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Background: Whole Slide Image (WSI) analysis, driven by deep learning

algorithms, has the potential to revolutionize tumor detection, classification,

and treatment response prediction. However, challenges persist, such as limited

model generalizability across various cancer types, the labor-intensive nature of

patch-level annotation, and the necessity of integrating multi-magnification

information to attain a comprehensive understanding of pathological patterns.

Methods: In response to these challenges, we introduce MAMILNet, an

innovative multi-scale attentional multi-instance learning framework for WSI

analysis. The incorporation of attention mechanisms into MAMILNet contributes

to its exceptional generalizability across diverse cancer types and prediction

tasks. This model considers whole slides as “bags” and individual patches as

“instances.” By adopting this approach, MAMILNet effectively eliminates the

requirement for intricate patch-level labeling, significantly reducing the manual

workload for pathologists. To enhance prediction accuracy, themodel employs a

multi-scale “consultation” strategy, facilitating the aggregation of test outcomes

from various magnifications.

Results:Our assessment of MAMILNet encompasses 1171 cases encompassing a

wide range of cancer types, showcasing its effectiveness in predicting complex

tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for

breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with

an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved

an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug

therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and

an Accuracy of 0.7341.
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Conclusion: The outcomes of this study underscore the potential of MAMILNet

in driving the advancement of precision medicine and individualized treatment

planning within the field of oncology. By effectively addressing challenges related

to model generalization, annotation workload, and multi-magnification

integration, MAMILNet shows promise in enhancing healthcare outcomes for

cancer patients. The framework’s success in accurately detecting breast tumors,

diagnosing lung cancer types, and predicting ovarian cancer therapy responses

highlights its significant contribution to the field and paves the way for improved

patient care.
KEYWORDS

whole slide image analysis, multiple instance learning, cancer diagnosis, multi-scale
attention, deep learning
1 Introduction

In recent years, computational pathology has emerged as a

transformative discipline with immense potential to revolutionize

cancer diagnosis and treatment planning. The advent of digital

pathology and whole slide imaging has led to vast histopathological

data repositories, presenting an unprecedented opportunity for

deep learning networks in this field Srinidhi et al. (1) Qu et al.

(2). Whole Slide Image (WSI) analysis, enabled by deep learning

algorithms, shows promise in tumor detection, typing, and drug

treatment response prediction, heralding a new era of precision

medicine in oncology Cheplygina et al. (3) Rony et al. (4).

Tumor detection is critical for timely and accurate cancer

diagnoses. Conventional methods, relying on manual examination

by pathologists, can be time-consuming and subjective, leading to

diagnostic errors and variability. Deep learning networks

revolutionize tumor detection, using Convolutional Neural

Networks (CNNs) to met iculous ly analyze dig i t ized

histopathological images, identifying malignancy with precision

and efficiency. Integrating deep learning expedites diagnostic

processes, enhances accuracy, and ensures reproducibility in

clinical settings. Tumor typing, categorizing cancers into

subtypes, is vital for personalized oncology. Deep learning

networks address challenges in tumor typing, comprehensively

learning from annotated histopathological datasets. They discern

subtle differences between tumor subtypes with remarkable

accuracy, facilitating efficient and precise tumor typing, leading to

tailored therapies and improved patient outcomes. In the realm of

cancer treatment, establishing deep-learning models to predict drug

therapy response from WSIs has emerged as a transformative

frontier. Traditional methods relying on manual evaluation of

biopsy samples struggle to capture the true heterogeneity of

tumor responses. In contrast, deep learning networks in WSI

analysis offer a promising and powerful approach. By analyzing

large-scale histopathological datasets, these models can detect subtle

alterations induced by therapies, enabling accurate and timely
02
prediction of treatment response. This groundbreaking

development holds the potential to revolutionize cancer treatment

and elevate patient outcomes to new heights.

Deep learning networks have a significant impact on

computational pathology, particularly in WSI analysis for tumor

detection, typing, and treatment response prediction, advancing

precision medicine and patient care. However, integrating deep

learning algorithms faces significant challenges in this domain. A

primary issue is the limited generalizability of models across

different cancer types and tasks, compromising their practicality

for routine clinical use. Many current approaches achieve

remarkable results on specific cancer types or tasks, but their

performance tends to deteriorate when confronted with diverse

cancers. The burden of patch-level annotation is another major

challenge. WSIs are massive and need to be divided into smaller

patches for deep learning training. Manual annotation of these

patches is time-consuming and labor-intensive, making

comprehensive annotation impractical, hindering the adoption of

fully-supervised algorithms. Moreover, handling multi-

magnification information is vital. Current studies often focus on

single magnification analysis, neglecting the diagnostic information

embedded in multiple magnifications. This limitation may lead to

incomplete understanding of pathological patterns, reducing the

efficacy of deep learning algorithms in capturing the full complexity

of the images Srinidhi et al. (1) Qu et al. (2) Cheplygina et al. (3)

Rony et al. (4) Wang et al. (5) Qu et al. (6).

This paper presents MAMILNet, a novel multi-scale attentional

multi-instance learning framework for whole slide pathological

image processing. MAMILNet offers several key advantages over

existing methods. Firstly, it exhibits high generalization across

multiple cancer types and prediction tasks by skillfully integrating

the attention mechanism. This adaptability ensures robust

performance in diverse scenarios. Secondly, MAMILNet employs

a multi-instance learning (MIL) architecture, treating slides as

“bags” and their cut patches as “instances,” effectively

representing slides as a whole. This eliminates the need for fine-
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grained patch-level labeling, reducing the burden of manual

labeling for pathologists. Additionally, MAMILNet utilizes a

multi-scale “consultation” training and prediction strategy,

training with multiple magnifications and aggregating test results

from different scales using a probability ensemble method. This

approach significantly enhances prediction accuracy by considering

multiple magnifications during diagnosis and prediction. Overall,

MAMILNet is a promising framework for achieving high-accuracy

predictions in WSI analysis with weak labeling at the slide level.

We present a comprehensive evaluation of MAMILNet’s

performance. We focus on three critical diagnosis tasks, involving

different cancer types, from four distinct medical centers. These

tasks include automatic recognition of sentinel lymph node cancer

in breast cancer, automatic typing of lung adenocarcinoma and lung

squamous cell carcinoma, and drug resistance diagnosis of high-

grade serous ovarian cancer. Through a meticulous analysis of 1711

patients and WSIs, MAMILNet demonstrates remarkable accuracy

in predicting these complex tasks. The successful outcomes

achieved by MAMILNet in this diverse dataset hold significant

implications for cancer diagnosis and personalized treatment

planning. These findings further reinforce the potential of deep

learning networks in advancing WSI processing, paving the way for

improved healthcare outcomes in oncology.
2 Related work

2.1 Deep-learning-based WSI analysis

Numerous noteworthy studies have been dedicated to addressing

significant clinical challenges in the WSI analysis field. For instance,

Coudray et al. (7) developed deep-learning models capable of

accurately predicting cancer subtypes and genetic mutations,

sparking the entire field. Naik et al. (8) presented a deep-learning

framework for directly predicting estrogen receptor status from H&E

slides. Another notable clinical endeavor was undertaken by Tomita

et al. (9), who proposed a grid-based network for performing 4-class

classification of high-resolution endoscopic esophagus and

gastroesophageal junction mucosal biopsy images from 379 patients.

Skrede et al. (10) developed a deep model to analyze conventional

H&E-stained slides and effectively predict the prognosis of patients

after colorectal cancer surgery. Similarly, in a gastrointestinal tract

oncology study, Kather et al. (11) employed a deep model to predict

microsatellite instability (MSI) directly from H&E-stained slides.

Currently, deep-learning models for WSI analysis have been applied

across a wide range of cancer types, including breast, colorectal, lung,

liver, cervical, thyroid, and bladder cancers Coudray et al. (7) Bejnordi

et al. (12) Chaudhary et al. (13) Campanella et al. (14) Saillard et al.

(15) Woerl et al. (16) Anand et al. (17) Velmahos et al. (18) Wessels

et al. (19) Li et al. (20) Yang et al. (21).

In contrast to the majority of studies that have focused on

specific tasks for individual cancers, our proposed MAMILNet takes

a broader approach, exploring network architectures for multiple

tasks across multiple cancer species. With MAMILNet, we have

successfully achieved high accuracy in predicting multiple tasks for

various cancer types.
Frontiers in Oncology 03
2.2 Multi-instance learning techniques

As an effective weakly supervised learning algorithm, multi-

instance learning has emerged as the mainstream method for WSI

analysis based on deep learning Campanella et al. (14)Ilse et al. (22)

Shi et al. (23) Li et al. (24) Qu et al. (25) Qu et al. (26). Due to the

substantial size of WSIs, often reaching 100,000 × 100,000 pixels,

direct utilization as input for deep-learning models is impractical.

To alleviate the computational burden, WSIs are typically divided

into numerous small patches for processing. In multi-instance

learning, each WSI is treated as a “bag,” while the segmented

patches are regarded as “instances” belonging to that bag. If a bag

is labeled as negative, all instances within it are considered negative;

conversely, if a bag is labeled as positive, at least one instance within

it is positive. Multi-instance learning leverages neural networks to

extract features from each instance and aggregates them into a

feature representation of the bag. Subsequently, the classifier is

trained at the bag level, enabling direct slide-level classification

without the need for doctors to label patches with fine granularity.

However, current studies primarily focus on MIL-based WSI

analysis at a single magnification level, while pathologists often

switch between multiple magnifications to perform comprehensive

diagnoses. Neglecting the multiplex information may lead to an

incomplete understanding and interpretation of pathological

patterns, thereby limiting the effectiveness of deep learning

algorithms in capturing the full complexity of these images.

Embracing the varied information present in different

magnifications is essential to enhance the diagnostic accuracy and

enable deep-learning models to encompass the richness of

information contained within WSIs.
3 Materials and methods

3.1 Study design and workflow

The present study focuses on advancing WSI processing

through the integration of deep learning techniques. As illustrated

in Figure 1, our methodology commences with the expertise of

skilled pathologists, who meticulously prepare film and microscope

reprints of tumor tissue sections. Subsequently, high-quality

sections with clear labels are carefully chosen for digital scanning,

yielding comprehensive WSI datasets. The utilization of WSIs is

essential as it allows for a holistic view of the tissue, enabling a more

comprehensive and accurate analysis.

To optimize the input data for deep learning analysis, the

acquired WSIs undergo preprocessing (refer to Section 3.2). This

step involves WSI patching, data normalization, and data

augmentation, among other techniques, ensuring standardized

and consistent data for subsequent analysis.

The main focus of our study involves the development and

implementation of a sophisticated deep learning network, referred

to as MAMILNet (detailed in section 3.2.3). By incorporating

attention mechanisms, multi-instance learning, and multi-scale

ensemble strategies, MAMILNet is strategically designed to

effectively address the complexities associated with multiple
frontiersin.org
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prediction tasks across various cancer types. To comprehensively

evaluate MAMILNet’s performance on these diverse prediction

tasks, we utilized three data cohorts from four different centers,

encompassing 1711 cases and WSIs. The predictive tasks for

different cancer types include: automatic recognition of sentinel

lymph node cancer in breast cancer, automatic typing of lung

adenocarcinoma and lung squamous cell carcinoma, and

evaluation of drug resistance in high-grade serous ovarian cancer.
3.2 Data collection and preprocessing

In this research, we conducted a comprehensive evaluation of

MAMILNet’s performance on various prediction tasks for different

cancer types using a total of 1711 cases and WSIs from three data

cohorts across four centers. The predicted cancer types and tasks

included the automatic recognition of sentinel lymph node cancer

in breast cancer, automatic typing of lung adenocarcinoma and lung

squamous cell carcinoma, and drug-resistance diagnosis of high-

grade serous ovarian cancer. For details on the collection of relevant

data queues, please refer to section 3.2.1, and for information on the

pre-processing of data queues, see section 3.2.2.

3.2.1 Data collection
3.2.1.1 Breast cancer cohort

For the breast cancer cohort, we utilized the Camelyon 16

Dataset Bejnordi et al. (12), which is a prominent public benchmark

in computational pathology, specifically focusing on sentinel lymph

nodes. This dataset consists of a total of 399 whole-slide images

(WSIs) collected from the Radboud University Medical Center in

Nijmegen and the University Medical Center Utrecht in the

Netherlands. Expert pathologists have annotated the tissue slides,

labeling slides containing cancer as positive and those without

cancer as negative. The raw data queue contains both slide-level

weak labels and pixel-level labels for cancer regions. However, to

adhere to the requirements of weakly supervised scenarios, we

utilized only slide-level weak labels for training and testing

purposes. This approach ensures the appropriate use of data
Frontiers in Oncology 04
while addressing the challenges posed by weak supervision in the

context of this research.

3.2.1.2 Lung cancer cohort

The TCGA lung cancer dataset comprises a total of 1050 H&E

stained WSIs from the public Cancer Genome Atlas (TCGA) data

portal. This dataset includes two subtypes of lung cancer: Lung

Adenocarcinoma and Lung Squamous Cell Carcinoma. Expert

pathologists have carefully annotated the WSIs, providing slide-

level labels to indicate whether each WSI corresponds to Lung

Adenocarcinoma (negative) or Lung Squamous Cell Carcinoma

(positive). The meticulous annotations by expert pathologists

ensure the accuracy and reliability of the dataset for further

analysis and research in the field of lung cancer.

3.2.1.3 Ovarian cancer cohort

The Ovarian Cancer Cohort comprises a total of 262 cases and

WSIs from two centers: 228 patients from Yunnan Cancer Hospital,

China, and 34 patients from Yunnan First People’s Hospital, China.

After obtaining institutional review board approval, we

retrospectively selected patients who received standardized

treatment for ovarian cancer at Yunnan Cancer Hospital and

Yunnan First People’s Hospital between 2015 and 2022.

Inclusion criteria for patient selection were as follows: (1)

confirmation of high-grade serous ovarian cancer through

operation and pathology; (2) treatment modalities including

primary tumor cell reduction plus first-line platinum drug

chemotherapy, or neoadjuvant chemotherapy plus tumor cell

reduction plus first-line platinum drug chemotherapy; (3)

availability of at least one pathological H&E-stained slide with

focal lesions for each patient; (4) at least 6 months of available

follow-up records after chemotherapy. Exclusion criteria included:

(1) history of other malignant tumors, pelvic surgery, or platinum

chemotherapy; (2) poor quality of tissue slides (Cases with poor

slide quality, such as broken cap fragments or stains on the surface,

insufficient tumor tissue, or tissue folding, were excluded.); (3)

maximum diameter of the lesion less than 1 cm; (4) incomplete or

substandard chemotherapy regimen; (5) incomplete clinical and
FIGURE 1

Pipeline of the whole study.
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pathological data. To clarify, at Yunnan Cancer Hospital, out of 270

patients considered, 42 were excluded based on the predefined

criteria, resulting in 228 patients being included in the study.

Similarly, at Yunnan First People’s Hospital, from an initial pool

of 48 patients, 14 did not meet the inclusion criteria, leaving 34

patients to be enrolled in the study.

We defined platinum resistance as disease progression or

recurrence within 6 months after the end of chemotherapy, and

platinum sensitivity if there was no disease progression or

recurrence within this timeframe. Tumor recurrence was

determined based on histopathology or the presence of two of the

following manifestations: sustained elevation of CA125, pleural

effusion or ascites, physical examination finding a lump, imaging

findings of a mass, or unexplained intestinal obstruction. For each

patient, two professional pathologists Qinqing Wang and Qingyin

Meng evaluated the slides, selecting 1-3 representative primary

lesion slides. The images were then digitized through an off-field

20-magnification scan (0.48 µm/pixel) using a portable scanner

(Ocus, Grundium, Finland).

3.2.2 Data preprocessing and partitioning
In this research, we employed the Python language (Version

3.7) and utilized the Openslide library (Version 3.4.1) to export all

data queues at three magnifications: 20x, 10x, and 5x. We saved the

resulting image sets separately, dividing them into non-overlapping

224×224 small image blocks. To ensure data quality, image blocks

with an entropy of less than 5 were excluded, as they are likely to

represent the background. For each resolution set, we performed

image normalization using the mean and variance of all slices

within the corresponding set. Data augmentation techniques,

including random flipping, rotation, color transformation, and

random cropping, were applied to enhance the dataset’s diversity.

To achieve this, we utilized Python (Version 3.7) with libraries such
Frontiers in Oncology 05
as Pillow (Version 8.4.0), OpenCV (Version 4.1.0), and the PyTorch

deep learning framework (Version 1.7.1). By employing these

procedures and tools, we ensured that our dataset was prepared

with standardized resolution and enhanced with data

augmentation, setting a solid foundation for robust and reliable

deep-learning model training and evaluation.

In the Breast cancer cohort, we conducted a random division to

create a training set consisting of 240 cases and slides, and a test set

containing 129 cases and slides. For the Lung Cancer Cohort, we

applied a random division resulting in a training set comprising 840

cases and slides, and a test set comprising 210 cases and slides.

Similarly, for the Ovarian Cancer Cohort, we randomly divided it

into a training set with 183 cases and slides, and a test set with 79

cases and slides. Importantly, each of the training sets also includes

validation sets.

3.2.3 Multi-scale attentional multi-instance
learning network

We present MAMILNet, a multi-instance deep convolutional

neural network architecture incorporating a multi-scale attentional

mechanism, designed to handle multiple prediction tasks for

various cancers. The network’s training process is illustrated in

Figure 2A. During training, we create separate models for the 20x,

10x, and 5x image sets, as depicted in Figure 2A. Each set of patches

from the same WSI constitutes a bag. Before each iteration, we

apply random data augmentation techniques to each patch in the

bag, including random noise, rotation, clipping, and color

transformation. Next, we utilize a pre-trained ResNet He et al.

(27) network as the primary feature extractor to obtain the features

of each patch within the bag. Subsequently, an attention module is

employed, where a learnable attention weight is assigned to the

features of each image block. This attention-pooling process

aggregates the features within the bag to obtain the bag-level
A

B

FIGURE 2

(A) Training process of the MAMILNet; (B) Inference process of the MAMILNet.
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features. Finally, a bag-level Multilayer Perceptron (MLP) serves as

the bag classifier, directly predicting the negative and positive risks

of the WSI. The cross-entropy loss, calculated against the true

labels, serves as the loss function during training, and stochastic

gradient descent drives the parameter updates in the network.

The attention module consists of two main steps. First, a linear

fully connected layer reduces the dimension of each feature vector

to 128, followed by the application of the pixel-level hyperbolic

tangent function (tanh()). This non-linear output is then scaled to

be between -1 and 1. The resulting values are multiplied with

another linear layer to calculate the attention weight of each image

block using the softmax function. In the second step, we use the

feature matrix of the image block and the attention weight matrix to

obtain the bag-level features. This step involves element-wise

multiplication of the feature matrix with the attention weight

matrix, effectively emphasizing the important regions within the

bag based on their calculated attention weights. The resulting

features represent a compact representation of the bag, capturing

the salient information required for accurate bag-level predictions.

The inference process of the network is depicted in Figure 2B.

During the testing phase, we propose a multi-scale integration

strategy inspired by pathologists who often zoom in and out of

slices for diagnosis. This strategy allows us to make the final

prediction for the test cohort. Specifically, we employ the 20x,

10x, and 5x models obtained during the training process to calculate

the predicted risk probability for each WSI at each magnification

level. Next, we use the mean-pooling method to aggregate the

prediction probabilities from the three magnification levels. This

aggregation process yields the final prediction risk probability for

each WSI.

We utilized the PyTorch deep learning framework (Version

1.7.1) in Python (Version 3.7) to perform all training and testing

processes of the network. The Adam optimizer was employed to

train the model, utilizing the cross-entropy loss as the loss function.

The total number of training iterations was set to 500, with a

learning rate of 1e-4. We applied a weight decay factor of 1e-5, and

the batch size was set to 64. For computational resources, we

conducted the training using the 11th Gen Intel(R) Core(TM) i7-

11700K CPU in combination with the Nvidia 3090 GPU. These

hardware configurations ensure efficient and high-performance

processing during the training and testing phases of our deep-

learning model.

3.2.4 Statistical analysis
In our specific experiments, we employed the cross-validation

method to train the model and select the best-performing model for

final internal verification and independent testing. During this

process, the verification set was utilized to identify the model

with the optimal performance, while the independent test set

remained unseen during both the training and verification stages,

ensuring a fair evaluation of the model’s performance. Specifically,

for each dataset, we first divide it into a training set (including a

validation set) and an independent test set at a ratio close to 4:1,

where the independent test set remains unseen during the training

and validation process. The details of the division can be found in

Section 3.2.2 Data Preprocessing and Partitioning. For the training
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set, we employed a 5-fold cross-validation method. This technique

divides the training dataset into five parts, using four parts for

training and one part for validation in each iteration. This process

ensures that each data point is used for both training and validation

once, thus obtaining a more reliable estimate of model performance.

Then we select the best model and parameters from the cross-

validation to test on the independent test set and report the results

of the independent test set as the final outcome. This also better

simulates the prediction scenario for more new unseen clinical data

in the future.

To assess the model’s performance, we employed several

metrics, including the area under the ROC curve (AUC),

Accuracy, False Positive Rate (FPR), and False Negative Rate

(FNR). These metrics were reported along with 95% confidence

intervals (CI) to provide a comprehensive understanding of the

model’s effectiveness. All metric calculations and statistical analyses

were conducted using the scikit-learn package (Version 1.3.0)

within the Python (Version 3.7) environment. The scikit-learn

package offers robust and reliable tools for evaluating machine

learning models, ensuring the accuracy and consistency of our

model assessments.
4 Results

4.1 Prediction results of sentinel lymph
node tumor detection in breast cancer

In the task of tumor diagnosis of sentinel lymph nodes of breast

cancer, as shown in Table 1, our innovative MAMILNet

demonstrated remarkable success, achieving an impressive AUC

of 0.8872 (95%CI 0.86-0.90) on the independent test set. Moreover,

our model exhibited high accuracy (0.8760, 95%CI 0.85-0.89) and

demonstrated low false positive rate (FPR=0.1406, 95%CI 0.16-

0.12) and false negative rate (FNR=0.1077, 95%CI 0.08-0.12)

performances. These compelling results underscore the efficacy of

MAMILNet in accurately diagnosing tumors based on H&E-stained

WSIs, and hold significant promise for enhancing breast cancer

diagnostics and patient outcomes.

Moreover, by comparing our multi-scale model with

MAMILNet variants and advanced competitors, we observed
TABLE 1 Prediction results on the independent test set of sentinel lymph
node tumor detection in breast cancer.

Deep-learning
Model

AUC Accuracy FNR FPR

5× only MAMILNet 0.7684 0.7520 0.2258 0.2698

10× only MAMILNet 0.8379 0.8217 0.1384 0.2187

20× only MAMILNet 0.8653 0.8450 0.1538 0.1562

MILRNN Campanella
et al. (14)

0.8178 0.8062 0.1428 0.2542

CLAM Lu et al. (28) 0.8762 0.8527 0.1142 0.2000

MAMILNet (ours) 0.8872 0.8760 0.1077 0.1406
fron
Bold values refer to the best results.
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further improvements through our proposed multi-scale integrated

prediction strategy, validating its effectiveness in enhancing model

performance. These findings signify significant strides in the field of

deep learning-based tumor diagnosis, propelling advancements in

early detection and precision medicine for breast cancer patients.

The ROC curve of MAMILNet on the breast cancer sentinel

lymph node tumor detection task on the independent test set is

shown in Figure 3A.
4.2 Prediction results of automatic
subtyping of lung adenocarcinoma and
lung squamous cell carcinoma

In the domain of WSI processing for lung cancer typing diagnosis,

as can be seen from Table 2, our MAMILNet demonstrated

outstanding performance. The achieved AUC of 0.9551 (95%CI 0.94-

0.96) on the independent test set, coupled with accuracy of 0.9095 (95%

CI 0.89-0.91), FPR of 0.0961 (95%CI 0.110.07), and FNR of 0.0857

(95%CI 0.09-0.07), affirms the model’s accurate and efficient

classification of lung tumor types based on H&E-stained WSIs.

Additionally, a comparative analysis with other single-scale variants

and competitors underscores the superiority of our innovative multi-

scale strategy, further validating its efficacy in enhancing classification

accuracy and diagnostic performance. These findings represent a

significant advancement in the field of deep learning-based lung

cancer typing, offering promising avenues for improving patient care

and treatment outcomes.

The ROC curve on lung cancer tumor typing task on the

independent test set is shown in Figure 3B.
4.3 Prediction results of drug resistance in
high-grade serous ovarian cancer

We explored a novel and challenging clinical task—predicting

patients’ drug therapy response using the Ovarian Cancer Cohort.

This task, which surpasses the interpretability of H&E-stained slides

even for medical experts, represents a pressing problem in

contemporary medical research. As can be seen from Table 3, our
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MAMILNet demonstrated promising results in this endeavor,

achieving an AUC of 0.7358 (95%CI 0.74-0.72) on the

independent test set, along with accuracy of 0.7341 (95%CI 0.72-

0.74), FPR of 0.2982 (95%CI 0.30-0.28), and FNR of 0.1818 (95%CI

0.17-0.19). These performance indicators signify the potential of

our MAMILNet to make significant advancements in drug response

therapy prediction, ushering in a new era of personalized medicine

and improved patient outcomes in ovarian cancer management.

The ROC curve on the ovarian cancer treatment resistance

prediction task on the independent test set is shown in Figure 3C.
5 Discussion and conclusions

This research introduces MAMILNet, a novel multi-scale

attentional multi-instance learning framework, which achieves

remarkable performance in critical tasks like breast cancer tumor

detection, lung cancer subtype diagnosis, and ovarian cancer drug

resistance prediction, even with weak slide-level labeling.

MAMILNet’s innovative design and capabilities hold significant

promise for advancing medical image analysis, improving

diagnostic accuracy, and guiding cancer treatment decisions.

MAMILNet demonstrates its robust performance through three

key components. Firstly, it effectively employs attentionmechanisms to

adaptively learn critical visual features associated with various cancer

species and tasks. By assigning higher attention weights to clinically

relevant visual features and lower weights to unrelated background and

noise, MAMILNet acts as a dynamic filter, enhancing its learning

ability for different tasks. Consequently, the network exhibits

exceptional generalization across multiple cancer types and

prediction tasks. Secondly, MAMILNet adopts a feature aggregation-

based multi-instance learning architecture, enabling remarkable

performance even with slide-level weak annotation. It treats slides as

“bags” and their cut patches as “instances,” employing an efficient

instance-level feature extractor to derive informative representations.

An attention mechanism is then used to aggregate these instance

features effectively into bag-level features. This approach culminates in

a powerful bag classifier, enabling accurate slide-level classification.

The combination of instance-level efficient feature representation,

attention-based feature aggregation, and a robust bag-level classifier
A B C

FIGURE 3

(A) The ROC curve of MAMILNet on the breast cancer sentinel lymph node tumor detection task (independent test set). (B) The ROC curve on lung
cancer tumor typing task (independent test set). (C) The ROC curve on the ovarian cancer treatment resistance prediction task (independent
test set).
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ensures MAMILNet’s efficiency. Lastly, inspired by pathologists’

“zoom in and out” reading approach, MAMILNet introduces a

multi-scale “consultation” training and prediction strategy. During

training, it uses multiple magnifications to fully model and learn

pathological features. During testing, a probabilistic set approach

aggregates results from different scales, harnessing the advantages of

diverse magnifications for optimal prediction performance, akin to a

medical consultation process. This innovative strategy further

enhances MAMILNet’s predictive capabilities.

Tumor detection and pathologic subtyping are vital in WSI

analysis through deep learning. The deep learning model offers

faster and more detailed diagnostic references directly from H&E-

stained slides, significantly reducing examination time. Moreover, its

highly generalized nature facilitates diagnosis in regions with limited

medical resources. This study demonstrates satisfactory performance

in both tasks, paving the way for the widespread application of deep-

learning models in this domain. It is also among the pioneering efforts

to explore the direct prediction of drug response therapeutic efficacy

from WSI using deep learning. Assessing a patient’s response to drug

therapy is critical for treatment decisions and prognosis. However,

determining drug resistance from H&E-stained slides is challenging,

even for experienced physicians. Studies Vamathevan et al. (29)

Ballester et al. (30) Farahmand et al. (31) suggest that a patient’s

sensitivity to specific drug therapy may be evident in H&E-stained

sections, presenting opportunities for deep-learning model

applications. The deep-learning model effectively captures
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pathological patterns related to drug treatment responses in a data-

drivenmanner, enabling accurate predictions. The research conducted

a preliminary trial on High-grade Serous Ovarian Cancer, yielding

promising results. These findings support the future prediction of

treatment responses using deep learning across various cancer types

with different drugs. This breakthrough holds significant potential for

advancing personalized medicine and enhancing patient outcomes.

The study has several limitations that require careful consideration.

Firstly, it adopts a retrospective analysis approach, which may

inherently constrain the diversity and representativeness of the data.

Future investigations aim to build a larger and more comprehensive

dataset to enhance the model’s robustness. Secondly, for drug

resistance prediction tasks, systematic pathologic patterns have not

been identified. The deep-learningmodel relies on data-driven iteration

and training, making it challenging to understand the underlying

pathological basis of its judgments. Although the designed attention

mechanism can highlight patches of high and low risk, further

experiments are needed to systematically generalize authoritative

pathological patterns. While this study provides a preliminary

glimpse into the potential of utilizing deep-learning models for drug

therapy response prediction in ovarian cancer, full generalization of this

knowledge requires more extensive trials and investigation. Thirdly,

despite conducting trials involving three cancer species from four

centers, the validation across multiple centers remains insufficient for

each task. Limited multi-center training and verification constrain the

generalization and robustness of deep learning networks. To address

this, future endeavors will focus on collecting more extensive data to

facilitate large-scale, multi-center training and validation, ensuring

more comprehensive and reliable results.

In our study, we investigated the predictors of therapeutic

outcomes in ovarian cancer, acknowledging that these are

influenced by a range of factors beyond tumor morphology, such as

pathological stage, resection margins, patient performance status, and

comorbidities. We developed a deep learning model, using

pathological slides as the sole input, to predict drug resistance,

exploring the potential of pathological sections as an independent

biomarker. While integrating clinical and pathological data could

improve predictive accuracy, our initial focus on pathological slides

due to scope and time constraints represents a deliberate first step

towards a comprehensive research strategy. Plans to include clinical

data in future analyses acknowledge the opportunity to enhance drug

resistance predictions. We analyzed additional clinical data, including

Federation International of Gynecology and Obstetrics (FIGO) stage,

age, and BMI, through logistic regression to assess their relationship

with platinum resistance. The p-values for these factors (0.2052,

0.9191, and 0.3393, respectively) suggest they are poor predictors of

platinum resistance, as evidenced by AUC values of 0.58, 0.51, and

0.54 in independent tests. Conversely, our deep learning analysis of

pathological images with MAMILNet demonstrated higher predictive

accuracy for treatment response, achieving an AUC of 0.7358, with

significant accuracy, FPR, and FNR rates. We aim to extend our

research to include broader clinical parameters, enhancing prediction

accuracy and understanding of therapeutic outcome determinants in

ovarian cancer. This multidimensional approach promises to refine

our predictive models and contribute valuable insights into the

complex dynamics of cancer treatment response.
TABLE 3 Prediction results on the independent test set of drug
resistance in high-grade serous ovarian cancer.

Deep-learning
Model

AUC Accuracy FNR FPR

5× only MAMILNet 0.6741 0.6582 0.3636 0.3333

10× only MAMILNet 0.6968 0.6835 0.2727 0.3333

20× only MAMILNet 0.7126 0.7088 0.2727 0.2982

MILRNN Campanella
et al. (14)

0.6537 0.6329 0.3333 0.4118

CLAM Lu et al. (28) 0.6884 0.6709 0.2727 0.4000

MAMILNet (ours) 0.7358 0.7341 0.1818 0.2982
TABLE 2 Prediction results on the independent test set of automatic
subtyping of lung adenocarcinoma and lung squamous cell carcinoma.

Deep-learning
Model

AUC Accuracy FNR FPR

5× only MAMILNet 0.9269 0.8619 0.1333 0.1429

10× only MAMILNet 0.9324 0.8904 0.0952 0.1250

20× only MAMILNet 0.9488 0.9000 0.0857 0.1153

MILRNN Campanella
et al. (14)

0.9236 0.8667 0.1111 0.1733

CLAM Lu et al. (28) 0.9411 0.8857 0.0714 0.2000

MAMILNet (ours) 0.9551 0.9095 0.0857 0.0961
Bold values refer to the best results.
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In summary, deep-learning-based WSI analysis has emerged as

a crucial approach for cancer diagnosis. This study introduces a

novel multi-scale attentional multi-instance network architecture

(MAMILNet), presenting a fresh perspective and method for WSI

analysis using deep learning. Notably, MAMILNet demonstrates

promising results in breast cancer tumor detection, lung cancer

tumor typing, and ovarian cancer drug resistance prediction tasks.

These achievements offer valuable insights for the wider application

of deep-learning models in these areas and inspire new avenues for

utilizing deep learning in diverse cancer types and diagnostic tasks.

MAMILNet’s performance signifies its potential as a powerful tool

for enhancing cancer diagnosis and treatment in clinical settings.
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