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of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet,
Biomedicum, Stockholm, Sweden, 3Laboratory of Analytical Chemistry, Daiichi University of
Pharmacy, Fukuoka, Japan, 4Department of Pathology, St. Marianna University Hospital,
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Background: Solid-predominant lung adenocarcinoma (SPA), which is one of the

high-risk subtypes with poor prognosis and unsatisfactory response to

chemotherapy and targeted therapy in lung adenocarcinoma, remains

molecular profile unclarified. Weighted correlation network analysis (WGCNA)

was used for data mining, especially for studying biological networks based on

pairwise correlations between variables. This study aimed to identify disease-

related protein co-expression networks associated with early-stage SPA.

Methods:We assessed cancerous cells laser-microdissected from formalin-fixed

paraffin-embedded (FFPE) tissues of a SPA group (n = 5), referencing a low-risk

subtype, a lepidic predominant subtype group (LPA) (n = 4), and another high-risk

subtype, micropapillary predominant subtype (MPA) group (n = 3) and performed

mass spectrometry-based proteomic analysis. Disease-related co-expression

networks associated with the SPA subtype were identified by WGCNA and their

upstream regulators and causal networks were predicted by Ingenuity

Pathway Analysis.

Results: Among the forty WGCNA network modules identified, two network

modules were found to be associated significantly with the SPA subtype.

Canonical enriched pathways were highly associated with cellular growth,

proliferation, and immune response. Upregulated HLA class I molecules HLA-G

and HLA-B implicated high mutation burden and T cell activation in the SPA

subtype. Upstream analysis implicated the involvement of highly activated

oncogenic regulators, MYC, MLXIPL, MYCN, the redox master regulator

NFE2L2, and the highly inhibited LARP1, leading to oncogenic IRES-dependent

translation, and also regulators of the adaptive immune response, including

highly activated IFNG, TCRD, CD3-TCR, CD8A, CD8B, CD3, CD80/CD86, and

highly inhibited LILRB2. Interestingly, the immune checkpoint molecule HLA-G,

which is the counterpart of LILRB2, was highly expressed characteristically in the

SPA subtype and might be associated with antitumor immunity.
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Conclusion: Our findings provide a disease molecular profile based on protein

co-expression networks identified for the high-risk solid predominant

adenocarcinoma, which will help develop future therapeutic strategies.
KEYWORDS

solid predominant adenocarcinomas of the lung, WGCNA, data-driven co-expression
protein networks, upstream regulator analysis, laser microdissection, proteomics,
mass spectrometry
1 Introduction

Lung cancer is the leading cause of death globally, of which lung

adenocarcinoma is the most common pathological subtype.

Invasive nonmucinous adenocarcinoma is primarily categorized

into five histopathological subtypes: lepidic, acinar, papillary,

micropapillary, and solid, based on the 2021 World Health

Organization Classification of Lung Tumors (1). Micropapillary-

and solid-predominant lung adenocarcinoma (MPA and SPA,

respectively) are high-risk subtypes with high metastatic potential

and the worst prognosis. In contrast, low-risk subtypes

character ized by wel l- and moderate ly-di fferentiated

morphologies, such as lepidic predominant adenocarcinoma

(LPA) have a favorable prognosis (2, 3). Lung adenocarcinomas

usually contain complex mixtures of different subtypes. MPA

exhibits a micropapillary pattern, which is the primary

histological pattern assessed semi-quantitatively in 5% increments

in resected specimens. It is associated with lymphatic invasion,

pleural invasion, and lymph node metastases (4).

Caso et al. conducted a genomic characterization of

prognostically important predominant histologic subtypes of lung

adenocarcinoma and found that MPA and SPA exhibited a higher

tumor mutational burden, increased chromosomal instability

(CIN), higher APOBEC (the enzyme with DNA mutagenesis

function) mutational signatures, more oncogenic pathway

alterations, and the lowest frequency of targetable genomic

alterations among the subtypes (5). Micropapillary or solid

patterns are risk factors for predicting poor recurrence-free

survival in early-stage IA lung adenocarcinoma (6). Recently, Jeon

et al. compared the clinicopathological features and clinical course

of patients with the MPA and SPA subtypes, including predominant

and non-predominant subtypes after curative resection of stage I

lung adenocarcinoma and analyzed the prognostic factors. The

clinical results were different for stage I high-grade adenocarcinoma

and the predominant micropapillary subtype was an independent

prognostic factor for recurrence, whereas the solid subtype was a

significant factor for overall survival (7).

A pivotal challenge is to unravel the underlying cancer biology

of those high-risk lung adenocarcinomas and how tumor

morphologic appearances are linked to malignant clinical

outcomes. Solid predominant adenocarcinoma (SPA) shows a
02
major component of polygonal tumor cells forming sheets that

lack recognizable patterns of adenocarcinoma, such as acinar,

papillary, micropapillary, or lepidic growth. SPA subtype and the

presence of solid pattern are associated with numerous poor

prognostic factors, including higher mitotic count, high risk of

occult lymph node metastases, thyroid transcription factor-1 (TTF-

1) negativity, and less frequent epidermal growth factor receptor

(EGFR) mutations (8). However, molecular profiles characterizing

the SPA subtype remain unclear. In this study, we focus on

identifying disease-related co-expression protein networks and

their upstream regulators associated with the SPA subtype.

Mass spectrometry (MS)-based proteomics has proven feasible

in the identification and quantification of proteins expressed in

clinical specimens. Quantitative proteome data can be used to

identify key disease-related proteins and therapeutic targets (9).

We have adopted label- f ree spectra l counting-based

semiquantitative MS-based proteomics, following the collection of

target cancerous cells from formalin-fixed paraffin-embedded

(FFPE) tumor specimens by laser microdissection (LMD). This

study aimed at identifying the co-expression protein networks

associated with the early-stage high-risk lung adenocarcinoma

SPA, by comparing the early-stage low-risk subtype LPA and

another high-risk subtype MPA. Upstream regulator and causal

network analysis (10) were performed for data-driven protein co-

expression networks significant to SPA, obtained by the weighted

gene co-expression network analysis (WGCNA), an unsupervised

clustering method based on the correlation network expression

(11), applied to quantitative proteome datasets.
2 Materials and methods

2.1 FFPE tissue specimens and
sample preparation

Of 1,293 patients who underwent surgery for lung cancer at St.

Marianna University Hospital between 2000 and 2020, 186 (14%),

12 (1%), and 49 (4%) had tumors that were histologically confirmed

to represent the LPA, MPA, and SPA subtypes, respectively

(Figure 1A). SPA, a high-risk subtype, was contrasted to LPA, a

low-risk subtype. The pathological specimens were independently
frontiersin.org
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reviewed by two pathologists (H. N. and S. N.) to confirm that they

fulfilled the 2015 World Health Organization classification criteria

for lung tumors (histological criteria) (12). FFPE tumor tissue

blocks from 12 surgical specimens histologically confirmed as

lung LPA, MPA, and SPA were obtained without patient

identifiers from the St. Marianna University School of Medicine

Hospital. Informed consent was obtained from all participating

subjects. The protocol was approved by the Institutional Review

Board of St. Marianna University School of Medicine (approval no.

1461) and the study adhered to the Helsinki Declaration.

For tissue microdissection, 10-mm-thick sections from the FFPE

tumor blocks were cut and placed on DIRECTOR slides (OncoPlex

Diagnostics Inc., Rockville, MD, USA). The sections were

deparaffinized and stained with hematoxylin using standard

protocols before dissection. Microdissection was performed using

a Leica LMD7 microdissection microscope (Leica, Wetzlar,

Germany) (Figure 1B). A total area of 4 mm2 with approximately

15,000 tumor cells was directly transferred from the FFPE sections

via laser dissection into the cap of a 200 mL low-binding tube.

Proteins were extracted and digested with trypsin using the Liquid

Tissue™ MS Protein Prep kit (OncoPlex Diagnostics Inc.)

according to the manufacturer’s instructions (13). Briefly, dried

microdissected pellets were suspended in 20 mL of Liquid Tissue

buffer and heated at 95°C for 90 min and then cooled on ice for 3

min before the addition of 0.1 mg of trypsin. The tubes were then

incubated at 37°C overnight. Dithiothreitol was added to a final

concentration of 10 mM and the samples were heated for 5 min at
Frontiers in Oncology 03
95°C. The digested samples were dried, resuspended in 50 mL of a

2% acetonitrile aqueous solution containing 0.1% trifluoroacetic

acid, and stored at −20°C until analysis.
2.2 Proteomic analysis by LC-MS/MS

A label-free quantitation approach using spectral counting by

LC-MS/MS was adopted for global proteomic analysis. The digested

samples (5 mL for a single run) were analyzed in triplicate by LC-

MS/MS using a reverse-phase LC system interfaced with a Q

Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific,

Bremen, Germany) via a nano-electrospray ionization device (AMR

Inc., Tokyo, Japan). The mass spectrometer was operated in data-

dependent acquisition mode. Full-scan MS spectra were acquired in

the range of m/z 350–1600 at a resolution of 70,000. The top ten

most intense peaks from the survey scan were selected for

fragmentation with higher-energy collisional dissociation with a

normalized collision energy of 27% and isolation window of m/z

1.6. The dynamic exclusion time for precursor ions selected for MS/

MS fragmentation was 15 s, and the automatic gain control target

values for MS and MS/MS were 1 × 106 and 1 × 105, respectively.

The LC system consisted of an Ultimate3000 HPLC System

(Thermo Fisher Scientific), a trap cartridge (0.3 mm × 5.0 mm,

CERI, Tokyo, Japan), and a capillary separation column (Zaplous

column alpha-PepC18, 3 mm, 12 nm, 0.1 mm × 150 mm, AMR Inc.)

fitted with an emitter tip (FortisTip, OmniSeparo-TJ, Hyogo,
A B C

FIGURE 1

(A) 1,293 lung cancer patients were pathologically confirmed and received surgical operations between January 2008 to April 2022. at the St.
Marianna University School of Medicine Hospital (Kawasaki, Kanagawa, Japan) The proportions of subtypes were LPA (14%), MPA (1%), SPA (4%), and
others (81%). The SPA cases showed a worse overall survival (OS) compared with the LPA cases (log-rank test: p = 3.06 × 10-5), whereas the MPA
cases were not statistically significant due to the limited number of cases against the LPA and SPA cases. (B) Representative images of tumor tissues
from solid predominant adenocarcinomas (SPA) (sample SPA_T21) stained with hematoxylin & eosin (HE) using standard histological methods, and
only with hematoxylin prior to and after laser microdissection (LMD). Scale bars in red color are indicated at the bottom right. (C) Venn map of the
identified proteins.
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Japan). An auto-sampler (HTC-PAL, CTC Analytics, Zwingen,

Switzerland) was used to load the samples into the trap, which

was then washed with solvent A (2% acetonitrile aqueous solution

containing 0.1% formic acid) to concentrate and desalt the peptides

in the trap. Subsequently, the trap was connected in series to the

separation column, and the peptides were eluted from the whole

column with 0.1% formic acid aqueous solution and acetonitrile

using a linear 5%–40% acetonitrile concentration gradient over 90

min at a flow-rate of 500 nL min−1.
2.3 Protein identification

The raw data were processed using PatternLab for Proteomics

software v4.0. Peptide sequence matching (14) was done using the

Comet algorithm against the UniProt Homo sapiens database. A

target-reverse strategy was employed for increased confidence in

protein identification. This search considered tryptic peptide

candidates as well as the formylation of lysine and oxidation of

methionine as variable modifications. The Comet search engine

considered a precursor mass tolerance of 40 ppm and a fragment

bin tolerance of 0.02 Da. The validity of the peptide spectrum

matches was assessed using the Search Engine Processor (SEPro)

module of PatternLab. The acceptable FDR for spectra, peptide, and

protein were 3%, 2%, and 1%, respectively. The expressions of the

identified proteins were assessed using spectral count-based protein

quantification. The spectral count represents the number of MS/MS

spectra assigned to each protein.
2.4 Weighted correlation network analysis

The similarity in protein expression patterns for all protein

pairs was calculated according to their pairwise Pearson’s

correlation coefficient [i.e., the similarity between proteins i and j

was defined as (1-ri,j)/2, where ri,j is the Pearson’s correlation

coefficient of the protein expression pattern between the two

proteins]. We performed a network topology analysis for various

soft-thresholding powers ranging from 1 to 2 to choose an optimal

value of balance between independence and mean connectivity. A

topological overlap matrix (TOM) that considers topological

similarities between a pair of proteins in the network was then

generated from the resultant scale-free co-expression network. We

generated a tree by hierarchical clustering using dissimilarity

according to TOM (1−TOM), and protein modules were

determined using dynamic tree-cutting to trim the branches (11).

The modules were summarized by the first principal

component, which is referred to as eigen proteins in the text, as

they express the highest connectivity in the module. Module

membership, defined as the correlation between the protein

expression profile and the module eigen-protein, was measured

with values ranging from 0 to 1, with “0” representing a gene that is

not part of the module and “1” representing high connectivity with

the module. Subsequently, the module-trait association was
Frontiers in Oncology 04
determined using the correlation between the module eigen-

protein and the three subtypes: MPA, SPA, and LPA. A protein

module was summarized by the top hub protein (referred to as

“eigen-protein”) with the highest connectivity in the module. The

WGCNA analysis was performed using the WGCNA R-package

(11) implemented in RStudio.
2.5 Protein-PPI network construction

We used the STRING database (version 11.5) (https://string-

db.org/) to construct a PPI network for a protein module (15).

STRING networks were calculated under the criteria for linkage

with experiments, databases, text mining, and co-expression using

the default settings (medium confidence score: 0.400; network

depth: 0 interactions). Functional enrichment results were

obtained for canonical pathways with a p-value <0.05. Proteins in

a module were mapped in the PPI network from the STRING

database to produce the results of the enrichment analysis regarding

the biological process (GO) and Reactome pathways (HAS). Protein

networks were subsequently exported to Cytoscape (version 3.9.1)

(Institute for Systems Biology, Seattle, WA, USA: https://

cytoscape.org/) (16) from the STRING database. The hub

proteins in each module were identified according to their

intramodular connectivity and their correlation with module

eigen-proteins. The proteins inside the co-expression modules

exhibit high connectivity and the proteins within the same

module may play similar roles. The top 10 high-degree proteins

were identified using the cytoHubba plugin (17). The top-ranked

proteins in each module were considered hub proteins and

designated “highly connected proteins.” Functional enrichment

results were obtained for canonical pathways by considering a

network bias-corrected p-value of <0.05 for statistical significance.

The multivariate correlation analysis (MVA) of semiquantitative

key protein expressions was performed using the JMP software (SAS

Institute, Cary, NC, USA), and which result was visualized using the

Intervene Shiny App (https://intervene.shinyapps.io/intervene/) (18).
2.6 Upstream regulator and causal network
analysis by IPA

Upstream regulators, causal networks, and canonical pathways

were predicted using IPA software (http://www.ingenuity.com)

(10). Quantile-normalized protein expression data of the selected

modules were used as input datasets. Both the upstream regulators

and causal networks (p < 0.05) predicted from the WGCNA

network modules were significantly associated with the three

subtypes (LPA, MPA, and SPA), in which the activation and the

inhibition of a predicted network were defined by z-values that were

>2.0 and <−2.0, respectively. The upregulation was defined by z-

values > 1.5 and < 2.0, whereas downregulation was defined by z-

values > −2.0 and < −1.5.
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3 Results

3.1 Proteome datasets

At the St. Marianna University School of Medicine Hospital

(Kawasaki, Kanagawa, Japan), 1,293 lung cancer patients were

pathologically confirmed and underwent surgery between January

2008 to April 2022. These cases consisted of the following subtypes:

LPA (14%), MPA (1%), SPA (4%), and others (81%) (Figure 1Aa).

The SPA cases exhibited worse overall survival (OS) compared with

the LPA cases (log-rank test: p = 3.06 × 10−5) (Figure 1Ab), whereas

the MPA cases were not statistically significant because of the

limited number of samples.

FFPE tissue specimens were obtained by surgical resection of

early-stage (IA-IB) lung adenocarcinoma patients who were

pathologically confirmed as having solid predominant (SPA, n =

5), micropapillary (MPA, n = 3), and lepidic (LPA, n = 4) subtypes

(Table 1). Presurgical treatment was not performed for any of the

lung adenocarcinoma patients. MS-based proteomic analysis was

carried out on approximately 15,000 cancerous cells collected from

the FFPE specimens by laser microdissection (LMD) (Figure 1B). A

total of 2,287 proteins were identified, of which 1,199 (52.4%) were

commonly expressed in the cancerous cells. LPA, MPA, and SPA

contained 398 (17.4%), 100 (4.4%), and 49 (2.1%) unique proteins,

respectively (Figure 1C).

Overall, 2,112, 1,753, and 1,361 proteins were identified from

LPA, MPA, and SPA, respectively. A gene ontology (GO) analysis

was performed using the Protein Analysis Through Evolutionary

Relationships (PANTHER, version 17.0) program (Paul D. Thomas,

University of Southern California, Los Angeles, CA, USA) (19) and

revealed similar results among the three subtypes (Supplementary

Figure S1). Volcano plots were generated from the protein

expression data obtained by SimpliFi™ software (PROTIFI,

Farmingdale, NY, USA; https://simplifi.protifi.com). Upregulated

proteins significant to SPA included large ribosomal subunit

protein uL29 (RPL35), human leukocyte antigen G (HLA-G),

GTP-binding nuclear protein Ran (RAN), human leukocyte

antigen B (HLA-B), and putative heat shock protein HSP90-beta-

3 (HSP90AB3P). The expression of HLA-G protein was

significantly associated with and highly upregulated in the SPA

subtype (Figure 2A), which was confirmed by its ANOVA test with

a high significance to the SPA subtype with p-ANOVA =

0.0026 (Figure 2C).
3.2 Identification of protein co-expression
networks by WGCNA

Weighted correlation network analysis, also known as weighted

gene co-expression network analysis (WGCNA) incorporates

traditional data exploration techniques, but its intuitive network

language and analysis framework go beyond standard analysis

techniques. It uses a network approach and is suitable for the

integration of complementary genomic/proteomic datasets so that
Frontiers in Oncology 05
it can be interpreted as a data analysis technique for systems

biology (11).

Following hierarchical clustering of the samples based on

protein abundance (Figure 3A), a WGCNA analysis (11) was

performed with a soft threshold power of 10, which was selected

to approximate a scale-free topology, a minimummodule size of 10,

and a module detection sensitivity (deepSplit) of 4. Correlations

between the resultant modules and the traits were obtained to

identify protein modules that were significantly associated with the

respective traits. Forty protein modules were identified by clustering

all of the proteins and constructing weighted protein co-expression

networks. The protein cluster dendrogram is presented in

Figure 3B. A heatmap of eigen-protein expression for pairwise

correlations between the modules in the connectivity measure

(kME) of the module eigen-protein are presented in Figure 3C,

together with lists of module IDs, module colors, and their eigen-

proteins representing protein expressions in a module.

Six WGCNA modules were identified with high correlations (r

> 0.5) and statistical significance (multiple testing correction using

the Benjamini–Hochberg method: q < 0.05) with clinical traits

(Figure 4). The WM25 (cyan: r = 0.87, q = 0.0102) and WM33

(green-yellow: r = 0.81, q = 0.0286) modules were significantly

correlated with the LPA subtype. The WM23 (dark-grey: r = 0.91, q

= 0.014) and WM24 (dark-orange: r = 0.94, q = 0.0478) modules

were significantly correlated with the MPA subtype, and WM1

(pink: r = 0.82, q = 0.0216) was well correlated with the

SPA subtype.

Several other WGCNA modules were also correlated (r > 0.5)

with one of the three traits. WM8 (dark-magenta: r = 0.76), WM19

(light-cyan: r = 0.61), and WM32 (violet: r = 0.61) correlated with

the LPA subtype, WM11 (dark-red: r = 0.72) and WM18 (orange: r

= 0.59) with the MPA subtype, and WM2 (turquoise: r = 0.57) with

the SPA subtype. However, none of these correlations were

significant (q > 0.05). Trait correlation analysis often tends to

overlook important modules. Statistical over-representative

analysis (ORA) may help evaluate potential WGCNA modules

concerning overlap with uniquely upregulated proteins for each

trait. The numbers of proteins in each subtype more than twice as

highly expressed compared with other subtypes were 407 in LPA,

321 in MPA, and 482 in SPA, respectively. Overlap of the WGCNA

modules with that of the protein groups was assessed using ORA

(Figure 4). In this study, we focused on the WGCNA modules,

WM1 (pink) and WM2 (turquoise), significantly associated with

the high-risk subtype, SPA (Figure 4).
3.3 Protein-protein interaction networks
and functional enrichment

Using the Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING) database version 11.5 (https://string-db.org/)

(15), human PPI networks were obtained for theWGCNAmodules.

The PPI networks for the WM1 and WM2 modules associated with

the SPA subtype were reconstructed using Cytoscape (version 3.9.1)
frontiersin.org
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software (Institute for Systems Biology, Seattle, WA, USA: https://

cytoscape.org/) (16) (Supplementary Figure S2). Top hub proteins

were calculated using the cytoHubba plugin with maximal clique

centrality (MCC) (17). In these data-driven protein co-expression

networks, eigen-proteins are indicated in red letters, hub proteins in

red to orange fill colors, and some key proteins are denoted with red

borders. Top STRING enrichment results for the WGCNA

modules, WM1 and WM2, significant to the SPA subtype are

shown in Supplementary Table S1.

The functional enrichment obtained for the WM1 module

included the following: (i) SRP-dependent co-translational protein

targeting to membrane, translational initiation, nuclear-transcribed

mRNA catabolic process, nonsense-mediated decay, and protein

targeting to membrane as biological processes (GO); and (ii) L13a-

mediated translational silencing of ceruloplasmin expression, GTP

hydrolysis and joining of the 60S ribosomal subunit, eukaryotic

translation termination, and NMD independent of the exon

junction complex (EJC) (Supplementary Table S1). The eigen-

protein RPS4X (small ribosomal subunit protein eS4, also known

as SCR10) is a component of the 40S subunit and is involved in

L13a-mediated translational silencing of ceruloplasmin expression,

eukaryotic translation termination, and NMD independent of the

exon junction complex (EJC).

The pathways enriched for the WM2 (turquoise) module

included the following: (i) antigen processing and presentation of

peptide antigen via MHC class I, NIK/NF-kB signaling, and

regulation of transcription from RNA polymerase II promoter in

response to hypoxia as biological processes (GO); (ii) regulation of

expression of SLITs and ROBOs, cross-presentation of soluble

exogenous antigens (endosomes), and NIK to noncanonical NF-

kB signaling (Supplementary Table S1). The eigen-protein

tropomyosin 4 (TPM4) is a member of the tropomyosin family of
TABLE 1 Clinicopathological information of the recruited patients.

Variable Category
No.

patients
%

Gender

Female 5 41.7

Male 7 58.3

Age(y)

Average ± SD 64.4 ± 5.5

Smoking index (Brinkmann Index, BI)

Female

BI=0 4 80.0

0 < BI ≤ 400 1 20.0

400 < BI≤ 600 0 0.0

600 < BI ≤ 1200 0 0.0

BI > 1200 0 0.0

Male

BI=0 2 28.6

0 < BI ≤ 400 1 14.3

400 < BI ≤ 600 1 14.3

600 < BI ≤ 1200 1 14.3

BI > 1200 2 28.6

Histologic type

Adenocarcinoma 12 100.0

Subtype

Lepidic predominant
adenocarcinoma (LPA)

4 33.3

Micropapillary
adenocarcinoma (MPA)

3 25.0

Solid adenocarcinoma (SPA) 5 41.7

Surgical method

Radical lobectomy 11 66.7

Limited resection 1 33.3

Tumor size on CT

T1a (≦1cm) 0 0.0

T1b (1-2cm) 2 16.7

T1c (2-3cm) 4 33.3

T2a (3-4cm) 4 33.3

T2b (4-5cm) 2 16.7

T3 (5-7cm) 0 0.0

T4 (>7cm) 0 0.0

Clinical stage

cIA 6 50.0

(Continued)
TABLE 1 Continued

Variable Category
No.

patients
%

Clinical stage

cIIA 0 0.0

cIB 6 50.0

cIIB 0 0.0

cIV 0 0.0

EGFR mutation status

Positive

L858R 1 8.3

Ex19 E746-A750 del 3 25.0

Negative

Neither L858R 8 66.7

nor Ex19del
fr
LPA, lepidic predominant adenocarcinoma; MPA, micropapillary adenocarcinoma; SPA,
solid adenocarcinoma; BI, Brinkmann Index.
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actin-binding proteins, which is involved in stabilizing cytoskeleton

actin filaments.
3.4 Semi-quantitative protein expression
and multivariate correlation analysis

Forty eigen-proteins together with fifteen key proteins, which

were representatively expressed throughout all 40 modules, were

subjected to multivariate correlation analysis (MVA), assuming

three-group clustering (Figure 2D). The eighteen eigen-proteins

of the WGCNA modules relatively well correlated (r > 0.4) with

respective subtypes are denoted in colored filled circles (LPA: red;

MPA: blue; SPA: green). Those eighteen eigen-protein expressions

were clustered into Cluster A, Cluster B, and Cluster C, which well

corresponded to the SPA, LPA, and MPA subtypes, respectively.

(Figure 2D). Upregulated proteins characteristic of the respective

subtypes were also well clustered consistently: HLA-G and HLA-B

in SPA; C3, RCC1, and HSPG2 in LPA; MYOF and CRABP2

in MPA.

Zhou et al. (20) performed proteomic analyses between low-risk

and high-risk subtypes of early-stage lung adenocarcinomas, where

the low-risk LPA subtype group (n = 31) and the high-risk subtype

group (n = 28) consisting of both MPA and SPA and reported

several proteins differentially expressed more to the high-risk group.
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Their results were not well linked to our proteomic observations.

Some proteins differentially expressed in their high-risk subtype

group, such as DNA replicating licensing factors MCMs, were

oppositely upregulated in the low-risk subtype LPA subtype in

our study, except that the expression of upregulated P4HA2 (Prolyl-

4 hydroxylase subunit alpha-2) was observed in the high-risk

subtype MPA (p = 0.03). There are intrinsic differences between

their approach and ours. They directly used sections of tissues

collected immediately after resection for proteomic analysis while

we collected only cancerous cells directly from the FFPE tissue

sections via laser dissection, and they grouped both MPA and SPA

as one high-risk group while we did not group MPA and SPA

into one.
3.5 Canonical pathways enriched by IPA

The canonical pathways and their pathway categories enriched

were obtained by the IPA software (http://www.ingenuity.com) (10)

for the WM1 and WM2 modules significant to the SPA subtype

(Figure 5). The WM1 network module was associated

predominantly with activated pathways of EIF2 signaling, which

are involved in the following pathway categories: Cellular Growth,

Proliferation and Development, Cellular Stress and Injury, and

Intercellular and Second Messenger Signaling (Figure 5A). The
A B
D

C

FIGURE 2

Semi-quantitative protein expression and multivariate analysis of eigen-protein expression. (A) Volcano plots of protein expression in SPA vs. LPA. (B)
Expressions of HLA class I proteins, HLA-G and HLA-B, are presented in all the sample tissues. (C) An ANOVA test of HLA-G expressions among
three subtypes. (D) Multivariate correlation analysis (MVA) for the spectral counting-based expression of forty eigen-protein and fifteen proteins
characteristic of the respective subtypes, assuming three-group clustering (correlation coefficient: Pearson; heatmap order: hierarchical clustering;
agglomeration method: complete; the number of clusters: 3). The eighteen eigen-proteins of the WGCNA modules relatively well correlated (r > 0.4)
with and upregulated proteins characteristic of respective subtypes are denoted in colored filled-circles and colored circles (LPA: red; MPA: blue;
SPA: green).
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WM2 network module was associated with various pathways. The

top pathway category was Cellular Immune Response, which

included the FAT10 signaling pathway, caveolar-mediated

endocytosis signaling, antigen presentation pathway, upregulated

leukocyte extravasation signaling, and activated Fcg receptor-

mediated phagocytosis in macrophages and monocytes. The

pathway category Cellular Stress and Injury included the FAT10

signaling pathway, inhibition of ARE-mediated mRNA degradation

pathway, regulation of eIF4 and p70S6K Signaling, activated

pathways of EIF2 signaling, activated NRF2-mediated oxidative

stress response, senescence, leukocyte extravasation signaling,

hepatic fibrosis signaling, HIF1A signaling, and necroptosis

signaling (Figure 5B).
3.6 Upstream regulators and causal
networks enriched by IPA

Upstream regulator and causal network analysis were

performed for the WGCNA modules using IPA software (http://

www.ingenuity.com) (10). Table 2 summarizes the top upstream

regulators, causal networks, canonical pathways, and diseases or

functions predicted for the four WGCNA modules.

Highly activated upstream regulators in the WM1 protein

networks included MLXIPL (z = 4.80, p-value of overlap = 4.16

×10−31), MYCN (z = 4.12, p-value = 6.30 ×10−17), MYC (z = 4.87,

-value = 2.60 ×10−24), Lh (z = 4.87, p-value = 6.30 ×10−17), DDX3X

(z = 3.13, p-value = 9.48 ×10−17), TCR (z = 2.91, p-value = 1.94

×10−10), CD3 (z = 3.16, p-value = 1.40 ×10−7), NFE2L2 (z = 2.97, p-

value = 0.0001), and both CD8A and CD8B (z = 4.15, p-value =

0.0001), whereas highly inhibited regulators included LARP1 (z =
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−5.10, p-value = 7.19 ×10−44) and RICTOR (z = −4.24, p-value =

3.80 ×10−17) (Table 2). Molecules in the WM1 module targeted by

LARP1, MYCN, and TCR included the eigen-protein RPS4X. The

carbohydrate-responsive element-binding protein (ChREBP)

encoded by MLXIPL is a basic helix-loop-helix leucine zipper

transcription factor of the MYC/MAX/MAD superfamily. Its

activation promotes cancer cell proliferation and inhibits cancer

cell apoptosis by promoting aerobic glycolysis in various

cancers (21).

CD3, CD8A, CD8B, and TCR (T-cell receptor) are drivers of the

immune system and the immune defense against intracellular

pathogens, such as viruses and bacteria, as well as tumors. CD8 is

expressed on the surface of cytotoxic T lymphocytes (CTLs),

dendritic cells, macrophages, monocytes, and NK cells and exists

as either a homodimer (two CD8A chains) or heterodimer (CD8A

and CD8B chains), which are co-receptors of the TCR-CD3

complex and binds to MHC-I to activate T cells. CD8A recruits

T-cell-specific protein tyrosine kinase (LCK) or linker for activation

of T-cells family member 1 (LAT) to activate downstream signaling

pathways, whereas CD8B increases the avidity of the CD8/MHC/

TCR complex to increase IL-2 production.

Highly inhibited La-related protein 1 (LARP1), the master

regulator of the cap-dependent top mRNA translation, strongly

suggests the inhibition of protein synthesis via cap-dependent

mRNA translation or the activation of the cap-independent,

IRES-mediated translation of mRNA subsets encoding oncogenic

proteins, such as HIF1A, and MYC (22).

Regarding the WM2 module, highly activated upstream

regulators included MYC, NFE2L2, MLXIPL, IFNG (z = 4.51, p-

value of overlap = 1.39 ×10−8), NFkB (complex) (z = 3.87, p = 8.69

×10−5), FGFR1 (z = 7.46, network bias-corrected p = 0.0005), TCRD
A

B

C

FIGURE 3

The forty protein network modules identified by weighted gene co-expression network analysis (WGCNA). (A) Sample dendrogram and trait
heatmap, (B) protein cluster dendrogram, and (C) pairwise correlations between the 40 identified modules concerning the connectivity measure
(KME) of the module eigen-protein (correlation coefficient: Pearson; heatmap order: Euclidean; agglomeration method: complete; the number of
clusters: 3), where the color bars represent the three clusters, together with lists of module ID, module color and eigen-protein.
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(T-cell receptor delta chain) (z = 4.57, p = 0.0001), CTNNb-LEF1 (z
= 4.52, p = 0.0001), CTNNb1 (z = 4.40, p = 0.0001), CD80 (z = 7.31,

p = 0.019), CD86 (z = 6.06, p = 0.019), hypoxia-induced factors Hif

(z = 4.55, p = 0.0001), and LCK (z = 3.76, p = 0.0219), whereas

highly inhibited proteins included LARP1 and RICTOR, which

were common with the WM1 module, and CLPP (z = −4.47, p =

0.0001) and LILRB2 (z = −4.24, p = 0.0007) (Table 2).

FGFR1 is a cell-surface receptor for fibroblast growth factors

that regulate embryonic development, cell proliferation,

differentiation, and migration. Its amplification has been

frequently reported in NSCLC (23). Activation of CTNNb1 and

CTNNb-LEF1 implied activation of Wnt/b-catenin signaling in

which b-catenin is stabilized and accumulated as free b-catenin in

the cytosol and is subsequently translocated into the nucleus and
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activates the TCF (T-cell factor)/LEF (lymphoid enhancer factor)-

dependent transcription of Wnt target genes, key factors in cell

proliferation and invasion (24, 25). Proto-oncogene LCK encodes

lymphocyte-specific protein tyrosine kinase LCK, an Src family

tyrosine kinase, which plays an important role in TCR-linked signal

transduction. CD28-induced LCK activation is an important

mediator of T-cell activation. Recently, mathematical models for

LCK autophosphorylation suggest that LCK is involved in the early

stages of T-cell activation and response derived from PD-1 signaling

suppression (26). It also potentially mediates PD-1-induced

inhibition of early TCR signaling (27), which is important to

cancer immune checkpoint therapy. LILRB2 is Leukocyte

immunoglobulin-like receptor subfamily B member 2 (also

known as ILT-4, immunoglobulin-like transcript 4) is a tumor
FIGURE 4

Relationship between module eigen-proteins and the clinical traits of three subtypes LPA, MPA, and SPA. Each row in the embedded table represents
weighted gene co-expression network analysis results for each module. The first and second columns in the table represent the module
identification and color name of a module, respectively. The third column represents the number of proteins in each module. The table is color-
coded by the correlation coefficient, in which the intensity and direction of the correlations are indicated (red, positive correlation; blue, negative
correlation). The seventh to ninth columns present the p-values of the correlation coefficients, and the tenth to thirteenth columns are q-values by
multiple testing correction using the Benjamini–Hochberg method, where significant p-value (<0.05) and q-values (< 0.1) are highlighted in bright
red background. p-values between 0.05 and 0.1 are highlighted in yellow background. The fourteenth to sixteenth columns present a number of
overlaps between module proteins and proteins upregulated in each subtype. The eighteenth to twenty-one columns present results of the
statistical over-representative analysis (ORA) using the hypergeometric overlapping test of all the WGCNA modules with proteins upregulated (more
than twice) uniquely for the individual subtypes: 397 proteins in LPA, 314 in MPA, and 474 in SPA, where the Benjamini–Hochberg corrected
significant q-values (< 0.05) are highlighted in bright red background.
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immune checkpoint molecule. Caseinolytic protease P (CLPP) is

involved in the mitochondrial unfolded protein response and

cellular bioenergetics (28).

Interestingly, all ofHif (complex), TRCD, FGFR1, IFNG, CD80,

CD86, LCK, and LILRB2 target molecules including HLA-G in the

WM2 module, whereas LILRB2 targets module molecules including

both HLA-G and eigen-protein TPM4 (Table 2). Schreiber et al.

demonstrated that the effects of IFNG are generally pro-

tumorigenic during the immune escape stage of cancer

immunoediting, in which IFNG increases inhibitory immune

checkpoint molecules, including HLA-G, to promote the

formation of a tolerant immune microenvironment (29).

HLA-G exerts inhibitory effects on both innate and adaptive

effectors through direct binding to inhibitory receptors, such as

immunoglobulin-like transcripts, LILRB1 (also known as ILT-2),

and LILRB2, with high affinity compared with other HLA class I

molecules. HLA-G can inhibit many players associated with the

anti-tumor response throughout early and late tumor stages,

although CTLA-4 and PD-1 are predominantly expressed in

higher tumor grades (30, 31). The networks associated with

LILRB2 inhibition include the activated hub regulator, toll-like

receptor 4 (TLR4, also known as CD284). TLR signaling activates

various signaling molecules, including nuclear factor kB (NFkB),
extracellular signal-regulated kinase (ERK/JNK/p38), and induces

the synthesis of immunologic factors including IL-6, IL-12, PD-L1,

and HLA-G. This results in the resistance of tumor cells to CTL
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attack and tumor cell immune evasion (32). Highly expressed HLA-

G and highly inhibited LILRB2 implicated involvement of immune

tolerance or anti-tumor immune escape. The volcano plots revealed

high expression of HLA-G associated with the SPA subtype

(Figures 2A–C). A web-based survival analysis (KMplot) for

mRNA data of lung adenocarcinoma (n = 719) indicated that

high HLA-G expression was significantly associated with poor OS

(log-rank test p = 1.0 × 10−11; hazard ratio: 3.1 (2.2–4.36)) (https://

kmplot.com/analysis/) (Supplementary Figure S3) (33). Yan et al.

interestingly showed a predominant expression of soluble HLA-G

(sHLA-G) in tumor cells not from squamous cell carcinoma but

adenocarcinoma of lung (34).
3.7 Genomic alterations of LPA, MPA, and
SPA based on the MSKCC database

Lung adenocarcinoma genomic data from the MSKCC database

(Stage I to III: n = 604) was analyzed for prognostic markers

associated with the predominant histologic subtypes in lung

adenocarcinoma using the Memorial Sloan Kettering–Integrated

Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT)

platform (5). We extracted data for the LPA (n = 88), MPA (n = 37),

and SPA (n = 68) subtypes, and the genomic alteration profiles were

visualized using the cBioPortal for Cancer Genomics (https://

www.cbioportal.org/) (Supplementary Figure S4). The oncoprints
A

B

FIGURE 5

Bubble charts of the canonical pathways significant to the WGCNA modules obtained by IPA. (A) the WM1 (pink) network module; (B) the WM2
(turquoise) network module.
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TABLE 2 Representative upstream and predicted master regulators (activated or inhibited: z-value| ≥ 2.0, and upregulated: 1.5 < z-value < 2.0) are summarized for the WGCNA modules, WM1 (pink) and WM2
(turquoise), significantly associated with the SPA subtype.
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showed genomic alterations characteristic of the three subtypes as

follows: LPA, TP53 (17%), EGFR (43%), and KRAS (33%), whereas

EGFR and KRAS were mutually exclusive (q < 0.001); MPA, TP53

(41%), EGFR (22%), and KRAS (32%); SPA, TP53 (75%), which was

the highest among the three subtypes, EGFR (22%), and KRAS (38%).

In connection with the above genomic alterations, upregulated

expressions of HLA I class molecules such as HLA-G and HLA-B

were observed in proteomic analysis. (Figures 2A, B). It has been

reported that there is a positive correlation between mutational

burden and the expression of most HLA class I molecules (35, 36),

and HLA class I molecules are associated with the innate immune

response as ligands of inhibitory killer cell immunoglobulin-like

receptors (KIRs) of Natural Killer (NK) cells (37).
4 Discussion

The WGCNA analysis was successfully applied to MS-based

proteomic data. Forty co-expression network modules were

identified, among which two network modules were significantly

associated with solid predominant adenocarcinoma, SPA (Figure 4).

Volcano plots of the proteins revealed high expression levels of

HLA-G (human leukocyte antigen G) in the SPA subtype

(Figures 2A, B). A multivariate correlation analysis (MVA) of

eigen-proteins mostly grouped into Cluster A, B, and D, which

correspond well to the SPA, MPA, and LPA subtypes, respectively

(Figure 2C). Oncoprint analysis of three subtypes exhibited that

SPA interestingly exhibited a highly frequent p53 alteration of 75%
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although MPA and LPA harbored a frequency of p53 alterations,

41% and 17%, respectively (Supplementary Figure S4). High TP53

alteration seems to reflect a high malignancy of SPA.

Upstream analysis using IPA predicted that the highly activated

oncogenic regulators, MYC, MLXIPL, and MYCN may reflect an

aberrant feature of the SPA subtype, that activation of the redox

master regulator NFE2L2 indicates an occurrence of oncogenic

signaling in response to oxidative stresses and that both the highly

inhibited LARP1 and activated pathways of EIF2 signaling indicated a

switch to IRES-mediated mRNA translation, resulting in the

generation of oncogenic proteins, such as hypoxia-inducible factors

(Hif). Activation of Wnt/b-catenin signaling also might participate in

the disease-related interaction networks of SPA, which results in Wnt

target gene products by the TCF/LEF-dependent transcription.

Interestingly, SPA-significant co-expression network modules,

WM1 andWM2, also involved highly activated IFNG, TCRD, CD3-

TCR, CD8A, CD8B, CD3, CD80/CD86, and highly inhibited

LILRB2, all of which are associated with the adaptive immune

system and defense, and importantly which all target module

molecules including the HLA class I molecule HLA-G.

Representative immune system-related causal networks associated

with the SPA subtype are presented in Figure 6. Moreover, our

observation of the immune checkpoint molecule, HLA-G,

significantly upregulated in the SPA subtype and its counterpart

LILRB2 predicted to be significant and highly inhibited implicate

the involvement of the immune tolerance or anti-tumor immune

escape processes in early-stage SPA, although CTLA-4 and PD-1

may not yet be expressed at early-stage.
A

B

C

FIGURE 6

Representative cancer cell immunity-related causal networks of (A) CD80/CD86, (B) CD-TCR, and (C) LILBR2, associated with the SPA subtype,
predicted by IPA. Node shapes indicate molecular types: triangle, kinase; square (dashed), growth factor; rectangle (horizontal), ligand-dependent
nuclear receptor; rectangle (vertical), ion channel; diamond (vertical), enzyme; diamond (horizontal), peptidase; trapezoid, transporter; oval
(horizontal), transcription regulator; oval (vertical), transmembrane receptor; double circle, complex; and circle, other. Orange/light orange and blue/
light blue colors indicate the extent of confidence for predicted activation and inhibition, respectively. Lines denote predicted relationships. A solid
or dashed line indicates direct or indirect interaction, respectively. Orange, leading to activation; blue, leading to inhibition; yellow, findings
inconsistent with the state of a downstream molecule; grey, not predicted effect. CD80/CD86, T-lymphocyte activation antigens CD80/CD86
(Activation B7-1/B7-2 antigens); CD3-TCR, CD3, TCR (T cell receptor complex); LILRB2, Leukocyte immunoglobulin-like receptor subfamily B
member 2, also known as Immunoglobulin-like transcript 4 (ILT-4).
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The Applied Proteogenomic Organizational Learning and

Outcomes (APOLLO) research network (38) conducted the deep

proteogenomic profiling of 87 lung adenocarcinoma tumors from a

cohort of individuals in the United States, which utilizes the integrative

approaches, including whole-genome, transcriptome, and MS-based

proteomic and phosphoproteomic sequencing, and in which

adenocarcinoma tumor subtypes were stratified according to RNA

expression subtypes, such as terminal respiratory unit (TRU), proximal

proliferative (PP), and proximal inflammatory (PI). They reported that

PI enriched with solid predominant histological subtype (SPA)

overexpressed the immune cell marker clusters, and its network is

characteristically associated with enhanced IFNG signaling and

inflammation, high tumor mutational burden (TMB), coupled with

PD-L1 protein and CTLA4 RNA expression, and suggested that the PI

subtype may have the subset of tumors most likely to respond to

immune checkpoint inhibitors (38).

Recently, Li et al. (39) conducted a multi-omics analysis of 1,078

untreated lung adenocarcinoma patients with clinicopathologic,

genomic, transcriptomic, and proteomic data from public and

internal cohorts. SPA had molecular features including

significantly higher tumor mutation burden (TMB), the higher

frequency of TP53 mutation together with EGFR/TP53 co-

mutation, and higher immuno-resistant microenvironment, that

indicates a poor response to chemotherapy, such as tyrosine kinase

inhibitors (TKIs). Indeed, SPA showed upregulated expression of

immunotherapy-related genes relevant to strong immunogenicity.

Moreover, it was shown in the cohort of lung adenocarcinoma

patients who received neoadjuvant immunotherapy that SPA

relatively well responded to immunotherapy. They concluded that

SPA would be more suitable for immunotherapy while less suitable

for chemo- and targeted therapy (39).

Both studies (38, 39) seem to consistently reflect the molecular

features of SPA and give corroboration to our findings in this study.

One limitation of this study was the number of patients examined

because of the limited number of early-stage cases pathologically

confirmed and available for proteomic analysis in our hospital.
5 Conclusion

In summary, we successfully identified disease-related co-

expression protein networks by WGCNA analysis applied to the

proteomic datasets, following MS-based proteomic analysis of

cancerous cells laser microdissected from FFPE tissue specimens of

three lung adenocarcinoma subtypes, LPA, MPA, and SPA. Upstream

regulator and causal network analysis performed for protein co-

expression networks significantly associated with the SPA subtype

implicated not only oncogenic signalings including cap-independent

IRES-dependent mRNA translation and NRF2-mediated oxidative

stress response but also highly activated molecular networks relating

to the adaptive immune system and immune tolerance more likely

associated with malignancies characterizing the SPA subtype, together

with its high frequency of TP53 mutation. Although the number of

patient samples examined was limited in this study, we are planning a

larger cohort study of patient-derived samples, including genomic

alteration analysis to investigate core data-driven proteogenomic
Frontiers in Oncology 14
networks. This approach will provide clinically important

information on proteogenomic landscapes of the high-risk

adenocarcinoma subtype SPA of the lung.
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Current status of clinical proteogenomics in lung cancer. Expert Rev Proteomics (2019)
16:761–72. doi: 10.1080/14789450.2019.1654861

10. KrämerA,Green J, Pollard J Jr, Tugendreich S.Causal analysis approaches in Ingenuity
Pathway Analysis. Bioinformatics (2014) 30:523–30. doi: 10.1093/bioinformatics/btt703

11. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

12. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB,
et al. The 2015 World Health Organization classification of lung tumors: impact of
genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol
(2015) 10:1243–60. doi: 10.1097/JTO.0000000000000630

13. Prieto DA, Hood BL, Darfler MM, Guiel TG, Lucas DA, Conrads TP, et al.
Liquid Tissue: proteomic profiling of formalin-fixed tissues. Biotechniques (2005)
Suppl:32–5. doi: 10.2144/05386su06

14. Carvalho PC, Lima DB, Leprevost FV, Santos MD, Fischer JS, Aquino PF, et al.
Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat
Protoc (2016) 11:102–17. doi: 10.1038/nprot.2015.133

15. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The
STRING database in 2021: customizable protein-protein networks, and functional
characterization of user-uploaded gene/measurement sets. Nucleic Acids Res (2021) 49:
D605–12. doi: 10.1093/nar/gkaa1074

16. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape stringApp: network
analysis and visualization of proteomics data. J Proteome Res (2019) 18:623–32.
doi: 10.1021/acs.jproteome.8b00702

17. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying
hub objects and sub-networks from complex interactome. BMC Syst Biol (2014) 8
Suppl 4:S11. doi: 10.1186/1752-0509-8-S4-S11

18. Khan A, Mathelier A. Intervene: a tool for intersection and visualization of multiple
gene or genomic region sets. BMC Bioinf (2017) 18:287. doi: 10.1186/s12859-017-1708-7

19. Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H.
PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci (2022)
31:8–22. doi: 10.1002/pro.4218

20. Zhou J, Liu B, Li Z, Li Y, Chen X, Ma Y, et al. Proteomic analyses identify
differentially expressed proteins and pathways between low-risk and high-risk subtypes
of early-stage lung adenocarcinoma and their prognostic impacts. Mol Cell Proteomic
(2021) 20:100015. doi: 10.1074/mcp.RA120.002384
21. Iizuka K, Takao K, Yabe D. ChREBP-mediated regulation of lipid metabolism:
involvement of the gut microbiota, liver, and adipose tissue. Front Endocrinol
(Lausanne) (2020) 11:587189. doi: 10.3389/fendo.2020.587189

22. Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev
Cancer (2010) 10:254–66. doi: 10.1038/nrc2824

23. Bogatyrova O, Mattsson JSM, Ross EM, Sanderson MP, Backman M, Botling J,
et al. FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and
epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer
(2021) 151:136–49. doi: 10.1016/j.ejca.2021.04.005

24. Marie PJ, Haÿ E. Cadherins and Wnt signalling: a functional link controlling
bone formation. Bonekey Rep (2013) 2:330. doi: 10.1038/bonekey.2013.64

25. Osuka S, Zhu D, Zhang Z, Li C, Stackhouse CT, Sampetrean O, et al. N-cadherin
upregulation mediates adaptive radioresistance in glioblastoma. J Clin Invest (2021)
131:e136098. doi: 10.1172/JCI136098

26. Kreusser LM, Rendall AD. Autophosphorylation and the dynamics of the
activation of lck. Bull Math Biol (2021) 83:64. doi: 10.1007/s11538-021-00900-9

27. Arulraj T, Barik D. Mathematical modeling identifies Lck as a potential mediator
for PD-1 induced inhibition of early TCR signaling. PloS One (2018) 13:e0206232.
doi: 10.1371/journal.pone.0206232

28. Cormio A, Sanguedolce F, Pesce V, Musicco C. Mitochondrial caseinolytic
protease P: A possible novel prognostic marker and therapeutic target in cancer. Int J
Mol Sci (2021) 22:6228. doi: 10.3390/ijms22126228

29. Alspach E, Lussier DM, Schreiber RD. Interferon g and its important roles in
promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring
Harb Perspect Biol (2019) 11:a028480. doi: 10.1101/cshperspect.a028480

30. Carosella ED, Ploussard G, LeMaoult J, Desgrandchamps F. A systematic
review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4,
PD-1/PD-L1, and HLA-G. Eur Urol (2015) 68:267–79. doi : 10.1016/
j.eururo.2015.02.032

31. Carosella ED, Gregori S, Tronik-Le Roux D. HLA-G/LILRBs: A cancer
immunotherapy challenge. Trends Cancer (2021) 7:389–92. doi: 10.1016/
j.trecan.2021.01.004

32. Huang B, Zhao J, Li H, He KL, Chen Y, Chen SH, et al. Toll-like receptors on
tumor cells facilitate evasion of immune surveillance. Cancer Res (2005) 65:5009–14.
doi: 10.1158/0008-5472.CAN-05-0784

33. Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical
research (KMplot): development and implementation. J Med Internet Res (2021) 23:
e27633. doi: 10.2196/27633

34. Yan WH, Lu HY, Li YY, Zhang X, Lin A. Significance of tumour cell HLA-G5/-
G6 isoform expression in discrimination for adenocarcinoma from squamous cell
carcinoma in lung cancer patients. J Cell Mol Med (2015) 19:778–85. doi: 10.1111/
jcmm.12400
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Nuncia- Cantarero M, Andrés-Pretel F, et al. Expression of MHC class I, HLA-A,
and HLA-B identifies immune-activated breast tumors with favorable outcome.
Oncoimmunology (2019) 8:e1629780. doi: 10.1080/2162402X.2019.1629780

36. Chowell D, Morris LGT, Grigg CM, Weber JK, Samstein RM, Makarov V, et al.
Patient HLA class I genotype influences cancer response to checkpoint blockade
immunotherapy. Science (2018) 359:582–7. doi: 10.1126/science.aao4572

37. Ajitkumar P, Geier SS, Kesari KV, Borriello F, Nakagawa M, Bluestone JA, et al.
Evidence that multiple residues on both the alpha-helices of the class I MHC molecule
are simultaneously recognized by the T cell receptor. Cell (1988) 54:47–56.
doi: 10.1016/0092-8674(88)90178-X

38. Soltis AR, Bateman NW, Liu J, Nguyen T, Franks TJ, Zhang X, et al.
Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity,
survival determinants, and therapeutically relevant pathways. Cell Rep Med (2022)
3:100819. doi: 10.1016/j.xcrm.2022.100819

39. Li F, Wang S, Wang Y, Lv Z, Jin D, Yi H, et al. Multi-omics analysis unravels the
underlying mechanisms of poor prognosis and differential therapeutic responses of
solid predominant lung adenocarcinoma. Front Immunol (2023) 14:1101649.
doi: 10.3389/fimmu.2023.1101649
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2024.1273780/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2024.1273780/full#supplementary-material
https://doi.org/10.1007/s00432-017-2571-7
https://doi.org/10.1016/j.athoracsur.2016.04.087
https://doi.org/10.2147/OTT.S94747
https://doi.org/10.1016/j.jtho.2020.08.005
https://doi.org/10.1245/s10434-015-5043-9
https://doi.org/10.1245/s10434-015-5043-9
https://doi.org/10.1111/1759-7714.14578
https://doi.org/10.1200/JCO.2015.60.9818
https://doi.org/10.1080/14789450.2019.1654861
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1097/JTO.0000000000000630
https://doi.org/10.2144/05386su06
https://doi.org/10.1038/nprot.2015.133
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1021/acs.jproteome.8b00702
https://doi.org/10.1186/1752-0509-8-S4-S11
https://doi.org/10.1186/s12859-017-1708-7
https://doi.org/10.1002/pro.4218
https://doi.org/10.1074/mcp.RA120.002384
https://doi.org/10.3389/fendo.2020.587189
https://doi.org/10.1038/nrc2824
https://doi.org/10.1016/j.ejca.2021.04.005
https://doi.org/10.1038/bonekey.2013.64
https://doi.org/10.1172/JCI136098
https://doi.org/10.1007/s11538-021-00900-9
https://doi.org/10.1371/journal.pone.0206232
https://doi.org/10.3390/ijms22126228
https://doi.org/10.1101/cshperspect.a028480
https://doi.org/10.1016/j.eururo.2015.02.032
https://doi.org/10.1016/j.eururo.2015.02.032
https://doi.org/10.1016/j.trecan.2021.01.004
https://doi.org/10.1016/j.trecan.2021.01.004
https://doi.org/10.1158/0008-5472.CAN-05-0784
https://doi.org/10.2196/27633
https://doi.org/10.1111/jcmm.12400
https://doi.org/10.1111/jcmm.12400
https://doi.org/10.1080/2162402X.2019.1629780
https://doi.org/10.1126/science.aao4572
https://doi.org/10.1016/0092-8674(88)90178-X
https://doi.org/10.1016/j.xcrm.2022.100819
https://doi.org/10.3389/fimmu.2023.1101649
https://doi.org/10.3389/fonc.2024.1273780
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Cancer cell immunity-related protein co-expression networks are associated with early-stage solid-predominant lung adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 FFPE tissue specimens and sample preparation
	2.2 Proteomic analysis by LC-MS/MS
	2.3 Protein identification
	2.4 Weighted correlation network analysis
	2.5 Protein-PPI network construction
	2.6 Upstream regulator and causal network analysis by IPA

	3 Results
	3.1 Proteome datasets
	3.2 Identification of protein co-expression networks by WGCNA
	3.3 Protein-protein interaction networks and functional enrichment
	3.4 Semi-quantitative protein expression and multivariate correlation analysis
	3.5 Canonical pathways enriched by IPA
	3.6 Upstream regulators and causal networks enriched by IPA
	3.7 Genomic alterations of LPA, MPA, and SPA based on the MSKCC database

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


