitinibwas significantly higher in patients in the

low-risk group than in the higher-risk group (Figures 8A–F). Some

studies have shown that, colon cancer patients with high tumor

mutational burden (TMB) values may have poor prognosis (14).

However, the higher the TMB, the better the tumor remission and

clinical benefit of immunotherapy (14). We therefore analyzed the

TMB of patients in the high and low risk groups in the TCGA

cohort. The top ten mutated genes in the high-risk and low-risk
Frontiers in Oncology 08
groups were APC, TP53, TTN, KRAS, PIK3CA, MUC16, SYNE1,

FAT4, ZFHX4, and DNAH5 (Figures 9A, B). Among patients in the

high and low risk groups, TMB was different and positively

correlated with risk scores (Figures 9C, D). The results of survival

analysis indicated that patients with high TMB had poor prognosis,

which was consistent with previous studies (Figures 9E, F). There is

increasing evidence that patients with high microsatellite instability

(MSI-H) are more sensitive to immunotherapy and may benefit

from immunotherapy drugs (15).

We found that MSI-H was positively correlated with risk score,

and MSI-H in high-risk group patients was significantly higher than

that in low-risk group patients (Figures 9G, H).

The results of differential analysis showed that PD-1 expression in

patients in the high-risk group was higher in the lower-risk group

(Figure 9I). We next downloaded a dataset of patients receiving
TABLE 2 Independent prognostic analysis of clinical characteristics and risk scores.

clinical characteristics HR HR.95L HR.95H pvalue

Age 1.031684 1.008779 1.05511 0.00646991

Gender 1.00004 0.615046 1.626023 0.999871903

Stage 2.456277 1.849692 3.261785 5.30E-10

riskScore 1.253685 1.106866 1.419977 0.000374158
fr
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E GF H

I J K L

M

C
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FIGURE 6

Prognostic value of risk score in colon cancer patients. Kaplan–Meier analysis of RFS between high and low risk groups (A: all patients; E: training
group; I: validation group; M: GEO cohort). ROC curves for sensitivity and specificity for predicting 1-, 3-, and 5-year survival between high and low
risk groups (B: all patients; F: training group; J: validation group; N: GEO cohort). Ordinal dot and scatter plots of risk score distribution and patient
survival status (C: all patients; G: training group; K: validation group; O: GEO cohort). Heat map of risk-related genes between high and low risk
groups (D: all patients; H: training group; L: validation group; P: GEO cohort).
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immunotherapy from the Imvigor 210 database. The prognosis of

patients in the high- and low-risk groups in this dataset was analyzed,

and the results showed that the low-risk group had a better prognosis

than the high-risk group (Figure 9J). By analyzing patients’ response to

immunotherapy, we found that the efficacy of immunotherapy was

positively correlated with the risk score (Figure 9K). We then analyzed
Frontiers in Oncology 09
the differences in immune checkpoint expression between patients in

the high and low risk groups, and the results showed that most

immune checkpoints were highly expressed in patients in the high-

risk group (Figure 9L and Figure S6A).

The above results suggested that chemotherapy may be a

potential treatment modality for patients in the low-risk group.
D
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FIGURE 7

TME and stem cell activity were assessed between the two groups. (A) Correlation between immune cell abundance and three genes in this model.
(B) Correlations between risk scores and immune and stromal scores. (C) Correlation of risk scores with RNAss. (D) Correlation of risk score with
DNAss. *p<0.05, **p<0.01, ***p<0.001.
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FIGURE 8

Chemotherapy drug sensitivity was assessed between the two groups. (A) Camptothecin, (B) Bleomycin, (C) Cisplatin, (D) Etoposide, (E) Paclitaxel,
and (F) Sunitinib.
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For patients in the high-risk group, immunotherapy may be more

promising. And a risk score that can be used to predict the efficacy

of immunotherapy.
4 Discussion

With the advancement of technology and the application of new

treatment methods, the treatment strategy of colon cancer has made

important progress, but the prognosis of some patients is still poor,

and the average five-year survival rate of advanced patients is <30%

(16). Therefore, it is necessary for clinical decision-making to

accurately identify the molecular subtypes and their clinical

characteristics of colon cancer, and to construct an effective

prognostic prediction model to find potential therapeutic targets.

Cuprotosis is a newly discovered form of cell death that has been

shown to play an important role in the development of human

disease (17). Although there is no research on copper drooping in

the occurrence and development of colon cancer so far. However,

numerous studies have demonstrated the important role of copper

in colon cancer cells (7, 9). We investigated the integrated roles of

these cuprotosis-related genes in colon cancer molecular typing

microenvironment cell infiltration properties and immunotherapy.

In this study, we divided colon cancer patients into two

subtypes based on CRG. The two subtypes exhibit markedly

different clinical features, immune status, biological processes, and

outcomes. In order to clarify the gene regulatory relationship

between the two subtypes, we performed differential expression
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analysis based on the genes of the two subtypes. We then screened

out the prognosis-related DEGs, and divided the patients into two

genotypes by the prognosis-related DEGs. The results of the

analysis of the two genotypes showed that the genotype of CRG

can be used as an indicator for predicting prognosis and identifying

clinical features at the gene level. Therefore, we combined LASSO

regression and multivariate Cox regression analysis to screen for the

most informative prognostic indicators that might constitute the

final features. Ultimately, we derived a prognostic risk signature that

showed good predictive power. Through the analysis of risk scores,

we found that the expression levels of CRG in different scoring

groups were significantly different. And the risk grouping is

consistent with CRG subtype and genotype. We then analyzed the

relationship between risk score and tumor microenvironment and

tumor stem cell properties to clarify the correlation between risk

score and tumor malignancy. Finally, mutations, immune

checkpoints, MSI, drug susceptibility, and immunotherapy were

analyzed in patients in the high and low risk groups. This helps to

provide recommendations for the selection of treatment options for

colon cancer patients in high and low risk groups.

Regardless of the fact that surgery combined with radiotherapy

and chemotherapy has greatly improved the therapeutic effect of

colon cancer patients, the prognosis varies greatly due to the

heterogeneity of patients. Therefore, individualized treatment is of

particular importance. The tumor microenvironment (TME) is

deemed to be an an important factor affecting tumor cell

proliferation, spread, drug resistance and immunotherapy (15, 18,

19). Typical structures of the TME include immune and
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FIGURE 9

The effect of immunotherapy between the two groups was assessed. (A, B) Waterfall plots of somatic mutation signatures of patients in the high-
and low-risk groups. Each column represents a patient. The upper bar graph shows TMB, and the numbers on the right represent the mutation
frequency of each gene. The right bar graph shows the proportion of each variant type. (C, D) Differences in TMB in high- and low-risk groups and
correlation of risk scores with TMB. (E, F) Kaplan–Meier analysis of RFS between TMB and high- and low-risk groups. (G, H) Relationship between
risk score and MSI. (I) Kaplan-Meier plot of overall survival in the cuproptosis score group of patients in the IMvigor210 cohort. (J) Correlation of risk
score with response to anti-PD-L1 immunotherapy. PR, partial response; PD, progressive disease; SD, stable disease; CR, complete remission.
(K) Differential expression of PD-L1 in high and low risk groups. (L) Expression of immune checkpoints in the high and low-risk groups. ***p<0.001.
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inflammatory cells, endothelial cells, myofibroblasts, fibroblasts,

adipocytes, and extracellular matrix (20). In this study, we

performed a thorough analysis of the association between genes

involved in risk scoring and TME immune activity. The results

showed that the high-scoring group was associated with immune

activation in the tumor microenvironment, and the low-scoring

group was associated with immunosuppression in the tumor

microenvironment. Macrophages may play a significant role in

promoting tumor cells in the TME by inhibiting T cell-mediated

anti-tumor immune responses (21, 22). At the primary site of the

tumor, macrophages will directly enhance tumor cell growth by

promoting angiogenesis, or indirectly induce dysfunction of

immune cell interactions within the TME (23). Tumor-infiltrating

B lymphocytes inhibit tumor progression by secreting

immunoglobulins, promoting T cell responses, and directly killing

cancer cells (24). In the present study, we observed higher

macrophage infiltration and lower B cell infiltration in subtype B

and high risk score groups, which may be associated with poor

prognosis. CD8+ T cells play a major role in directly killing tumor

cells by recognizing tumor antigens and are important effector cells

for immunotherapy (25). Natural killer cells can select new tumor-

killing cells. Activation of NK cells in colon cancer has a positive

impact on improving patient outcomes (26). CD8+ T cells, T cells

follicular helper, and NK cell infiltration were elevated in high-risk

and B subtypes, suggesting that immunotherapy may be a potential

treatment option for patients with poor prognosis.

Immunotherapy includes immune checkpoint inhibitors (ICIs),

therapeutic antibodies and cell therapy. Currently, ICIs are utilized to

treat colorectal cancer with satisfactory results (3, 27). Biomarkers such

as programmed cell death ligand 1 (PD-L1), tumor mutational burden

(TMB) and microsatellite instability high (MSI-H)/mismatch repair

deficiency (dMMR) have been shown to be predictors of ICIs

antitumor efficacy (28–31). In the present study, we observed higher

expression levels of PD-L1 in patients in the high-risk group. By

analyzing immune checkpoint molecules, we found that the expression

levels of CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1

in the high-risk group were higher than those in the low-risk group.

Microsatellite instability high (MSI-H)/mismatch repair deficiency

(dMMR) has been shown to be a predictor of ICI anti-tumor

efficacy, and we observed higher proportions of MSI-H and dMMR

in the high-risk group than in the low-risk group. Then, the

relationship between the cuproptosis score and the efficacy of

immunotherapy was further analyzed in the imvigor210 cohort of

metastatic urothelial carcinomas receiving anti-PD-L1 therapy. CR/PR

rates were positively correlated with risk scores. This is direct evidence

of better immunotherapy outcomes in patients with high risk scores.

We then analyzed the sensitivity of patients with different risk groups to

common chemotherapeutic agents for colon cancer. The results

showed that the sensitivity of patients in the low-risk group to

Camptothecin, Bleomycin, Cisplatin, Etoposide, Paclitaxel, and

Sunitinib was higher than that of the patients in the high-risk group.

Therefore, we believe that the cuproptosis score can be used to develop

a personalized treatment plan for the patient. Patients in the low-score

group chose chemotherapy, while immunotherapy was amore effective

treatment option for patients in the high-score group.
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The study still has limitations. All analyses were performed only on

data from public databases, and all samples used in our study were

obtained retrospectively. Therefore, follow-up prospective studies

combined with in vitro and in vivo experiments are extremely

important to improve the clinical significance of this study.
5 Conclusions

In conclusion, this study clarified the relationship between CRG

and tumor immune matrix microenvironment, clinicopathological

features and prognosis by comprehensive analysis of CRG

expression profiles in colon cancer patients. We also determined

the therapeutic role of CRG in chemotherapy and immunotherapy.

These findings highlight the important clinical significance of CRG

and provide new ideas for guiding personalized treatment strategies

for patients with colon cancer.
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