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Background: Multiple myeloma (MM) is a highly malignant hematological tumor

with a poor overall survival (OS). Due to the high heterogeneity of MM, it is

necessary to explore novel markers for the prognosis prediction for MM patients.

Ferroptosis is a form of regulated cell death, playing a critical role in tumorigenesis

and cancer progression. However, the predictive role of ferroptosis-related genes

(FRGs) in MM prognosis remains unknown.

Methods: This study collected 107 FRGs previously reported and utilized the least

absolute shrinkage and selection operator (LASSO) cox regression model to

construct a multi-genes risk signature model upon FRGs. The ESTIMATE

algorithm and immune-related single-sample gene set enrichment analysis

(ssGSEA) were carried out to evaluate immune infiltration level. Drug sensitivity

was assessed based on the Genomics of Drug Sensitivity in Cancer database

(GDSC). Then the synergy effect was determined with Cell counting kit-8 (CCK-8)

assay and SynergyFinder software.

Results: A 6-gene prognostic risk signature model was constructed, and MM

patients were divided into high and low risk groups. Kaplan-Meier survival curves

showed that patients in the high risk group had significantly reduced OS compared

with patients in the low risk group. Besides, the risk score was an independent

predictor for OS. Receiver operating characteristic (ROC) curve analysis confirmed

the predictive capacity of the risk signature. Combination of risk score and ISS

stage had better prediction performance. Enrichment analysis revealed immune

response, MYC, mTOR, proteasome and oxidative phosphorylation were enriched

in high risk MM patients. We found high risk MM patients had lower immune scores

and immune infiltration levels. Moreover, further analysis found that MM patients in

high risk group were sensitive to bortezomib and lenalidomide. At last, the results

of the in vitro experiment showed that ferroptosis inducers (RSL3 and ML162) may

synergistically enhance the cytotoxicity of bortezomib and lenalidomide against

MM cell line RPMI-8226.

Conclusion: This study provides novel insights into roles of ferroptosis in MM

prognosis prediction, immune levels and drug sensitivity, which complements and

improves current grading systems.
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Introduction

Multiple myeloma (MM), the second common hematologic

malignancy, is characterized by clonal expansion of abnormal

plasma cells (1, 2). The cardinal clinical manifestations of MM

include bone lesions, anemia, hypercalcemia and renal failure. The

incidence of MM is approximately 4.5-6 cases in every 100,000 people

(3), which has been rising rapidly worldwide due to the aged tendency

of population (4). Up to now, MM is still an incurable disease. MM

patients have a median survival time of five years (5), and the study

showed that there were about 11000 deaths annually in United States

(6). Over the past ten years, there are multiple regimens, such as

proteasome inhibitors (PIs), immunomodulatory drugs, CAR-T

therapy and CD38 monoclonal antibody, which have improved the

survival of MM patients significantly (7). However, most of MM

patients finally go into relapse or drug resisitance (8). Thus, it is

urgent to identify novel prognostic biomarkers and therapeutic

targets of MM for better outcomes.

Ferroptosis, is a novel form of regulated cell death, differing from

cell apoptosis, necrosis, autophagy, necroptosis, pyroptosis, which

was first reported by Dr.Brent R.Stockwell in 2012 (9). Iron-

dependent, excess reactive oxygen species (ROS) and lethal lipid

peroxidation accumulation are typical features of ferroptosis (9).

Ferroptotic cells will undergo cell membrane rupture, reduced

mitochondrial volume, increased membrane density and absence of

mitochondrial cristae when treated by ferroptosis inducer-erastin.

Numerous genes have been shown to regulate cellular ferroptosis

sensitivity, which could be divided into the ferroptosis driver group

and ferroptosis suppressor group. Yang et al. showed that glutathione

peroxidase 4 (GPX4) is a central regulator of ferroptosis and that

ferroptosis can be induced by GPX4 knockout in mouse tumor

xenografts (10). The transcription factor nuclear factor erythroid 2-

related factor 2 (NRF2) is considered an important regulator of the

antioxidant response and controlling the expression of various genes

that involved redox homeostasis, such as xCT and GPX4, two of the

most critical targets whose inhibition initiates ferroptosis (11). The

p53 protein, which we all known serving as a critical tumor

suppressor, could mediate cell cycle arrest, senescence and

apoptosis, previous study found that p53 could inhibit cystine

uptake and sensitize cells to ferroptosis by repressing expression of

SLC7A11 (a component of the cystine/glutamate antiporter) (12).

These genes also participate in various metabolic pathways, including

iron metabolism, cysteine metabolism, lipid metabolism, as well as

glucose metabolism (13, 14).

Studies revealed ferroptosis was associated with many diseases,

such as neurological disorders, kidney injury, ischemia reperfusion

injury and hematological diseases and cancers (15). Basuli et al.

reported that compared with normal ovarian tissues, low

ferroportin (FPN) expression and high transferrin receptor-1

(TFR1) and transferrin (TF) expression resulted in elevated iron

levels and inhibited tumor proliferation (16). In hepatocellular

carcinoma, CDGSH iron sulfur domain 1 (CISD1) was found to

negatively regulate ferroptosis by inhibiting mitochondrial iron

uptake, lipid peroxidation (17). Moreover, Sun et al. found that

NRF2 and metallothionein 1G (MT1G) protected tumor cells from

sorafenib-induced ferroptosis (18). In acute myeloid leukemia,
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upregulation of GPX4 negatively regulated ferroptosis and

correlated with poor prognosis (19).

However, roles of ferroptosis in MM has not been fully elucidated.

In this study, we constructed a multi-FRGs risk signature model for

MM prognosis prediction and explored underlying mechanisms of

ferroptosis in MM progression via bioinformatics methods, which

provides novel insights for the prognostic biomarkers and therapeutic

targets of MM.
Materials and methods

Data collection from publicly
available databases

RNA-seq data and clinical information of all samples were

obtained from the NCBI GEO databases (https://www.ncbi.nlm.nih.

gov/geo/). The raw data was normalized and transformed by log2

using the “scale”method provided in the “limma” R package (version

4.0.3). Among them, the GSE47552 and GSE6477 were utilized for the

identification of differentially expressed FRGs. The GSE9782 was

applied as the training cohort for prognosis model construction, and

the GSE24080 and GSE57317 were used as external validation

cohorts, all of them had complete gene expression profiles as well

as survival data. Then, a total of 107 FRGs were retrieved from Kyoto

Encyclopedia of Genes and Genomes (KEGG, https://www.genome.

jp/kegg/) and prior literatures (9, 20, 21).
Identification of differentially
expressed genes

The “limma” R package was used to identify the DEGs, with false

discovery rate (FDR) < 0.05. The heatmap was performed by the

“heatmap” R package (version 1.20.0).
Functional enrichment analysis

Gene Ontology (GO) and KEGG analysis were conducted using

the “clusterProfiler” R package (version 4.4.1) based on the DEGs (|

log2FC| ≥ 1, FDR < 0.05) between the high and low risk groups. P

values were adjusted with the BH method. Gene set enrichment

analysis (GSEA) was carried out by using GSEA software (version

4.2.3). A p-value cutoff of 0.05 with a false discovery rate (FDR q-

value) < 0.05 was considered statistically significant.
PPI network construction and
correlation analysis

StringDatabase (http://string-db.org) (22) was used to construct protein-

protein interaction (PPI) networks. The interaction threshold was set at 0.4.

Correlation analysis was performed to demonstrate the association among

different FRGs based on the Spearman’s correlation coefficient. The

“corrgram” R package (version 1.14) was used for visualization.
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Construction and verification of the FRGs
risk signature

We used univariate Cox regression analysis to identify prognostic

FRGs among 107 FRGs with a threshold of p<0.05. To minimize

overfitting risk, the LASSO-penalized Cox regression analysis was

conducted to establish interested genes for use in the risk signature.

Risk features for prognosis were determined using “glmnet” (version

4.1-4) and “survival” packages (version 3.3-1) (23). Optimal values of

penalty parameter lambda were determined by 1k-fold cross-validation

via the minimum criteria (24). Finally, MM patients’ risk scores were

calculated based on normalized levels for each FRG and its regression

coefficients using the formula: score = sum (corresponding coefficient ×

each gene’ s expression). The median value of the risk score was used to

stratify patients into low and high risk groups. Two-sided log-rank tests

and Kaplan-Meier survival analyses were performed to determine

differences in OS between the two groups. ROC curve analysis

assessed the model’s prognostic accuracy by “survivalROC” R

packages (version 1.0.3). Based on the expression of genes in the risk

signature, PCA was carried out with the “prcomp” function of the

“stats” R package. Besides, t-SNE were performed to explore the

distribution of different groups using the “Rtsne” R package.
Immune infiltration

To assess immune infiltration, we evaluated the abundance of

stromal cells and immune cells based on Estimation of Stromal and

Immune cells in malignant tumors using Expression (ESTIMATE,

https://sourceforge.net/projects/estimateproject/) data (25), a method

that calculating immune score, stromal score and tumor purity of

each sample for preliminary evaluation. The infiltrating scores of

immune cells and the activity of immune-related pathways were

assessed with single-sample gene set enrichment analysis (ssGSEA)

(26) in the “gsva” R package (version 1.44.0). The annotated file of

related immune pathways was provided in Supplementary Table S1.
Prediction of drug sensitivity

We used the “pRRophetic” package (27) on R to predict drug

sensitivity for each patient in the above cohort based on the Genomics

of Drug Sensitivity in Cancer (GDSC) database (https://www.

cancerrxgene.org/). The IC50 of the particular drug was estimated

through ridge regression, while prediction accuracy was determined

through 10-fold cross-validation using the GDSC training set. For all

parameters, including “combat”, default values were obtained for

removal of batch effect and tissue type of “BLOOD”, and duplicate

gene expression was summarized as mean value (28).
Cytotoxicity assay and synergy
determination with SynergyFinder

The humanmultiple myeloma cell lines RPMI-8226 were seeded into

96-well plates at 1×104 cells per well and were further treated as described

below. Either single drugs or combinations were analyzed at the indicated
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amounts. After 24 h of treatment, the Cell counting kit-8 (CCK-8, 7 sea,

Shanghai, China) was utilized to detect the cell viability and 10ml of CCK-
8 solution was added to each well and the plates continued incubating for

1-4 h at 37°C. Finally, Thermo Scientific™Multiskan™ FC was used to

detect the optical density (OD) values at a wavelength of 450 nm. The

half maximal (50%) inhibitory concentration (IC50) values were

calculated by Prism 6.0 (GraphPad, La Jolla, CA, USA). The online

SynergyFinder software (https://synergyfinder.fimm.fi) was used to

calculate drug synergy scoring with the “inhibition index” (the

inhibition index = 100 - Cell Viability) by the response surface model

and the highest single agent (HSA) calculation method (29, 30). HSA

Synergy scores greater than 0 were considered synergism (red regions)

(31). Heatmaps of drug combination responses were also plotted to assess

the therapeutic significance of the combination.
Statistical analysis

The data have normal distribution (Shapiro-Wilk test for

normality) and equal variances (Levene’s test for homogeneity of

variances), then the t-test was used to compare and non-parametric

for those were not, such as the Mann-Whitney test and the Wilcoxon

test. All statistical analyses were performed with Prism 6.0 (GraphPad,

La Jolla, USA). Pearson chi-square test was employed to compare the

categorical variables. The Kaplan-Meier curve with a two-sided log-

rank test was applied to compare the OS of patients between subgroups.

Univariate and multivariate Cox regression analyses were conducted to

figure out the independent factors related to survival rate. The Mann-

Whitney test was used to compare the scores of infiltrating immune

cells and the activities of immune-related pathways between low and

high risk groups. All statistical analyses were executed utilizing R v4.1.2.
Results

Identification of differentially
expressed FRGs

The workflow chart of our study is shown in Supplementary

Figure 1. The data of GSE47552 (n= 46, including 5 healthy donors

and 41 NDMM patients) and GSE6477 (n= 88, including 15 healthy

donors and 73 NDMM patients) were used for the identification of

differentially expressed FRGs. 39 and 36 of 107 FRGs were identified

as differentially expressed FRGs between healthy donors and NDMM

in GSE47552 and GSE9782, respectively (Figures 1A, B). The volcano

plots are shown in Supplementary Figures 2A, B. Then we used venn

plot to get the 19 overlapped differentially expressed FRGs for further

study (Figure 1C). Among them, 7 FRGs were down-regulated in

NDMM (AKR1C3, CP, EMC2, GCLC, GCLM, NCOA4 and TF), and

9 FRGs were up-regulated (CARS, CDKN1A, CDKN2A, MIF,

PRDX6, RPL8, SLC39A8, SLC3A2 and VDAC2), while the

expression of 3 FRGs were differently expressed in the two cohorts

(G3BP1, MAP1LC3B and TP53). To further ascertain the correlation

of these differentially expressed FRGs, we conducted correlation

analysis (Figure 1D). As figure showed that the expression of CARS

was positively correlated with SLC3A2 (correlation coefficient = 0.41,

p < 0.05), while the expression of TF was negatively correlated with
frontiersin.org
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MIF (correlation coefficient = -0.47, p < 0.05). The PPI network was

in Supplementary Figure 2C, which illustrated the tight interactions of

these genes. Furthermore, functional enrichment analysis was used to

explore the biological functions and pathways of the above 16

intersection FRGs. The GO results indicated that these FRGs were

enriched in iron-related terms, such as cellular iron ion homeostasis

and cell redox homeostasis (Figure 1E). KEGG analysis also showed

that ferroptosis and glutathione metabolism were closely

enriched (Figure 1F).
Identification of prognostic differentially
expressed FRGs

First, univariate Cox regression analysis was performed to analyze

the 107 FRGs in GSE9782 (n= 188). The forest plot revealed that 45
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FRGs were correlated with the OS of MM patients (p < 0.05)

(Figure 2A). Then, we found the 11 intersection of genes with

differentially expressed FRGs and prognostic FRGs (Figure 2B).

Among them, CDKN2A, MIF, PRDX6 and VDAC2 were classified

as risk-associated FRGs (HR>1), while AKR1C3, GCLC, GCLM, CP,

NCOA4 and TF were classified as protective FRGs (HR<1). However,

EMC2 was controversial, which was a risk-associated gene but was

down-regulated in MM patients. Kaplan-Meier survival curves were

plotted based on expression levels (high and low expression) of 10

FRGs. The OS of MM patients in the CDKN2A, MIF, PRDX6 and

VDAC2 high expression groups was lower than that of patients in the

low expression groups (p < 0.001). Conversely, the OS of MM patients

in the AKR1C3, GCLC, GCLM, CP, NCOA4 and TF low expression

groups was lower than that of patients in the high expression groups

(p < 0.001) (Figures 2C-L). The results revealed that these 10 FRGs

were significantly correlated with OS of MM patients.
B

C D

E

F

A

FIGURE 1

Identification of differentially expressed FRGs in GEO cohorts. (A) 39 FRGs were differentially expressed in GSE47552. (B) 36 FRGs were differentially
expressed in GSE6477. (C) The venn plot of overlapped FRGs. (D) The correlation analysis of 16 differentially expressed FRGs in GSE6477 (blue: positive
correlation; red: negative correlation; the larger the area of the sector, the correlation coefficient is closer to 1 or -1). (E, F) Bubble graph for GO
enrichment and barplot graph for KEGG pathways.
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Construction and validation of FRGs risk
signature in GEO cohorts

Next, LASSO regression analysis was performed to construct a

prognostic model (Supplementary Figure 3). A total of 6 FRGs

(AKR1C3, CDKN2A, CP, MIF, PRDX6 and TF) were identified and

selected to develop a risk signature in GSE9782. The risk score for each

MM patient could be computed using the following formula: the risk

score = [(-0.24693 × expression of AKR1C3) + (0.96478 × expression of

CDKN2A) + (−0.17386 × expression of CP) + (0.18016 × expression

of MIF) + (0.40331 × expression of PRDX6) + (−0.08110 × expression

of TF)]. According to the median risk score, 188 MM patients were

divided into high and low risk groups. The Kaplan-Meier survival curve

demonstrated that the OS of MM patients in the high risk group was

significantly lower than that of the low risk group (p < 0.05)

(Figure 3A). The time-dependent ROC curve showed the AUC was

0.764, 0.793 and 0.739 for survival rates of 1-, 2- and 3-year, respectively
Frontiers in Oncology 05
(Figure 3C). The risk plot presented an obvious separation of survival

status between high and low risk MM patients. Patients with high risk

scores exhibited significantly decreased survival rates (Figure 3F). PCA

and t-SNE were performed to examine the risk score distribution

differences between the low and high risk groups and the results

showed that the patients of these two groups were distributed in two

directions, suggesting our risk signature model could nicely distinguish

the prognosis of MM patients (Figure 3H).

To validate the performance of the FRGs signature in predicting

OS of MM patients, risk scores were calculated with the same formula

for patients in two validation datasets, GSE24080 (n= 559) and

GSE57317 (n= 55). Similarly, the Kaplan-Meier survival curve in

GSE24080 also demonstrated that the high risk group showed a poor

OS compared to the low risk group (p < 0.05) (Figure 3B). The time-

dependent ROC curve in GSE24080 showed the AUC was 0.556,

0.577, 0.594, 0.571 and 0.564 for survival rates of 1-, 2-, 3-, 4- and 5-

year, respectively (Figure 3D), while the time-dependent ROC curve
B

C

D E F

G H I

J K L

A

FIGURE 2

Identification of prognostic differentially expressed FRGs in GEO cohorts. (A) Univariate Cox regression in GSE9782. (B) The venn plot of DEGs and
prognostic FRGs. (C-L) Kaplan-Meier survival curves of 10 intersection of genes for the OS of MM patients in GSE9782.
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in GSE57317 showed the AUC was 0.631, 0.652 and 0.666 for survival

rates of 1-, 2- and 3-year, respectively (Figure 3E). The horizontal

ordinate axis of the risk plot and survival event data were sorted

according to the risk scores. Patients with high risk scores exhibited

decreased survival rates and increased mortality rates in GSE24080

(Figure 3G). PCA and t-SNE were performed to demonstrate the

significant risk score distribution differences between the low and

high risk groups in the validation cohort (Figure 3I). Thus, these data

implied that the FRGs risk signature had better capacity for predicting

prognosis of MM patients.
The ferroptosis risk score was the
independent prognostic factor in MM

Univariate Cox regression and multivariate Cox regression

analysis were carried out to assess whether the risk score could
Frontiers in Oncology 06
serve as an independent and robust biomarker to predict OS of

MM patients. In GSE9782 (training cohort), the univariate Cox

regression analysis revealed that ALB, CRP, ISS stage and risk score

were significantly correlated with OS (p < 0.05) (Figure 4A). Next,

based on the multivariate analysis, ISS stage and risk score were

confirmed as independent predictors for OS (p < 0.05) (Figure 4B). In

GSE24080 (validation cohort), the similar results were obtained by

univariate Cox regression analysis and multivariate analysis

(Figures 4C, D). Then, the above two variables (ISS stage and risk

score) in training cohort were used to construct the Nomogram for

OS (Figure 4E). The calibration curves exhibited high consistency

between the actual proportion of 1- and 2-year OS and the

Nomogram-predicted probability (Figures 4F, G). Moreover,

combination of risk score and ISS stage significantly improved

prediction performance (Supplementary Figure 4). These results

suggested that risk score could be a robust and reliable independent

prognostic factor for OS of MM patients.
B

C D E

F G

H I

A

FIGURE 3

Construction and validation of FRGs risk signature in GEO cohorts. (A, B) Kaplan-Meier survival curves for the OS of MM patients in the high- and low-
risk groups in GSE9782 (A) and GSE24080 (B). (C-E) The time-dependent ROC curves for MM patients in GSE9782(C), GSE24080 (D) and GSE57317(E).
(F, G) The risk plot and survival status for each MM patient in GSE9782 (F) and GSE24080 (G) with red dots being ceased cases and blue ones alive. (H, I)
PCA and t-SNE analysis in GSE9782 (H) and GSE24080 (I).
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Exploration of underlying mechanisms of
the ferroptosis risk signature

We contrasted the gene expression pattern between high and low

risk groups. 91 genes were identified significantly different between

two risk groups in GSE9782. The heatmap, volcano plot and PPI

network were shown in Supplementary Figure 5. Furthermore, we

conducted GO and KEGG pathway enrichment analysis on these

DEGs. For GO-Biological process (BP), DEGs were significantly

enriched in myeloid cell development, differentiation and

homeostasis, erythrocyte development, differentiation and

homeostasis and ion homeostasis. The GO-Cellular Component

(CC) analysis indicated that DEGs were mainly enriched in

secretory granule lumen and vesicle lumen. For GO-Molecular

Function (MF), DEGs mainly enriched in cytokine binding, toll-like

receptor binding, actin binding and antioxidant activity (Figure 5A).

The KEGG pathway analysis revealed that DEGs were mostly
Frontiers in Oncology 07
enriched in pathways in hematopoietic cell lineage and viral protein

interaction with cytokine and cytokine receptor (Figure 5B). In

GSE24080, DEGs were also enriched in humoral immune response

(Figure 5C) and NF-kappa B signaling pathway (Figure 5D).

Moreover, GSEA was performed between high and low risk

groups in GSE24080. The results revealed that high risk group was

significantly active in proteasome (NES = 2.38, p < 0.001, FDR <

0.001, Figure 5E) and oxidative phosphorylation (NES= 1.95, p =

0.008, FDR = 0.008, Figure 5F) in KEGG gene set; E2F targets (NES =

2.12, p < 0.001, FDR = 0.003, Figure 5G), mTORC1 signaling (NES =

1.82, p = 0.021, FDR = 0.017, Figure 5H) and MYC targets (NES =

2.56, p < 0.001, FDR < 0.001, Figure 5I) in HALLMARK gene set;

mitochondrial respiratory chain complex assembly (NES = 2.47, p <

0.001, FDR < 0.001, Figure 5J), ATP synthesis coupled electron

transport (NES = 2.47, p < 0.001, FDR < 0.001, Figure 5K),

mitochondrial gene expression (NES = 2.24, p = 0.004, FDR =

0.002, Figure 5L) and mitochondrial translation (NES = 2.11, p =
B

C D

E

F

G

A

FIGURE 4

The ferroptosis risk score was the independent prognostic factor in MM. (A, B) Univariate and multivariate Cox regression in GSE9782. (C, D) Univariate
and multivariate Cox regression in GSE24080. (E) Nomogram predicting 1- and 2-year OS of MM patients in the training cohort (GSE9782) based on the
risk score and ISS stage. (F, G) Calibration plot of the Nomogram for 1- (F) and 2-year (G) OS in the training cohort (GSE9782).
frontiersin.org

https://doi.org/10.3389/fonc.2023.999688
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2023.999688
0.008, FDR = 0.004, Figure 5M) in GOBP gene set, others are showed

in Supplementary Figure 6. These results implied that many immune-

related pathways (such as cytokine binding and toll-like receptor

binding) were significantly enriched in high risk group, thus we

further aimed to evaluate the relationship between immune

infiltration and ferroptosis risk signature.
Immune infiltration was correlated with the
ferroptosis risk signature

Based on the enrichment in immune response, we further used

ESTIMATE algorithm to identify the differences in infiltrating

immune cells between the high and low risk groups. The stromal

scores (substrate cells in the tumor tissue) and immune scores

(immune cell infiltration in the tumor tissue) were all significantly

lower in the high risk group in GSE9782 (Figures 6A, B) and

GSE24080 (Figures 6D, E). The scores of tumor purity were all

higher in the high risk group in two cohorts (Figures 6C, F).

Furthermore, ssGSEA was performed to evaluate the proportion of

immune cells between the high and low risk groups in GSE9782. The

results showed that activated CD8 T cell, activated dendritic cell,

central memory CD8 T cell, effector memory CD8 T cell, natural killer

cell, macrophage, neutrophil, type 2 T helper cell, activated B cell and

memory B cell were all significantly decreased in the high risk group,

which mostly participated in anti-tumor immune response.

Conversely, the proportion of MDSC, an immunosuppressive cell,

was reduced in the high risk group. Additionally, natural killer T cell,

which played dual role in immune function, was also decreased in the

MM patients with high risk score (Figure 6G). Moreover,

corresponding immune functions and pathways were also different

between the two risk groups (Figures 6H, I). The scores of APC co-
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stimulation, CCR, check point, HLA, T cell co-stimulation, type II

IFN response were also lessened in the high risk group in GSE9782

(Figure 6H) and GSE24080 (Figure 6I). To sum up, MM patients with

high risk scores showed significantly decreased immune infiltration

levels and immune function.
Drug sensitivity was associated with the
ferroptosis risk signature

To further explore the difference of drug sensitivity in the two risk

groups, we compared the estimated IC50 levels of 129 drugs. Among

those, 21 drugs showed decreased IC50 and higher sensitivity in high risk

group (Figures 7A, B). Especially, the sensitivity of bortezomib and

lenalidomide, which are important drugs and first-line therapy for MM

treatment, were significantly increased in MM patients with high risk

scores. Given that these two drugs have been used widely in clinical, we

compared post-treatment status of MM patients with different risk scores

based on GSE9782, in which patients were pretreated with bortezomib.

As Supplementary Figure 7 showed, MM patients in high risk group

progressed significantly faster than low risk group (p = 0.031). Although

MM patients with high risk scores were more sensitivity to bortezomib, it

is essential to combine other therapies (such as lenalidomide, CD38

antibody, CAR-T cell etc.) to prolong progression-free survival. In

addition, we found that the estimated IC50 of AICAR (Acadesine,

AMPK activator), ATRA (all-trans-retinoicacid), GDC0941 (PI3K

inhibitor), JNK.Inhibitor.VIII, rapamycin (mTOR inhibitor) and

thapsigargin (ATPase inhibitor) were also lower in MM patients in the

high risk group based on our risk signature. Altogether, these findings

implied that the ferroptosis signature is tightly correlated with drug

sensitivity. Therefore, the risk score might be a potential indicator for

choosing appropriate drugs for MM individualized treatment.
B
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FIGURE 5

Exploration of underlying mechanisms of the ferroptosis risk signature. (A, B) Barplot graph of GO enrichment and bubble graph of KEGG pathways
enrichment of DEGs in GSE9782. (C, D) Barplot graph of GO enrichment and bubble graph of KEGG pathways enrichment of DEGs in GSE24080.
(E-M) GSEA results of KEGG pathways, HALLMARK and GOBP in GSE24080. NES, normalized enrichment score; FDR, false discovery rate.
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Validations for FRGs expressions and
determination of synergy effect in vitro

To further validate the results of bioinformatic analysis, we

collected the bone marrow samples from 7 healthy donors (HD)

and 13 MM patients and performed qRT-PCR to measure the mRNA

levels of the relevant FRGs (AKR1C3, CP, CDKN2A, MIF, PRDX6
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and TF), mostly consistent with the results which we have described

before. The results demonstrated that the expression of CP, MIF and

PRDX6 were elevated in MM patients. In addition, the expression of

AKR1C3 and TF were decreased in MM patients (p<0.05). However,

the expression level of CDKN2A in MM patients was higher than it in

healthy donors, but no significant difference was observed (p>0.05)

(Figures 8A-F). Similarly, MIF and PRDX6 were significantly
B C

D E F

G

H
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A

FIGURE 6

Immune infiltration was correlated with the ferroptosis risk signature. (A-C) The distribution of stromal score (A), immune score (B), and tumor purity
(C) upon different risk score in GSE9782. (D-F) The distribution of stromal score (D), immune score (E), and tumor purity (F) upon different risk score in
GSE24080. (G) The heatmap of the comparison in twenty-eight immune-related gene sets upon different risk score in GSE9782. (H, I) Thirteen immune-
related functions and pathways were analyzed in patients with high and low risk score in GSE9782 (H) and GSE24080 (I). ns, no significance; *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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upregulated in MM cell lines compared to normal bone marrow

stromal cell lines HS5.And the expression levels of AKR1C3,

CDKN2A, CP and TF in MM cell lines were statistically lower than

these in HS5 cell line (Supplementary Figures 8A-F). The reason for

the inconsistent results between clinical and cell lines may be the

insufficient sample size. Increasing sample size may aid in obtaining

positive results in future studies.

Subsequently, we performed a drug combination analysis to

determine whether ferroptosis was associated with the sensitivity of

bortezomib (BTZ) and lenalidomide (LEN) against MM cell line

RPMI-8226. First, the CCK-8 assay was performed to measure the

biological effect of BTZ, LEN, and two kinds of ferroptosis inducers

(RSL3 and ML162) in the RPMI-8226 and dose-response curves were

made. These four drugs showed concentration-dependent anti-

proliferative effects, and the IC50 values were calculated and shown
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in Figures 8G-J (BTZ: 0.316mM; LEN: 1.902mM; RSL3: 15.15mM;

ML162: 8.181mM). According to the new concentration gradient

based on IC50 values and the corresponding inhibition index, the

drug HSA synergy scores were calculated with the online

SynergyFinder software. Indeed, treatment with ferroptosis inducers

(RSL3 and ML162) and BTZ or LEN showed highly synergistic effects

in inhibiting tumor proliferation (HSA synergy scores>0)

(Figures 8K-N). As shown in the figures, the white rectangle

indicates the region of the maximum synergistic area. And the

dose-response matrix and 3D plot were in Supplementary

Figures 9A-H. Collectively, these results of the in vitro experiment

showed that ferroptosis inducers (RSL3 and ML162) may

synergistically enhance the cytotoxicity of bortezomib and

lenalidomide against MM, which may improve the prognosis of

high risk MM patients.
B

A

FIGURE 7

Drug sensitivity was associated with the ferroptosis risk signature. (A, B) The correlation of risk scores with the IC50 of various drugs on MM patients in
GSE9782 (A) and GSE24080 (B). *p < 0.05, **p < 0.01, ***p < 0.001.
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Discussion

Ferroptosis, an emerging type of regulated cell death, is widely

studied in various diseases. Companied with iron overload, excess

ROS and unrestricted lipid peroxidation, ferroptosis has been believed

to play an essential role in tumorigenesis (9). In this article, we

demonstrated the significance of ferroptosis regulators in MM and

assessed their relationship with MM prognosis. First, we identified 10

differentially prognostic FRGs by taking the intersection of DEGs and

prognostic FRGs. Then, lasso regression was carried out based on 10

intersected genes and a new 6 FRGs risk signature was established. By

using the established formula and calculating risk score of every MM

patient, we confirmed the appropriate cutoff value and divided

patients into two risk groups (high and low risk groups) in training

cohort (GSE9782) and two validation cohorts (GSE24080 and

GSE57317). Kaplan-Meier survival curves showed that the OS of
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MM patients in high risk group was significantly shorter than in low

risk group. Meanwhile, ROC curves verified the predictive efficiency

of this risk signature. To determine the survival status of MM patients

based on this model, the risk plot was performed by ranking risk score

of every patient, and the results suggested that an obvious separation

of survival status between two risk groups. Patients with high risk

scores exhibited markedly decreased survival and increased death

rates. Moreover, univariate and multivariate Cox regression analysis

also manifested that the risk score was an independent

prognostic factor.

In our model, six FRGs were included: AKR1C3, CDKN2A, CP,

MIF, PRDX6 and TF. Aldo-keto reductase 1C3 (AKR1C3) is a

member of superfamily of NAD(P)H-linked oxidoreductases,

serving as a reductant to reduce aldehydes and ketones to alcohols

(32). Recent studies have demonstrated that AKR1C3 was

overexpressed in various cancers such as breast cancer (33),
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FIGURE 8

Validations for FRGs expressions and determination of synergy effect in vitro. (A-F) AKR1C3, CDKN2A, CP, MIF, PRDX6 and TF mRNA expression in MM
patients (MM, n=13) vs healthy donors (HD, n=7). (G-J) Drugs at the indicated concentrations were used to treat cells for 24h, and cell viability was
assessed by CCK-8 assay.Dose-response studies and the IC50 of BTZ (G), LEN (H), RSL3 (I), ML162 (J) in RPMI 8226 cell line. Data are expressed as the
means ± SD. (K-N) Heatmaps of drug combination responses. HSA synergy scores were calculated using Synergyfinder software. Scores > 0 indicated
synergism. The HSA synergy scores of BTZ+RSL3 (K), BTZ+ML162 (L), LEN+RSL3 (M), and LEN+ML162 (N) in RPMI 8226 cell line were 5.934, 3.188,
4.038, and 3.738, respectively. The gradation of the red regions indicates the intensity of synergism. The white rectangle indicates the concentrations
encompassing the region of highest synergy, and the X- and Y-axes corresponding to the sides of the white rectangle indicate the concentrations at
which the drug combination had the maximum effect on cell growth inhibition. MM, multiple myeloma; HD, healthy donors; BTZ, bortezomib; LEN,
lenalidomide; HSA, highest single agent. *p<0.05, **p<0.01, ***p<0.001.
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prostate cancer (34, 35) and acute myeloid leukemia (AML) (36–38).

In AML, AKR1C3 may regulate myeloid and erythroid differentiation

via prostaglandin D2 metabolism (39). Previous studies revealed that

cyclin dependent kinase inhibitor 2A (CDKN2A) played an

important role in oncogenesis and tumor progression. The loss or

methylation of CDKN2A is relatively common in pretreatment

follicular lymphoma biopsy specimens and correlated with poor

outcome (40). Ceruloplasmin (CP), a kind of ferroxidases, could

discharge iron from cells and regulate cellular iron homeostasis

(41), but the roles of CP in tumors are controversial. The serum CP

levels were elevated in lung cancer, colon carcinoma, epithelial

ovarian cancer (42–44), and correlated with invasiveness of cancer

cells, while in adrenocortical and hepatocellular carcinoma, the

expression levels of CP were down-regulated (45, 46). Macrophage

migration inhibitory factor (MIF) is a soluble pro-inflammatory

cytokine (47). Wang et al. demonstrated that MIF expression was

significantly higher in relapsed MM patients, and MM patients with

higher MIF expression had poorer OS (48). Furthermore, knockout of

MIF in MM cell lines sensitized the PIs-induced cell apoptosis via

regulating SOD1 misfolding and loss of SOD1 activity (48).

Peroxiredoxin 6 (PRDX6), the only 1-Cys member of PRDX family,

is a multifunctional enzyme, including iPLA2 activity, LPCAT activity

and glutathione peroxidase activity (49). PRDX6 has been reported to

positively regulate oncogenesis and progression by activating the

JAK2/STAT3 signaling pathway (50). Transferrin (TF), an iron-

carrier protein, is essential for transporting iron and is required by

all living organisms, especially highly proliferative cells, because of its

requirement for DNA replication (51). In vivo experiment showed

that TF was a growth factor in some tumors, such as leukemia, breast

cancer and pituitary tumor (52–54). These six FRGs were reported

expressed differently in various cancer types and the internal

mechanism was overwhelmingly intricate. Therefore, the further

study is urgently needed to be conducted in MM.

Next, based on the DEGs between the two risk groups, GO and

KEGG enrichment analysis were performed. Interestingly, we found

many immune-related biological processes and pathways were enriched

in training and validation cohorts, such as cytokine binding, Toll-like

receptor binding, CXCR chemokine receptor binding, humoral

immune response, CCR chemokine receptor binding, chemokine

activity and NF-kappa B signaling pathway. Then, immune

infiltration level was measured via ESTIMATE algorithm and

ssGSEA. The results indicated that MM patients with higher risk

scores exhibited lower immune scores. Immune cell subsets were

significantly different in high and low risk groups. Among them, the

anti-tumor immune cells, such as activated CD8 T cell, central memory

CD4 T cell, effector memory CD8 T cell, natural killer cell, natural killer

T cell, type 17 T helper cell and type 2 T helper cell were reduced in

high risk group, while the protumor immune cell, such as MDSC was

also reduced in high risk group. Then, we compared immune-related

pathways between the two risk groups. The results showed that T cell

co-inhibition was positively correlated while cytolytic activity was

negatively correlated with higher risk score, suggesting tumor

immunity in high risk group was suppressed. These results reminded

us that the potential connection between ferroptosis and tumor

immunity. For instance, CDKN2A expression was correlated with

infiltrating lymphocyte (TIL) levels in cancers, mainly involving in

natural killer cell-mediated cytotoxicity pathways, antigen processing
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and presentation, olfactory transduction pathways, and regulation of

the autophagy pathway in multiple cancers (55). Monocyte-derived

MIF is reported centrally involved in human monocytic MDSC

induction/immune suppressive function and that targeting MIF may

provide a novel means of inducing anti-tumor responses in late stage

melanoma patients (56). However, the APC co-inhibition and co-

stimulation were different between two risk groups. The reason for this

phenomenon maybe due to ferroptotic cells product many different

signals and transmit them to antigen presentation cells, thus resulting

in different effects, which including inhibition and activation (57). In

general, we discovered that higher risk scores tightly correlate with the

immunosuppression, which maybe the cause for poor prognosis ofMM

patients in high risk group.

Moreover, we conducted GSEA analysis based on this risk

signature, and found that the pathway in proteasome, E2F targets

and MYC targets were more active in high risk group, which

correlated with tumorigenesis and drug resistance. Intriguingly, the

mitochondrial activity was also elevated in MM patients with higher

risk scores, including oxidative phosphorylation and mitochondrial

genes expression, suggesting that higher energy demands were needed

in tumor cells of MM patients in high risk group.

In the end, we assessed drug sensitivity based on this FRGs risk

signature. MM patients with higher risk scores were predicted to be

more sensitive to lenalidomide and bortezomib, which still the first

line therapy for MM patients. Moreover, higher risk scores MM

patients also presented a better sensitivity to ATAR, JNK inhibitor,

rapamycin and thapsigargin. Interestingly, CCI-779 (also called

temsirolimus), a derivative of rapamycin, is also an mTOR inhibitor

and has been studied combined with bortezomib in relapsed or

relapsed refractory multiple myeloma (NCT00483262). The results

showed that the proportion of patients with a partial response or

better was 33% (14 of 43; 90% CI 21-47) in the phase 2 study,

suggesting mTOR inhibitors have the potential role in combination

with bortezomib for the treatment of relapsed and refractory MM

patients (58). Although there has been no study of other drugs for

MM patients, the results could provide us novel insights into

exploring new treatments in MM. Furthermore, we assessed the

efficacy of combination ferroptosis inducers (RSL3 and ML162)

with bortezomib or lenalidomide in MM cell line through an effect-

based methodology (Synergyfinder). The results of the in vitro

experiment showed that ferroptosis inducers may synergistically

enhance the cytotoxicity of bortezomib and lenalidomide against

MM, which may improve the prognosis of high risk MM patients.

Finally, there are some limitations in our study. First, our risk

signature model was conducted and verified based on the public

databases, further studies are needed to validate in clinical. Second,

due to incomplete clinical information in GEO databases, our model

could not assess the R-ISS stage or mSMART risk stratification inMM

patients based on the risk signature. Third, the relationship between

the risk signature and immune activity has not yet been

experimentally addressed, which should be ascertained in the future.
Conclusion

We defined a novel prognostic model of 6 FRGs in MM, including

AKR1C3, CDKN2A, CP, MIF, PRDX6 and TF. The model could
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divide MM patients into high and low risk groups and accurately and

stably predict the OS of MM patients. The underlying mechanism

maybe correlated with impaired anti-tumor immunity in high risk

group. Moreover, the ferroptosis risk score has potential application

for MM individualized therapy. We believe that the 6 FRGs are

potential prognostic biomarkers and therapeutic targets for MM.
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25. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-Garcia W,
et al. Inferring tumour purity and stromal and immune cell admixture from expression
data. Nat Commun (2013) 4(1):2612. doi: 10.1038/ncomms3612

26. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic
properties of tumors associated with local immune cytolytic activity. Cell (2015) 160(1-
2):48–61. doi: 10.1016/j.cell.2014.12.033
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2023.999688/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.999688/full#supplementary-material
https://doi.org/10.1182/blood-2016-01-643569
https://doi.org/10.1038/nrc2189
https://doi.org/10.1056/NEJMra1011442
https://doi.org/10.1056/nejmoa0708704
https://doi.org/10.1038/leu.2013.313
https://doi.org/10.1146/annurev-med-070209-175325
https://doi.org/10.1016/s0140-6736(14)60493-1
https://doi.org/10.1038/leu.2017.179
https://doi.org/10.1016/j.cell.2012.03.042
https://doi.org/10.1016/j.cell.2013.12.010
https://doi.org/10.1016/j.redox.2019.101107
https://doi.org/10.1038/nature14344
https://doi.org/10.1101/gad.314674.118
https://doi.org/10.1038/cdd.2015.158
https://doi.org/10.1038/s41419-020-2298-2
https://doi.org/10.1038/onc.2017.11
https://doi.org/10.1016/j.bbrc.2016.08.034
https://doi.org/10.1002/hep.28574
https://doi.org/10.21037/atm-20-3296
https://doi.org/10.1016/j.cell.2019.04.002
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://doi.org/10.1002/bimj.200900028
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.3389/fonc.2023.999688
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gao et al. 10.3389/fonc.2023.999688
27. Geeleher P, Cox N, Huang RS. pRRophetic: An r package for prediction of clinical
chemotherapeutic response from tumor gene expression levels. PloS One (2014) 9(9):
e107468. doi: 10.1371/journal.pone.0107468

28. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using
baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol
(2014) 15(3):R47. doi: 10.1186/gb-2014-15-3-r47

29. Berenbaum MC. What is synergy? [published correction appears in pharmacol rev
1990 Sep;41(3):422]. Pharmacol Rev (1989) 41(2):93–141.

30. Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-
drug combination synergies. Nucleic Acids Res (2020) 48(W1):W488–93. doi: 10.1093/
nar/gkaa216

31. Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, et al.
SynergyFinder plus: Toward better interpretation and annotation of drug combination
screening datasets. Genomics Proteomics Bioinf (2022) 20(3):587–96. doi: 10.1016/
j.gpb.2022.01.004

32. Penning TM, Drury JE. Human aldo-keto reductases: Function, gene regulation,
and single nucleotide polymorphisms. Arch Biochem Biophys (2007) 464(2):241–50.
doi: 10.1016/j.abb.2007.04.024

33. Chen W-D, Zhang Y. Regulation of aldo–keto reductases in human diseases. Front
Pharmacol (2012) 3:35. doi: 10.3389/fphar.2012.00035

34. Fung K-M, Samara ENS, Wong C, Metwalli A, Krlin R, Bane B, et al. Increased
expression of type 2 3a-hydroxysteroid dehydrogenase/type 5 17b-hydroxysteroid
dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate
carcinoma. Endocr Rel Cancer (2006) 13(1):169–80. doi: 10.1677/erc.1.01048

35. Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased
expression of genes converting adrenal androgens to testosterone in androgen-independent
prostate cancer. Cancer Res (2006) 66(5):2815–25. doi: 10.1158/0008-5472.can-05-4000

36. Mahadevan D, DiMento J, Croce KD, Riley C, George B, Fuchs D, et al.
Transcriptosome and serum cytokine profiling of an atypical case of myelodysplastic
syndrome with progression to acute myelogenous leukemia. Am J Hematol (2006) 81
(10):779–86. doi: 10.1002/ajh.20690

37. Birtwistle J, Hayden RE, Khanim FL, Green RM, Pearce C, Davies NJ, et al. The
aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-
dihydrodiol mediated oxidative DNA damage in myeloid cells: Implications for
leukemogenesis. Mutat Res/Fundamental Mol Mech Mutagenesis (2009) 662(1-2):67–
74. doi: 10.1016/j.mrfmmm.2008.12.010

38. Jamieson SMF, Gu Y, Manesh DM, El-Hoss J, Jing D, Mackenzie KL, et al. A novel
fluorometric assay for aldo-keto reductase 1C3 predicts metabolic activation of the
nitrogen mustard prodrug PR-104A in human leukaemia cells. Biochem Pharmacol
(2014) 88(1):36–45. doi: 10.1016/j.bcp.2013.12.019

39. Moradi Manesh D, El-Hoss J, Evans K, Richmond J, Toscan CE, Bracken LS, et al.
AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute
lymphoblastic leukemia. Blood (2015) 126(10):1193–202. doi: 10.1182/blood-2014-12-618900

40. Alhejaily A, Day AG, Feilotter HE, Baetz T, LeBrun DP. Inactivation of the
CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in
follicular lymphoma and associated with poor clinical outcome. Clin Cancer Res (2014) 20
(6):1676–86. doi: 10.1158/1078-0432.ccr-13-2175

41. Ryan F, Zarruk JG, Lößlein L, David S. Ceruloplasmin plays a neuroprotective role
in cerebral ischemia. Front Neurosci (2019) 12:988. doi: 10.3389/fnins.2018.00988

42. Matsuoka R, Shiba-Ishii A, Nakano N, Togayachi A, Sakashita S, Sato Y, et al.
Heterotopic production of ceruloplasmin by lung adenocarcinoma is significantly correlated
with prognosis. Lung Cancer (2018) 118:97–104. doi: 10.1016/j.lungcan.2018.01.012
Frontiers in Oncology 14
43. Senra Varela A, Lopez Saez JJ, Quintela Senra D. Serum ceruloplasmin as a
diagnostic marker of cancer. Cancer Lett (1997) 121(2):139–45. doi: 10.1016/s0304-3835
(97)00340-6

44. Chakravarty PK, Ghosh A, Chowdhury JR. Evaluation of ceruloplasmin
concentration in prognosis of human cancer. Acta Med Okayama (1986) 40(2):103–5.
doi: 10.18926/AMO/31924

45. Zhu B, Zhi Q, Xie Q, Wu X, Gao Y, Chen X, et al. Reduced expression of
ferroportin1 and ceruloplasmin predicts poor prognosis in adrenocortical carcinoma. J
Trace Elements Med Biol (2019) 56:52–9. doi: 10.1016/j.jtemb.2019.07.009

46. Tan MGK, Kumarasinghe MP, Wang SM, Ooi LLPJ, Aw SE, Hui KM. Modulation
of iron-regulatory genes in human hepatocellular carcinoma and its physiological
consequences. Exp Biol Med (2009) 234(6):693–702. doi: 10.3181/0807-rm-227

47. Nishihira J. Molecular function of macrophage migration inhibitory factor and a
novel therapy for inflammatory bowel disease. Ann New York Acad Sci (2012) 1271
(1):53–7. doi: 10.1111/j.1749-6632.2012.06735.x

48. Wang Q, Zhao D, Xian M, Wang Z, Bi E, Su P, et al. MIF as a biomarker and
therapeutic target for overcoming resistance to proteasome inhibitors in human myeloma.
Blood (2020) 136(22):2557–73. doi: 10.1182/blood.2020005795

49. Fisher AB, Dodia C, Sorokina EM, Li H, Zhou S, Raabe T, et al. A novel
lysophosphatidylcholine acyl transferase activity is expressed by peroxiredoxin 6. J
Lipid Res (2016) 57(4):587–96. doi: 10.1194/jlr.m064758

50. Yun H-M, Park K-R, Park MH, Kim DH, Jo MR, Kim JY, et al. PRDX6 promotes
tumor development via the JAK2/STAT3 pathway in a urethane-induced lung tumor
model. Free Radical Biol Med (2015) 80:136–44. doi: 10.1016/j.freeradbiomed.2014.12.022

51. Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential
therapeutic actions. Drug Discovery Today (2005) 10(4):267–73. doi: 10.1016/S1359-6446
(04)03333-1

52. Leung YM, ZhuWH, Loh TT. Apotransferrin can elevate intracellular free calcium
ion and stimulate mitogenesis in human leukemic HL60 cells. Biol Signals (1993) 2
(3):117–25. doi: 10.1159/000109483

53. Inoue T, Cavanaugh PG, Steck PA, Brünner N, Nicolson GL. Differences in
transferrin response and numbers of transferrin receptors in rat and human mammary
carcinoma lines of different metastatic potentials. J Cell Physiol (1993) 156(1):212–7.
doi: 10.1002/jcp.1041560128

54. Sato H, Eby JE, Pakala R, Sirbasku DA. Apotransferrins from several species
promote thyroid hormone-dependent rat pituitary tumor cell growth in iron-restricted
serum-free defined culture. Mol Cell Endocrinol (1992) 83(2-3):239–51. doi: 10.1016/
0303-7207(92)90164-2

55. Chen Z, Guo Y, Zhao D, Zou Q, Yu F, Zhang L, et al. Comprehensive analysis
revealed that CDKN2A is a biomarker for immune infiltrates in multiple cancers. Front
Cell Dev Biol (2021) 9:808208. doi: 10.3389/fcell.2021.808208

56. Yaddanapudi K, Rendon BE, Lamont G, Kim EJ, Al Rayyan N, Richie J, et al. MIF
is necessary for late-stage melanoma patient MDSC immune suppression and
differentiation. Cancer Immunol Res (2016) 4(2):101–12. doi: 10.1158/2326-6066.CIR-
15-0070-T

57. Angeli JPF, Krysko DV, Conrad M. Ferroptosis at the crossroads of cancer-
acquired drug resistance and immune evasion. Nat Rev Cancer (2019) 19(7):405–14.
doi: 10.1038/s41568-019-0149-1

58. Ghobrial IM, Weller E, Vij R, Munshi NC, Banwait R, Bagshaw M, et al. Weekly
bortezomib in combination with temsirolimus in relapsed or relapsed and refractory
multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet
Oncol (2011) 12(3):263–72. doi: 10.1016/s1470-2045(11)70028-6
frontiersin.org

https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1093/nar/gkaa216
https://doi.org/10.1093/nar/gkaa216
https://doi.org/10.1016/j.gpb.2022.01.004
https://doi.org/10.1016/j.gpb.2022.01.004
https://doi.org/10.1016/j.abb.2007.04.024
https://doi.org/10.3389/fphar.2012.00035
https://doi.org/10.1677/erc.1.01048
https://doi.org/10.1158/0008-5472.can-05-4000
https://doi.org/10.1002/ajh.20690
https://doi.org/10.1016/j.mrfmmm.2008.12.010
https://doi.org/10.1016/j.bcp.2013.12.019
https://doi.org/10.1182/blood-2014-12-618900
https://doi.org/10.1158/1078-0432.ccr-13-2175
https://doi.org/10.3389/fnins.2018.00988
https://doi.org/10.1016/j.lungcan.2018.01.012
https://doi.org/10.1016/s0304-3835(97)00340-6
https://doi.org/10.1016/s0304-3835(97)00340-6
https://doi.org/10.18926/AMO/31924
https://doi.org/10.1016/j.jtemb.2019.07.009
https://doi.org/10.3181/0807-rm-227
https://doi.org/10.1111/j.1749-6632.2012.06735.x
https://doi.org/10.1182/blood.2020005795
https://doi.org/10.1194/jlr.m064758
https://doi.org/10.1016/j.freeradbiomed.2014.12.022
https://doi.org/10.1016/S1359-6446(04)03333-1
https://doi.org/10.1016/S1359-6446(04)03333-1
https://doi.org/10.1159/000109483
https://doi.org/10.1002/jcp.1041560128
https://doi.org/10.1016/0303-7207(92)90164-2
https://doi.org/10.1016/0303-7207(92)90164-2
https://doi.org/10.3389/fcell.2021.808208
https://doi.org/10.1158/2326-6066.CIR-15-0070-T
https://doi.org/10.1158/2326-6066.CIR-15-0070-T
https://doi.org/10.1038/s41568-019-0149-1
https://doi.org/10.1016/s1470-2045(11)70028-6
https://doi.org/10.3389/fonc.2023.999688
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	A novel ferroptosis-related gene signature for predicting prognosis in multiple myeloma
	Introduction
	Materials and methods
	Data collection from publicly available databases
	Identification of differentially expressed genes
	Functional enrichment analysis
	PPI network construction and correlation analysis
	Construction and verification of the FRGs risk signature
	Immune infiltration
	Prediction of drug sensitivity
	Cytotoxicity assay and synergy determination with SynergyFinder
	Statistical analysis

	Results
	Identification of differentially expressed FRGs
	Identification of prognostic differentially expressed FRGs
	Construction and validation of FRGs risk signature in GEO cohorts
	The ferroptosis risk score was the independent prognostic factor in MM
	Exploration of underlying mechanisms of the ferroptosis risk signature
	Immune infiltration was correlated with the ferroptosis risk signature
	Drug sensitivity was associated with the ferroptosis risk signature
	Validations for FRGs expressions and determination of synergy effect in vitro

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References


