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Derek J. Richard1 and Emma Bolderson1*

1Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, School of
Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane,
QLD, Australia, 2Department of Medical Genetics, Faculty of Medicine, Institute of Basic Medical
Sciences, University of Oslo, Oslo, Norway, 3Cancer Services, Princess Alexandra Hospital, Brisbane,
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Background: Triple-negative breast cancer (TNBC) is a sub-classification of breast

carcinomas, which leads to poor survival outcomes for patients. TNBCs do not

possess the hormone receptors that are frequently targeted as a therapeutic in other

cancer subtypes and, therefore, chemotherapy remains the standard treatment for

TNBC. Nuclear envelope proteins are frequently dysregulated in cancer cells,

supporting their potential as novel cancer therapy targets. The Lem-domain (Lem-

D) (LAP2, Emerin, MAN1 domain, and Lem-D) proteins are a family of inner nuclear

membrane proteins, which share a ~45-residue Lem-D. The Lem-D proteins,

including Ankle2, Lemd2, TMPO, and Emerin, have been shown to be associated

with many of the hallmarks of cancer. This study aimed to define the association

between the Lem-D proteins and TNBC and determine whether these proteins

could be promising therapeutic targets.

Methods: GENT2, TCGA, and KM plotter were utilized to investigate the

expression and prognostic implications of several Lem-D proteins: Ankle2,

TMPO, Emerin, and Lemd2 in publicly available breast cancer patient data.

Immunoblotting and immunofluorescent analysis of immortalized non-

cancerous breast cells and a panel of TNBC cells were utilized to establish

whether protein expression of the Lem-D proteins was significantly altered in

TNBC. SiRNA was used to decrease individual Lem-D protein expression, and

functional assays, including proliferation assays and apoptosis assays,

were conducted.

Results: The Lem-D proteins were generally overexpressed in TNBC patient

samples at the mRNA level and showed variable expression at the protein level in

TNBC cell lysates. Similarly, protein levels were generally negatively correlated

with patient survival outcomes. siRNA-mediated depletion of the individual Lem-

D proteins in TNBC cells induced aberrant nuclear morphology, decreased

proliferation, and induced cell death. However, minimal effects on nuclear

morphology or cell viability were observed following Lem-D depletion in non-

cancerous MCF10A cells.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1222698/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1222698/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1222698/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1222698/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1222698/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1222698&domain=pdf&date_stamp=2024-04-24
mailto:emma.bolderson@qut.edu.au
https://doi.org/10.3389/fonc.2024.1222698
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1222698
https://www.frontiersin.org/journals/oncology


Rose et al. 10.3389/fonc.2024.1222698

Frontiers in Oncology
Conclusion: There is evidence to suggest that Ankle2, TMPO, Emerin, and Lemd2

expressions are correlated with breast cancer patient outcomes, but larger

patient sample numbers are required to confirm this. siRNA-mediated

depletion of these proteins was shown to specifically impair TNBC cell growth,

suggesting that the Lem-D proteins may be a specific anti-cancer target.
KEYWORDS
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1 Introduction

Triple-negative breast cancers (TNBCs) are a subcategory of

breast carcinomas that do not overexpress the human epidermal

growth factor receptor 2 (HER2) and lack expression of the estrogen

(ER) and progesterone (PR) receptors (1). TNBC is of interest

within the scientific community due to the evident discrepancy

between survival outcomes for TNBC patients and other breast

cancer subtypes.

Specifically, TNBC tumors have been shown to have a

significantly earlier and higher rate of recurrence, with recurrence

rates peaking at 1–3 years post-therapy (2). The burden of TNBC is

emphasized by low 5-year survival rates being 16%, compared with

non-TNBC subtypes (3). Despite substantial advances in targeted

and personalized cancer therapeutics, chemotherapeutics and

surgery remain the primary treatment modalities for TNBC

patients due to the lack of hormone receptors on this tumor type

(4). Disease reoccurrence, distant metastatic lesions, and acquired

resistance are common for TNBC tumors. Therefore, there is

evident need for the exploration of novel therapeutic approaches

for TNBC to improve patient outcomes.

The nuclear envelope (NE) is a double lipid membrane, originally

defined for its role in physically separating the nucleus and cytoplasm

within eukaryotic cells (5). This double lipid membrane can be

further subcategorized as the inner nuclear membrane (INM) and

outer nuclear membrane. There is substantial literature

demonstrating that the INM proteins are required to maintain

cellular functioning. Dysregulation or mutations of these proteins

have been shown to be involved in disease pathophysiology, including

cancer and progeria syndromes (4, 6–8).

The INM is host to several proteins, including the Lem (LAP2,

Emerin, MAN1 domain, and Lem-D) domain proteins, which share

a ~45-residue Lem-domain (Lem-D) that binds to and interacts

with the INM protein, Banf1 (9–12). The Lem-D proteins can be

further categorized into numerical groups (Groups I–III) based on

their membrane topology. Group I proteins, Emerin, Lap2b,
Lemd1, and Lap2a, possess nucleoplasmic domains, and a

transmembrane domain, except for Lap2a (10–12). Group II

proteins, MAN1 and Lemd2, have two transmembrane domains

and a winged helix DNA-binding MSC domain (9, 13, 14). Finally,
02
Group III proteins are functionally diverse from the other sub-

groups, Ankle2 includes an endoplasmic reticulum transmembrane

domain and Ankle1 undergoes nucleo-cytoplasmic shuttling (15,

16). Given the Lem-D proteins have broad membrane topology, it is

conceivable that this translates to diverse roles in tumorigenesis

(13). Collectively, these Lem-D proteins have been shown to

participate in each of the hallmarks of cancer: aberrant cell cycle

progression, cell migration and invasion, aberrant mitosis,

dysregulated DNA repair mechanisms, upregulated proliferation,

and dysregulated cell signaling (14–17). Expression of several Lem-

D proteins is known to be altered in numerous cancer models,

including breast cancer, further supporting a role of the Lem-D

proteins in TNBC tumorigenesis (17–20).

Here, we investigate the role of several Lem-D proteins, Ankle2,

Emerin, TMPO, and Lemd2, in TNBC tumorigenesis, establishing

that depletion of several INM proteins has anti-proliferative effects

and induces apoptosis on TNBC cells, supporting the assertion that

targeting the Lem-D proteins may be an efficacious strategy to

treat TNBC.
2 Methodology and materials

2.1 Reagents

All chemical reagents were purchased from Sigma-Aldrich

(Sigma-Aldrich, Saint Louis, MO, USA), unless otherwise stated.
2.2 Antibodies

Antibodies used were as follows: anti-Emerin (5430, Cell

Signaling Technology, Danvers, MA, USA 1:500 for IF, 1:1000 for

IB), anti-Lemd2 (PA553589, Thermo Fisher Scientific, Waltham

MA, USA 1:300 for IF, 1:1000 for IB), anti-Ankle2 (GTX120698,

Genetex, Irvine, CA, United States 1:200 for IF, 1:1000 for IB), and

anti-TMPO (L3414-.2ML, Sigma-Aldrich, Saint Louis, MO 1:500

for IF, 1:1000 for IB), anti-GAPDH (glyceraldehyde-3-phosphate

dehydrogenase) (D16H11, Cell Signaling Technology, 1:4000 for

IB), and anti–Gamma-Tubulin (T6557, Sigma-Aldrich, 1:3000 for
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IB). Fluorescent secondary antibodies used were Alexa Fluor 488

(Cat# A32766, Molecular Probes, Thermo Fisher Scientific 1:200 for

IF) and 594 (Cat# A32754, Molecular Probes, Thermo Fisher

Scientific, 1:200 for IF), IRDye® 800CW Donkey anti-Mouse IgG

Secondary Antibody (926-32212, LiCor Bioscience, Lincoln, NE,

USA), and IRDye® 680RD Donkey anti-Rabbit IgG Secondary

Antibody (926-68073, LiCor Bioscience).
2.3 Cell culture

BT549, Hs578T, MDA-MB-231, and MDA-MB-468 cells were

utilized as representative TNBC cells. MCF10A cells were used as a

non-malignant, breast tissue–derived control. BT549 and Hs578T

cells were cultured in RPMI (Thermo Fisher Scientific), and MDA-

MB-231 and MDA-MB-468 cells were cultured in DMEM (Thermo

Fisher Scientific). All cell lines were obtained from the American

Type Culture Collection (ATCC) (Manassas, VA, USA). All cell

lines were supplemented with 10% fetal bovine serum (FBS)

(Thermo Fisher Scientific). MCF10A cells were maintained in

DMEM/F12, supplemented with 20% FBS, 100 ng/mL Cholera

Toxin (Sigma-Aldrich) 20ng/mL EGF and 0.01 mg/mL Insulin

(Sigma-Aldrich). All cells were cultured at 37°C in an atmosphere

of 5% CO2.
2.4 siRNA transfections

Control (4390843) and INM silencer select siRNAs [Ankle2

(s23124), TMPO (s24159), Emerin (s2245840), and Lemd2

(s48070) siRNAs] were purchased from Thermo Fisher Scientific.

RNAiMax (Invitrogen, Waltham, MA, USA) was used to transfect

siRNA, as per manufacturer guidelines.
2.5 Immunoblotting

Cells were lysed (lysis buffer: 20 mM HEPES pH 7.5, 250 mM

KCl, 5% glycerol, 10 mM MgCl2, 0.5% Triton X-100, protease/

phosphatase inhibitor cocktail (Thermo Fisher Scientific),

sonicated and cleared by centrifugation. Fifteen microgram of

protein was separated on a 4%–12% BIS-TRIS gel (Invitrogen)

prior transfer to nitrocellulose membrane. Following transfer the

membrane was blocked in Intercept Blocking Buffer (LiCor

Bioscience) for 30 min at room temperature. Immunoblotting

was carried out with the indicated antibodies (see above for

antibody details), incubated with the indicated primary

antibodies for 1h at room temperature in phosphate-buffered

saline solution (PBS-T), washed 3 times in PBS-T, prior to 1h

room temperature incubation in Alexa-conjugated secondary

antibodies in PBS-T and washed 3 times in PBS-T at room

temperature. Anti-GAPDH or g-tubulin antibodies were used as

a loading control. Immunoblots were imaged using an Odyssey

infrared imaging system (LiCor Bioscience).
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2.6 Immunofluorescent microscopy

Immunofluorescence was performed as previously (21). Briefly,

5,000 cells/well were seeded in a 96-well plate and allowed to adhere

for 24h. Cells were pre-treated with extraction buffer for 5 min to

visualize chromatin bound protein, prior to fixation in 4%

paraformaldehyde for 20 min at room temperature. Cells were

permeabilized for 5 min in 0.2% Triton X-100/PBS prior to blocking

for 30 min in 3% bovine serum albumin/PBS. Subsequently, cells

were incubated in indicated primary antibodies for 1h at room

temperature in PBS, washed 3 times in PBS, prior to 1h room

temperature incubation in Alexa-conjugated secondary antibodies

in PBS. Cells were then counter-stained in Hoechst 33342 in PBS

(1mg/mL) for 5 min at room temperature, washed 3 times in PBS

and imaged on a DeltaVision pDV deconvolution microscope with

100×/1.42 oil objective (Applied Precision Inc, Issaquah, WA,

USA). ImageJ was utilized to assemble images. High-throughput

imaging was performed using the IN Cell Analyzer 6500 Imaging

System (GE HealthCare Life Sciences, Arlington Heights, IL, USA).

Nuclear, cytoplasmic, and cellular staining intensity was analyzed

using the IN Cell Investigator software (GE HealthCare Life

Sciences) with a minimum of 200 nuclei quantified/per condition.
2.7 Nuclear envelope localization and
morphology quantification

Immunofluorescent staining and imaging were conducted as

above. Localization and quantification were performed as previously

described (12). Briefly, a minimum of 200 cells/condition were

manually determined to have Lem-D proteins localized/not localized

to the NE and for their “nuclear roundness” using the nuclear form

factor function (form factor = 4�p�area
perimeter2 ) within the IN Cell Investigator

software (GE HealthCare Life Sciences) suite. Nuclear form factor is

also defined as the measure of nuclear circularity or as the nuclear

contour ratio; this measurement was deemed the most suitable

measurement of nuclear circularity as existing literature demonstrates

that it reflects the extent of abnormality in multi-lobed nuclei more

accurately than other measurements, including solidity or eccentricity

(22, 23). As a secondary technique, nuclear roundness was assayed by

manually determining cells to have normal/abnormal

nuclear morphology.
2.8 Proliferation assay

Seventy-two hours following transfection, 500/cells per well were

seeded at sub-confluence into a 96-well plate and allowed to adhere for

24h. Following adhesion, the 96-well plate was placed into an Incucyte

S3 Live Cell Imaging System (Essen Bioscience, Ann Arbor, MI, USA)

and an unlabeled cellular confluence assay was utilized to determine

proliferation rate over a 5-day period. Proliferation curves are

representative of results and area under the curve (AUC) graphs

represent the mean and S.D. of three independent experiments.
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2.9 Apoptosis assay

Cell death was quantified using an Annexin V-FITC apoptosis

kit (ALX-850-020-KI02, Enzo Life Sciences, Farmingdale, NY,

USA). Five days post-transfection, cells were enzymatically lifted

and media containing floating cells was collected. Cells were then

resuspended at 1 × 106 cells/mL in 488-conjugated anti-annexin

(1:40), containing binding buffer. Cells were incubated for 20 min at

room temperature and stained with propidium iodide (1 mg/mL).

Cells were assayed using a CytoFLEX Flow Cytometer (Beckman

Coulter Life Sciences, Indianapolis, IN, USA), and data were

analyzed using FlowJo analysis software.
2.10 Bioinformatics and statistical analysis

Data from the GENT2 database (http://gent2.appex.kr/gent2/)

were used to assess Lem-D protein transcript levels across breast

cancer stages and histologies compared to surrounding healthy

tissue (24). Box plots show median expression levels for each gene

of interest with interquartile ranges and notches show the 95%

confidence intervals. Significance levels were determined by

unpaired Mann–Whitney U tests. Data extracted from the

GENT2 database included breast cancer and non-cancerous

breast tissues from 72 publicly available datasets (Ankle2: 4293

cancer samples and 92 non-cancerous samples).

Plot functions within the cBioPortal for Cancer Genomics

(https://www.cbioportal.org/) were utilized to analyze potential

correlations between mRNA expression of genes of interest (n =

312, four Grade I, 38 Grade II, and 270 Grade III samples) based on

TNBC tumor grade. Raw TCGA data were obtained via the

cBioPortal for Cancer Genomics and compiled in Graph Pad

Prism 9.0 and one-way analyses of variance (ANOVAs) were

utilized to establish statistical significance.

Kaplan–Meier Plotter database (http://kmplot.com/analysis/

index.php?p=service) was used to perform survival analysis for all

breast cancer samples based on Lem-D protein mRNA and protein

expression levels as described (25). Expression was categorized as high-

or low-expressed based on the median mRNA expression within the

database. For mRNA analysis, sample sizes were as follows: Lemd2

(Geneprobe set – 2224980, n = 943, low expression = 470,

high expression = 473), TMPO (Geneprobe set – 203432, n = 1879,

low expression = 940, high expression = 939), Ankle2, (Geneprobe set –

212200, n = 1879, low expression = 947, high expression = 932), and

Emerin (Geneprobe set – 209477, n = 1887, low expression = 944, high

expression = 935). For protein analysis, the Tang dataset was utilized to

analyze the correlation between Lemd2 and TMPO expression and OS

(n = 126), and the Liu dataset was used to analyze the correlation

between Ankle2 and Emerin expression and OS (n = 65) (26, 27).

A log-rank test and Cox proportional hazard analysis were used to

determine the statistical significance of survival outcomes.

Unless otherwise stated, data are presented as mean values and

error bars represent SD from three biologically independent
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experiments. Normality was assessed using the Shapiro–Wilk test

in Graph Pad Prism. If normality test was passed, statistical analysis

was performed using a two-tailed Student’s t-test or one-way

ANOVAs. If normality test failed, statistical analysis was

performed using a Mann–Whitney U test or Kruskal–Wallis H test.
3 Results

3.1 Expression of the Lem-domain proteins
in patient samples

To establish whether the expression of the Lem-D proteins was

dysregulated in breast cancer, the mRNA fold change of each Lem-

D protein was analyzed using the GENT2 dataset (Figures 1A–D)

(24). Ankle2, TMPO, Emerin, and Lemd2 were significantly

overexpressed in breast tumor samples, in comparison to adjacent

normal tissue. However, for most of the transcripts investigated, the

difference in expression was only a 0.1- to 0.3-fold change

(Figures 1A–D). Furthermore, expression data for Grades I–III

TNBC samples within the TCGA dataset were utilized to establish

correlations between tumor stage and expression of Lem-D

transcripts (Figures 1E–H). The only datasets that reached

statistical significance were the difference in mRNA between

Grades II and III TNBC carcinomas. No statistically significant

difference was observed between Grades I and II or I and III tumors.

Although, it should be noted that the datasets contain less than 10

samples, which could impact the overall significance of the results.

Given this dataset did not include values for non-cancerous

samples, we were unable to establish the difference in expression

of the Lem-D proteins in each grade and non-cancerous tissue.

Kaplan–Meier plots were generated to investigate the level of

correlation between Lem-D protein mRNA expression and overall

survival (OS), defined as the time from diagnosis to death, in breast

cancer patients. Plots were generated utilizing the mRNA genechip

data available within the KM plotter online database (Figures 1I–L).

Kaplan–Meier survival probabilities are generated at each datapoint

based on the number of surviving patients, relative to the number of

patients at risk. TMPO mRNA expression was negatively correlated

with breast cancer patient OS (Figure 1J). Ankle2 and EMD mRNA

expressions were also negatively correlated with OS, however, were not

statistically significance (Figures 1I, K). In contrast, Lemd2 expression

positively correlated with OS to a level that did not reach statistical

significance (Figure 1L). Kaplan–Meier plots were also generated for

protein-expression datasets; however, datasets available were of a small

size (n = 65 for Ankle2 and Emerin and n = 126 for TMPO and

Lemd2). From these datasets, protein expression of the Lem-D proteins

showed a negative relationship with OS, reaching statistical significance

for Ankle2, EMD, and Lemd2. However, statistical significance was not

reached for the correlation between protein expression of TMPO and

breast cancer patient OS (Supplementary Figure S1). Together, these

analyses suggest that overexpression of the Lem-D proteins is generally

associated with lower overall patient survival.
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3.2 Expression and localization of the
Lem-D proteins in TNBC cells

Given the Lem-D transcripts, Ankle2, TMPO, Emerin, and

Lemd2, were overexpressed in breast cancer patient samples and

overexpression largely associated with poorer patient outcomes, we

next investigated whether the Lem-D proteins were similarly

overexpressed in TNBC cell lines.

To investigate the expression of the Lem-D proteins in TNBC,

immunoblotting was conducted in the representative TNBC cell

lines: BT549, Hs578T, MDA-MB-231, and MDA-MB-468, in

comparison to epithelial MCF10A cells as a non-cancerous breast

tissue cell line. Ankle2 expression was significantly downregulated

in the BT549 and Hs578T TNBC cell lines, in comparison to the

non-cancerous MCF10A cells (Figures 2A, B). In contrast, Emerin

was shown to be over-expressed in one out of four of the TNBC

cells, in comparison to MCF10A cells, whereas there were no

significant changes in LEMD2 protein levels (Figures 2A, C, D).

There are three main isoforms of TMPO, and these were all detected
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by the TMPO antibody used in this study. While there were no

significant changes in TMPOa or b protein levels, TMPOg was

shown to be significantly increased in all four TNBC cell lines tested

(Figures 2A, E–G).

Mislocalization of proteins is a well-recognized characteristic of

tumor cells (28). Therefore, we next investigated whether

localization of the Lem-D proteins was maintained in TNBC cells.

Immunofluorescent microscopy of TNBC cells demonstrated that

localization of the Lem-D proteins was largely consistent with that

of non-cancerous MCF10A cells (Figure 3; Supplementary Figure

S2). Across all tumorigenic cell lines, Emerin and TMPO staining

maintained clear NE localization, with some nuclear staining, in

TNBC and MCF10A cells. Ankle2 staining was predominately NE

localized, with minor cytoplasmic staining, likely attributed to

endoplasmic reticulum localized Ankle2 (29). Similarly, Lemd2

predominately localized to the NE, with evident cytoplasmic

staining in TNBC and MCF10A cells. There was minimal

variation between the percent of TNBC and MCF10A cells where

the Lem-D proteins did not localize to the NE (Figures 3B–E).
A B C D

E F G H

I J K L

FIGURE 1

Expression of several Lem-D proteins is significantly elevated in TNBC tumor patient samples. (A–D) Box plots of Lem-D gene expression comparing
normal and breast tumor patient samples utilizing the Gene Expression database of Normal and Tumor tissues 2 (GENT2) database: (A) Ankle2
expression, (B) TMPO expression, (C) Emerin expression, and (D) Lemd2 expression. (E–H) Graphical representation of expression of the Lem
proteins in Stages I, II, and III TNBC patient samples utilizing The Cancer Genetics Atlas (TCGA) database: (E) Ankle2 (F) TMPO (G) Emerin, and
(H) Lemd2 expressions. (I–L) Kaplan–Meier values for Lem-D gene expression in breast cancer patients showed that high mRNA expression of
Lem-D genes was associated with a decrease in the probability of patient overall survival. Lem-D mRNA transcript expression was categorized as
high or low expressed based on the median mRNA expression within the database. The effect of (I) Ankle2, (J) TMPO, (K) Emerin, and (L) Lemd2
mRNA expression on patient overall survival. For (A–H): error bars denote standard deviation of the mean. Statistical significance was calculated
using a Kruskal–Wallis test: ****p< 0.0001, **p< 0.0021. For (I–L): statistical significance was calculated using a log-rank p-test. ns, not significant.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1222698
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Rose et al. 10.3389/fonc.2024.1222698
However, in MDA-MB-468 cells there was a small but significant

decrease in the percent of NE localized Lemd2 cells, compared to

MCF10As (Figure 3E).

Atypical nuclear morphology is a hallmark of cancer cells and

aberration of NE proteins induces abnormal nuclear morphology in

cells (7, 30–32). Therefore, we sought to investigate whether Lem-D

protein depletion induces abnormal nuclear morphology. Protein

expression of Ankle2, Emerin, TMPO, and Lemd2 was depleted via

siRNA and confirmed by immunofluorescent microscopy

[Supplementary Figure S3 (168h post-transfection), Supplementary

Figure S4 (72h post-transfection)]. Nuclear morphology was analyzed

via immunofluorescent microscopy and quantified using the form

factor analysis of InCarta software and values were verified by visually

categorizing nuclei as having abnormal/normal morphology

(Figure 4; Supplementary Figure S5). siRNA-mediated depletion of

all Lem-D proteins significantly decreased the form factor value at

96h post-transfection of TNBC cells, in comparison to control

siRNAs. Furthermore, Lem-D protein depletion did not

significantly alter form factor values from respective controls in

MCF10A cells (Figure 4). Visual quantification of nuclei as having

abnormal/normal morphology supported these findings,

demonstrating that siRNA-mediated depletion of Lem-D proteins

significantly increased the percent of TNBC cells with abnormal

nuclear morphology, but not MCF10A cells (Figure 4; Supplementary

Figure S5). Collectively, suggesting a tumor-specific role for the Lem-

D in maintaining nuclear morphology.
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3.3 Depletion of the Lem-domain proteins
inhibits TNBC cell growth

To investigate the role of the Lem-D proteins in TNBC growth, an

Incucyte S3 direct cell count proliferation assay was conducted to

establish changes in proliferative capacity of TNBC and MCF10A cells

following siRNA-mediated depletion of the Lem-D proteins. BT549

and MDA-MB-231 were selected as representative TNBC cell lines.

Ankle2 and Emerin depletion did not significantly impact upon the

proliferation of non-cancerous MCF10A cells, as demonstrated by the

proliferation graphs and AUC analysis (Figures 5A, D). In contrast,

TMPO and Lemd2 depletion had a 20%–30% reduction in MCF10A

cell proliferation, as demonstrated via AUC analysis compared to the

cells transfected with control siRNA (Figures 5A, D). Lemd2 depletion

was shown to decrease the proliferative capacity of the tumorigenic

BT549 and MDA-MB-231 cells by ~50%–65%. This suggests some

level of tumor specificity, as the anti-proliferative effect of Lemd2

depletion in TNBC cells was twofold to 2.5-fold higher than observed

in MCF10A cells. (Figures 5B–F). The marked antiproliferative effect

following TMPO depletion in BT549 and MDA-MB-231 cells was

similar in MCF10A cells, suggesting that siRNA-mediated depletion of

TMPO is not likely to be a targeted mechanism of inhibiting TNBC cell

growth. Finally, Ankle2 and Emerin depletion showed similar anti-

proliferative outcomes in BT549 and MDA-MB-231 cells, reducing the

proliferation rate to ~50% of respective endogenous rates

(Figures 5B–F).
A B C D

E F G

FIGURE 2

Expression of the Lem-domain proteins in TNBC cells. (A) Representative Western blot of BT549, Hs578T, MDA-MB-231, and MDA-MB-468 whole
cell lysates showing expression of Lemd2, Ankle2, Emerin, and TMPO isoforms in TNBC cell lines, in comparison to the control MCF10A non-
cancerous breast tissue cells. b−Actin was utilized as a loading control to allow for standardization via densitometry in ImageJ Software (B–G)
Graphs represent densitometry analysis of Lem protein expression determined via Western blot analysis in TNBC normalized to non-cancerous
MCF10A cells: (B) Ankle2 (C) Lemd2 (D) Emerin, and (E–G) TMPOa, b, and g. Graphed values represent results from three individual repeats and error
bars denote standard deviation of the mean. Statistical significance was calculated using an unpaired t-test: ***p< 0.0002, **p< 0.0021, *p< 0.0332.
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Given that Lem-D protein depletion was shown to inhibit

tumor cell proliferation, we next investigated whether this was

due to cell death. An Annexin V/PI apoptosis assay was conducted 5

days post-transfection with the Lem-D and control siRNAs and

measured by flow cytometry (Figures 6A–C; Supplementary Figure
Frontiers in Oncology 07
S6). In MCF10A cells, transfection with the Lem-D siRNAs did not

significantly increase cell death, compared to control siRNA

(Figure 6A). However, depletion of all Lem-D proteins

significantly increased the percentage of early or late-apoptotic

cells in the BT549 cell line, in comparison to the control siRNA
A

B C

D
E

FIGURE 3

The Lem-D proteins are consistently localized in TNBC cells. (A) Representative immunofluorescent microscopy images of MCF10A, BT549, Hs578T,
MDA-MB-231, and MDA-MB-468 cells. Cells were stained with Ankle2, TMPO, Emerin, and Lemd2 antibodies. Cells were counterstained with
Hoechst 33342 (blue). (B–E) Quantification of the portion of cells with individual Lem-D proteins localized to the NE. (B) Ankle2, (C) TMPO,
(D) Emerin, and (E) Lemd2. Quantifications are based on 200 cells/condition in at least three experimentally independent experiments. Error bars
denote standard deviation of the mean. Scale bars = 10 µM. Statistical significance was calculated using an unpaired t-test: *p< 0.0332.
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(Figure 6B). Similarly, Lem-D protein depletion in MDA-MB-231

cells significantly increased the percent of apoptotic or necrotic

cells, relative to the control (Figure 6C).

4 Discussion

The Lem-D proteins have been shown to be dysregulated in

various cancer models and, suppression or silencing of several of
Frontiers in Oncology 08
these proteins is known to produce anti-proliferative effects in

breast, colon, lung, gastric, and cervical cancer models (14, 17,

33–36). Our findings build upon the existing knowledge of the roles

of Lem-D proteins in tumor cells and demonstrate the role of

several Lem-D proteins: Ankle2, TMPO, Emerin, and Lemd2 in

TNBC growth and cell survival. This study provides novel insight

into the capacity of this protein family as potentially exploitable as

an anti-cancer therapy.
A B

D E

F G

H I

C

FIGURE 4

siRNA-mediated depletion of the Lem-D proteins induces aberrant NE morphology in TNBC cells. Representative immunofluorescent microscopy
images of MCF10A and TNBC cells transfected with control and Lem-domain (Lem-D) protein siRNAs. Cells were stained with Hoechst 33342 to
visualize the nucleus. Representative cells categorized to have normal and abnormal nuclear morphology: (A) MCF10A (B) BT549 (C) Hs578T
(D) MDA-MB-231, and (E) MDA-MB-468. Quantification of cells with aberrant nuclear morphology in Control and Lem-D protein siRNA transfected
cells. Normalized nuclear form factor values for: (F) Ankle2, (G) TMPO, (H) Emerin, and (I) Lemd2 siRNA. Form Factor score of 1 = perfect round
nucleus. Quantifications are based on 200 cells/condition in at least three independent experiments. Error bars denote standard deviation of the
mean. Statistical significance was calculated using an unpaired t-test: ****p< 0.0001, ***p< 0.0002, **p< 0.0021, *p< 0.0332. ns, not significant.
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4.1 Ankle2 in triple-negative breast cancer

Ankle2 is a Lem-D protein required for maintaining NE

structural integrity and has a multifaceted role in post-mitotic

nuclear reassembly. Specifically, Ankle2 is essential for preserving

appropriate dephosphorylation of Banf1 during mitosis, via both

inhibiting the Banf1 phosphorylating kinase, VRK1, and

upregulating PP2A-mediated dephosphorylation, to promote

chromatin recruitment (37). To understand the role of Ankle2,

and the other Lem-D proteins, in breast cancer tumorigenesis,

bioinformatic analysis of the GENT2 database was conducted to

establish whether mRNA levels of the Lem-D proteins were altered

in breast cancer samples, in comparison to non-cancerous tissue

adjacent to tumor margins (24). We demonstrated that Ankle2

transcripts were overexpressed in breast cancer samples, compared

to non-cancerous tissue, and the extent of overexpression negatively

correlated with breast cancer patient OS.

Despite this initially positive trend, we observed significant

downregulation of Ankle2 expression in half of the TNBC cells

compared to a non-cancerous control. In contrast to our findings,

Ankle2 overexpression has previously been reported in ER-positive

breast cancer models, with Ankle2 being identified to have an essential

role in promoting ERa DNA-binding and transactivation activity (17).

Given that TNBC cells lack the ER receptor, it is conceivable that this
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may contribute to the lack of Ankle2 overexpression observed in TNBC

cells specifically.

Consistent with earlier findings in both mammalian and

Drosophila models, we observed Ankle2 localization to the NE

and ER in TNBC cells (29). Furthermore, we demonstrated that

siRNA-mediated depletion of Ankle2 induced a markedly abnormal

nuclear phenotype in TNBC cells, consistent with prior findings in

U-2OS osteosarcoma cells and HeLA cervical carcinoma cells (38,

39). Ankle2’s role in maintaining nuclear integrity has been

previously attributed to the role of Ankle2’s phosphorylation

status in NE breakdown and reformation (37, 38). Consistent

with our observations, Ankle2 depletion by CRISPR/Cas9

technology has been previously shown to impair the mechanical

stability of the nucleus and induce chromosomal instability via

disrupting the association between Banf1, Lamin A, and Lap2a with

the chromosomes following mitosis (39). LEM-4L silencing has

been previously shown to disrupt Banf1 dephosphorylation and

subsequent post-mitotic NE reformation in C. elegans (37).

Together, these findings suggest that the abnormal nuclear

phenotype observed in TNBC cells following Ankle2 depletion

may arise due to ineffective post-mitotic NE reformation.

Furthermore, our data demonstrates that siRNA-mediated Ankle2

depletion inhibits cell proliferation and induces cell death in a

largely tumor-specific manner. While our investigation is the first to
frontiersin.o
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FIGURE 5

siRNA-mediated depletion of Lem-D proteins inhibits TNBC cellular proliferation. (A–E). Representative proliferation curves from 72h post-
transfection with Control and individual Lem-D protein siRNAs using the Incucyte S3 live cell imaging system in MCF10A and TNBC cells.
(A) MCF10A (B) BT549 and (C) MDA-MB-231. (D–F) Relative area under the proliferation curve for (A–C) from at least three independent
experiments. Error bars denote standard deviation of the mean. Values are normalized back to Control siRNA for respective cell lines. Statistical
significance was calculated using an unpaired t-test: ****p< 0.0001, ***p< 0.0002, *p< 0.0332.
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propose a role for Ankle2 TNBC proliferation, previous studies in

hormone-positive breast cancer cells and HeLa cells support this

observation (17, 39).

Based on the known cellular functions of Ankle2, it can be

hypothesized that Ankle2 depletion may impair TNBC proliferation

and induce cell death due to the inability to reform the NE following

mitosis in the highly mitotic TNBC cells, resulting in mechanically

vulnerable cells and potential cell death.
4.2 Emerin in triple-negative breast cancer

Emerin is an inner NE protein known to be involved in

maintaining the nuclear morphology of interphase cells and post-

mitotic nuclear reformation. We demonstrate EMD transcript

overexpression in breast cancer patient samples. EMD protein

was also increased in two out of four TNBC cell lysates tested,

when compared to non-cancerous cell lines. However, previous

investigations have produced conflicting results regarding the

expression of Emerin protein in breast cancer samples, with one

study showing a decrease in Emerin protein levels (40) and one

showing an increase in comparison to human primary breast

epithelial cells (20). Our findings also demonstrated that EMD

expression was shown to negatively correlate with patient outcomes

suggesting a possible role for Emerin in breast cancer cell growth

and proliferation.

Consistent with prior findings in both mammalian cells and C.

elegans, we observed Emerin localization to the NE in both the

MCF10A and TNBC cells (41, 42). Like our Ankle2-related findings,

we observed that siRNA-mediated depletion of Emerin induced an

abnormal nuclear morphology in TNBC cells. Previous studies have

shown that deletion of regions of the EMD sequence has been shown

to induce improper centromere and tubulin network localization and

increase mitotic time (36, 43). Therefore, this suggests that abnormal

nuclear morphology may arise following Emerin depletion due to

failed or defective mitotic events. The role of Emerin in maintaining

appropriate mitotic progression may also contribute to the anti-

proliferative effect and cell death observed following Emerin

depletion in TNBC cells. Numerous prior investigations have

reported a role for Emerin in cellular proliferation, and that
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siRNA-mediated depletion of Emerin inhibited cellular

proliferation through multiple proposed methods (44, 45).

However, it has been previously shown that Emerin directly binds

beta-catenin, a signaling factor of the Wnt pathway which is

commonly dysregulated in tumor cells. Specifically, Emerin null

cells have been shown to have suppressed beta-catenin activity and

upregulated cellular proliferation (46). GFP-Emerin overexpression

has also been shown to decrease tumor size in mice models (47).

Collectively, our findings and prior literature indicate that Emerin is

likely to have a multifaced role in tumor cell growth and proliferation,

which may be impacted by several underlying factors, therefore,

indicating the need for further investigation into the underlying role

of Emerin in tumor cell growth.
4.3 Lemd2 in triple-negative breast cancer

Lemd2 is an INM protein with a known role in several cellular

processes, including nuclear organization. Cellular investigations in

HeLa cells and C. elegans also suggest a role of Lemd2 in

maintaining nuclear morphology due to its interactions with

chromatin and the nuclear lamina, with siRNA-mediated

depletion of Lemd2 inducing a similar nuclear phenotype to that

observed within our own investigations (48, 49).

Unlike the other Lem-D proteins investigation, Lemd2

expression was shown to positively correlate with OS in breast

cancer patients. While our study is the first to investigate Lemd2

expression in breast cancer, a previous study has shown Lemd2

overexpression in prostate adenocarcinoma models (16).

Furthermore, our findings demonstrated the localization of

Lemd2 to the NE and cytosol, which we hypothesized to be

lysosomal. This NE localization of Lemd2 is consistent with prior

findings in S. pombe yeast and multiple human cell lines, including

U-2OS and HeLa cells (32, 50). While our investigation was the first

to propose the lysosomal localization of Lemd2, Lemd2 has been

shown to interact with ESCRT-III, a key protein involved in

maintaining the lysosomal membrane (50). Similarly, WT Lemd2

overexpression has been shown to have similar localization in U-

2OS cells (51). However, further investigations are required to

validate the proposed localization of Lemd2 to the lysosomes.
A B C

FIGURE 6

siRNA-mediated depletion of the Lem-D proteins induces TNBC cell death. Graphs represent percent of live, apoptotic (early and late apoptotic) and
necrotic cells 5 days post-transfection with Control, Ankle2, TMPO, Emerin, and Lemd2 siRNAs (A) MCF10A (B) BT549 (C) MDA-MB-231 cells.
Graphed values represent results from three individual repeats and error bars denote standard deviation of the mean. Statistical significance was
calculated using an unpaired t-test: ****p< 0.0001, ***p< 0.0002. ns, not significant.
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Additionally, Lemd2 depletion was shown to induce an

abnormal nuclear phenotype in the TNBC cell lines but not non-

cancerous MCF10A cells. Given that Lemd2 has been previously

identified to have essential roles in NE reformation during mitosis,

it can be proposed that TNBC cells may exhibit abnormal nuclear

morphology following improper NE reformation during

mitosis (50).

Our findings also demonstrated that siRNA-mediated depletion

of Lemd2 significantly impaired cellular proliferation and induced

apoptosis in a TNBC cell–specific manner. While the exact tumor

inhibiting mechanism is yet to be established, Lemd2’s role in

inducing aberrant nuclear morphology and inhibiting the growth of

TNBC could be attributed to Lemd2’s role in NE rupture repair.

Lemd2 is required for the recruitment of ESCRT-III mediated

repair machinery to the site of NE ruptures (52). Therefore, given

abnormal nuclear morphology and uncontrollable proliferation are

pre-existing hall marks of tumor cells, it is conceivable that these

collectively result in NE ruptures which are unable to be repaired in

Lemd2-deficient cells. Therefore, further inducing aberrant nuclear

morphology, inhibiting tumor cell growth, and inducing cell death.

However, Lemd2 has also been shown to have multiple other

cellular functions, including participation within the MAPK

signaling pathway. Therefore, potential change in the activity of

these pathways should also be investigated to further elucidate

Lemd2’s role in tumor cell growth (53).
4.4 TMPO in triple-negative breast cancer

TMPO is alternatively spliced to produce three main isoforms,

several of which have been linked to nuclear mechanics and are

known to be NE localized (54). The TMPO isoform, TMPOa, has
been indicated to have a role in maintaining nuclear organization

via stabilizing higher order chromatin organization (55). TMPOb is

also known to participate in nuclear growth in Xenopus laevis

models, with the treatment of cells with the human TMPOb
fragment 1–187 inducing a dose-dependent formation of

scalloped nuclei phenotype, consistent with that observed within

our investigations (54). Our data indicate that TMPO may be

overexpressed in breast cancer tumors, as demonstrated by

patient data and that the TMPOg isoform protein is significantly

increased in TNBC cell lines. Previous investigations have

demonstrated TMPO overexpression in multiple tumor cell lines,

including breast, colorectal, cervical, and pancreatic cancer models

(35, 56–59). Furthermore, we demonstrate that TMPO

overexpression may play a role in breast cancer tumor growth

pathways, given that mRNA expression was negatively correlated

with patient outcomes.

Consistent with earlier findings, we observed compelling NE

localization of TMPO (60). Furthermore, siRNA-mediated TMPO

depletion was shown to induce aberrant nuclei morphology in

TNBC cell lines but not non-cancerous MCF10A cells. Given the

recognized cellular functions of TMPO, it can be proposed that

TMPO-depleted TNBC cells may exhibit aberrant nuclear

morphology due to loss of appropriate chromatin organization or

due to improper NE or nucleus formation in post-mitotic cells.
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TMPO expression has also been shown to inversely correlate with

the level of nuclear membrane ruptures and this may play a role in

the induction of abnormal nuclei (61).

TMPO expression has previously been shown to correlate with

the proliferative capacity in multiple cellular models (62),

supporting a role for TMPO in unregulated cancer cell

proliferation. Unlike the other Lem-D proteins examined,

depletion of TMPO was shown to induce significant anti-

proliferative effects in both the TNBC and the non-cancerous

MCF10A cells. Consistently, siRNA-mediated depletion of TMPO

has previously been shown to induce growth-inhibiting phenotypes,

such as reduced proliferation and the induction of apoptosis, in

non-cancerous dermal fibroblasts and tumor models (63, 64).

TMPO loss in Hutchinson Gilford progeria patient fibroblasts has

also been casually linked to a proliferation defect in these cells (65).

Previous investigations suggest that the role of TMPO in cell

proliferation is likely due to TMPO’s role in pRb-mediated cell

cycle control. TMPO can directly bind to Rb and is essential for the

anchorage of Rb to the nucleus induces E2F activation and

downstream gene expression and maintains appropriate cell cycle

progression (66). TMPO has also been shown to have a key role in

maintaining genomic stability, specifically via chaperoning

replication protein A (RPA) to the site of DNA damage (67).

While the mechanism surrounding the lack of cancer specificity

effect was not elucidated within our investigation, this does suggest

that other Lem-D proteins may be more suited candidates as cancer

therapeutics than TMPO, as there may be a heightened risk of

toxicity to normal cells with this target.
4.5 Potential shared mechanisms of
anti-cancer activity

Annexin V/PI apoptosis assays demonstrated that the extent of

cell death did not fully correlate with the anti-proliferative effect

induced by Lem-D protein depletion in TNBC cells. For instance,

depletion of the Lem-D proteins was shown to reduce the

proliferative capacity of MDA-MB-231 cells by >50%; however,

only a 15%–20% decrease in viability was reported. Similar

discrepancies were observed in BT549 cells following Lem-D

protein depletion. It is possible that the anti-proliferative effect is

not exclusively induced by cell death or occurs at a later point than

the 5-day time point examined, and the true level of cell death is not

being fully observed by our assay. Given the Lem-D proteins are

known to have diverse functions, the proliferative arrest could be

due to mitotic arrest or cellular senescence or quiescence after

improper mitotic progression, which is feasible if targeting Lem-D

proteins disrupts the reformation of the NE (37, 39, 68, 69).

Therefore, future experiments should include investigating the

role of these proteins in cell cycle progression, specifically mitosis.

It is evident that the Lem-D proteins have several unique

functions in maintaining the NE structural integrity of interphase

cells and during mitotic NE breakdown and reformation, with

disruption of any of these processes uniquely leading to impaired

NE integrity and a subsequent aberrant nuclear phenotype.

However, it cannot currently be distinguished whether siRNA-
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mediated depletion of the individual Lem-D proteins may also

induce aberrant nuclei in TNBC cells via a common mechanism

mediated by their universal Lem-D, rather than their cellular

functions discussed above.

To date, there have been minimal studies conducted in non-

cancerous mammalian cells examining the effect of Lem-D protein

depletion on the nuclear morphology of “normal” cells (70). Within

our investigations, we have shown that, unlike TNBC cells,

depletion of the Lem-D proteins does not significantly alter

nuclear morphology in non-cancerous MCF10A cells. While we

are unable to establish an exact mechanism by which depletion of

the Lem-D proteins induces a tumor-specific outcome, several

potential mechanisms should be investigated in further studies. It

is well reported that nuclear morphology is frequently altered under

endogenous conditions in tumor cells, with nuclear invaginations

and folded nuclei being associated with higher malignancy rates and

poor patient outcomes (71). Similarly, the criteria for pathological

diagnosis of several cancers include the detection of aberrant NE

protein expression or morphology (72).

While the localization of the Lem-D proteins is well established

in non-diseased mammalian cells and other cancer models, it

remains to be established whether this is maintained in TNBC

cell lines (39, 49, 55, 73). We demonstrated that localization of Lem-

D proteins to the INM is largely maintained in TNBC, and these

proteins participate in cellular processes required to preserve TNBC

nuclear morphology. While the underlying mechanism of these

siRNA-induced aberrant nuclear morphologies was not within the

scope of this investigation, several mechanisms have been

considered based on known roles of the proteins.

Particularly, it is conceivable that tumor cells have a more

prominent change in nuclear morphology following Lem-D protein

depletion due to a mechanical vulnerability induced by their pre-

existing abnormal nuclear structure, which promotes further

distortion of the nucleus following disruption to NE homeostasis.

Not only are the Lem-D proteins involved directly in maintaining

nuclear morphology due to their NE localization and mitotic roles

but they have also been identified as interactors of other proteins

involved in maintaining nuclear stability, such as Lamin A/C and

Lamin B (15, 73, 74). Expression of these proteins is also frequently

mis-localized or decreased in breast cancer, thereby, suggesting that

depletion of their Lem-D interactors may further impair the

function of these proteins, emphasizing the reduction in nuclear

stability induced by their dysregulation.

Our data demonstrate that siRNA-mediated depletion of

Ankle2, Emerin, and Lemd2 inhibits cell proliferation in a largely

tumor-specific manner in TNBC cells. Further investigations would

benefit from the use of a xenograft model to validate the utility of

targeting the Lem-D proteins in TNBC.

In conclusion, our works demonstrate the consistent localization

of Ankle2, TMPO, Emerin, and Lemd2 to the NE in TNBC cells.

siRNA-mediated depletion of these proteins also indicates a tumor-

specific role of the Lem-D proteins in maintaining TNBC nuclear

morphology. Furthermore, the induction of aberrant nuclei via
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depletion of these proteins produces an evident anti-proliferative

effect and cell death in TNBC cells. Except for TMPO, this phenotype

was demonstrated to be predominately tumor specific. Therefore,

while further work is needed to elucidate the underlying mechanism

by which the Lem-D proteins regulate TNBC growth, our findings

provide the first evidence for a dynamic role of the Lem-D proteins in

tumorigenesis and the potential for targeting this family as an anti-

cancer therapy.
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