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Plasma metabolomics
reveals risk factors for
lung adenocarcinoma
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Wei Zhu4*, Jiye Aa1* and Guangji Wang1

1Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing,
Jiangsu, China, 2Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical
University, Nanjing, Jiangsu, China, 3Department of Respiration, The Affiliated Jiangning Hospital of
Nanjing Medical University, Nanjing, Jiangsu, China, 4Department of Oncology, First Affiliated Hospital
of Nanjing Medical University, Nanjing, Jiangsu, China
Background: Metabolic reprogramming plays a significant role in the

advancement of lung adenocarcinoma (LUAD), yet the precise metabolic

changes remain incompletely understood. This study aims to uncover

metabolic indicators associated with the progression of LUAD.

Methods: A total of 1083 subjects were recruited, including 670 LUAD, 135

benign lung nodules (BLN) and 278 healthy controls (HC). Gas chromatography-

mass spectrometry (GC/MS) was used to identify and quantify plasma

metabolites. Odds ratios (ORs) were calculated to determine LUAD risk factors,

and machine learning algorithms were utilized to differentiate LUAD from BLN.

Results: High levels of oxalate, glycolate, glycine, glyceric acid, aminomalonic

acid, and creatinine were identified as risk factors for LUAD (adjusted ORs>1.2,

P<0.03). Remarkably, oxalate emerged as a distinctive metabolic risk factor

exhibiting a strong correlation with the progression of LUAD (adjusted

OR=5.107, P<0.001; advanced-stage vs. early-stage). The Random Forest (RF)

model demonstrated a high degree of efficacy in distinguishing between LUAD

and BLN (accuracy = 1.00 and 0.73, F1-score= 1.00 and 0.79, and AUC = 1.00 and

0.76 in the training and validation sets, respectively). TCGA and GTEx gene

expression data have shown that lactate dehydrogenase A (LDHA), a crucial

enzyme involved in oxalate metabolism, is increasingly expressed in the

progression of LUAD. High LDHA expression levels in LUAD patients are also

linked to poor prognoses (HR=1.66, 95% CI=1.34-2.07, P<0.001).

Conclusions: This study reveals risk factors associated with LUAD.
KEYWORDS

LUAD, metabolomics, risk factor, oxalate, LDHA
Abbreviations: LUAD, lung adenocarcinoma; BLN, benign lung nodules; HC, healthy controls; GC/MS, gas

chromatography-mass spectrometry; OR, odds ratios; TCGA, the Cancer Genome Atlas; GTEx, the

Genotype-Tissue Expression; ROC, the receiver operating characteristic (ROC) curve; AUC, the area

under the ROC curve; LDHA, the lactate dehydrogenase A; QC, quality control; PCA, principal

component analysis; PLS-DA, partial least square to latent structure discriminant analysis; RF, Random

Forest; GNB, Gaussian Naive Bayes; MLP, Multilayer Perceptron; SVM, Support Vector Machine; KNN, k-

Nearest Neighbors; DCA, decision curve analysis.

frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2024.1277206/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1277206/full
https://www.frontiersin.org/articles/10.3389/fonc.2024.1277206/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2024.1277206&domain=pdf&date_stamp=2024-03-19
mailto:jiyea@cpu.edu.cn
mailto:zhuwei@njmu.edu.cn
https://doi.org/10.3389/fonc.2024.1277206
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2024.1277206
https://www.frontiersin.org/journals/oncology


Yu et al. 10.3389/fonc.2024.1277206
Introduction

Lung cancer is one of the most common and lethal types of

malignant tumors worldwide. According to the statistics, there were

approximately 2.2 million new cases of lung cancer and 1.8 million

deaths worldwide in 2020 (1). Lung adenocarcinoma (LUAD) is the

most common histological subtype of lung cancer, accounting for

approximately 50% of all lung cancer cases (2). With the development

of society, the incidence of various lung nodules, including lung

adenocarcinoma, remains high due to environmental pollution,

smoking, and unhealthy diet (3, 4). Although the clinical application

of low-dose computed tomography (LDCT) has dramatically increased

lung nodules’ detection rate and reduced lung adenocarcinoma’s

mortality rate, the false-positive rate of lung adenocarcinoma

detected by LDCT is high (5). Therefore, there is an unmet need for

diagnosing LUAD and accurately classifying lung nodules.

Metabolic reprogramming has been recognized as one of the 10

hallmarks of cancer contributing to tumorigenesis and tumor

progression (6–8). Studying the metabolic preferences, physiological

dependencies, and molecular mechanisms that underlie LUAD is

essential for its diagnosis, progression, and prognosis. For example, a

large-scale metabolomic analysis of LUAD showed that combining

serum metabolic fingerprints with protein tumor markers by deep

learning can be used for early LUAD detection (9). Targeted

metabolomic studies of resected lesions deciphered the metabolic

trajectory from atypical adenomatous hyperplasia to adenocarcinoma

in situ and invasive adenocarcinoma, revealing that metabolic

perturbations occur in the precancerous lesions of LUAD (10).

Extensive research has shown that glucose metabolic pathways, fatty

acid metabolism, and glutamine metabolic pathways are associated

with the prognosis of LUAD (11–13). Few studies have been

performed on how LUAD progresses over time, so characterizing

LUAD’s metabolic evolution is necessary from different stages.

This study focused on detecting and screening metabolic markers

associated with LUAD. Plasma metabolites from patients with lung

nodules (including LUAD and BLN) and their controls were analyzed

using a metabolomics platform with GC/MS instrumentation. Metabolic

patterns were evaluated, and metabolic markers were screened and

described based on semiquantitative data, receiver operating

characteristic (ROC) curve analysis and odds ratio (OR). Then,

endogenous metabolites and machine learning algorithms were used

to construct and evaluate classification models for LUAD. In addition,

we found that as the pTNM stages advanced and tumor metastasis,

oxalate and its metabolic key enzyme LDHA changed in LUAD.

Considering the interaction between oxalate and LDHA, the linkage

and functions between the two are briefly explained in the discussion.
Materials and methods

Human plasma collection

The experimental samples were collected from the First

Affiliated Hospital of Nanjing Medical University from June 2015

to June 2021. Blood samples were collected from 6:00 am to 8:30 am

after overnight fasting and kept under 4°C before stored at –80°C
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within 6 hours after plasma isolation (14). Subjects included in this

s tudy were free of metabol ic abnormali t ies such as

hypoproteinemia, weight loss, and negative nitrogen balance. This

prospective study was approved by the Ethics Committee of the

First Affiliated Hospital of Nanjing Medical University (No. 2016-

SRFA-149), and informed consent was obtained from all subjects.
Chemicals and reagents

1, 2-13C2-Myristic acid, methyl myristate, methoxamine

hydrochloride (purity 98%) and pyridine (≥99.8% GC) were

purchased from Sigma-Aldrich (St. Louis, MO, USA). N-methyl-

t r ime t hy l s i l y l t r ifluo roa c e t am id e (MSTFA) and 1%

trimethylchlorosilane (TMCS) were provided by Pierce Chemical

(Rockford, IL, USA). Methanol and n-heptane were HPLC grade

and obtained from Merck (Darmstadt, Germany).
GC/MS analysis, instrumental setting,
and parameters

Plasma samples were processed, extracted, and derived in

accordance with our previously developed methods (15). 50.0 mL
plasma was added into 200.0 mL methanol (containing 1, 2-13C2-

Myristic acid, 5.0 µg/mL). The specimens were vigorously extracted

for 5.0 min and centrifuged at 20000×g for 10.0 min at 4°C. A 100.0

mL aliquot of the resulting supernatant was transferred to a GC vial

and evaporated to dryness in a Speed-Vac concentrator (Thermo

Fisher Scientific, Savant™ SC250EXP, Holbrook, USA). The dried

plasma samples were then methoxymated, where 30.0 mL of

methoxyamine pyridine solution (10.0 mg/mL) was added to the

residue and incubated for 16 h at room temperature. Then the

samples were trimethylsilylated for another 1.0 h by adding 30.0 mL
of MSTFA with 1% TMCS as a catalyst. At last, 30.0 mL n-heptane

with methyl myristate (15.0 µg/mL) was added to each GC vial as an

external standard to monitor the stability of GC/MS.

A 0.5 mL sample aliquot was injected into gas chromatography

coupled to a mass spectrometer (Shimadzu GCMS-QP2010 Ultra,

Kyoto, Japan) in split mode (split ratio 8:1). It was equipped with an

Rtx-5MS capillary column (0.25 mm × 30 m × 0.25µm, Restek, PA,

USA). The injector temperature was set at 250°C. Helium was used

as the carrier gas at a 1.5 mL/min flow rate. The column

temperature was initially kept at 80°C for 3.0 min, then raised to

300°C at a rate of 20°C/min, and held for 5.0 min. The mass

spectrometer ion source temperature and interface temperature

were both 220°C, and ions were generated by a 70-eV electron

beam at a current of 3.2 mA. The mass spectra were acquired over

the mass range of 50-700 m/z in a full scan mode, with each run of

19.0 min. Following the abovementioned procedure, the quality

control (QC) samples were prepared for the plasma pool. All

samples were randomly selected for GC-MS analysis to diminish

the systematic variations.

The metabolites were by comparing the mass spectrum and

retention indexes for the analyte with the corresponding values

from the literature and various libraries [e.g., Mainlib and Public in
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the National Institute of Standards and Technology (NIST) library

2.0 (2008) and Wiley 9 (Wiley-VCH Verlag GmbH & Co KGaA,

Weinheim, Germany)]. Some standard compounds were also

utilized to identify the metabolites.
Statistical analysis

After normalization against the internal standard, all the

semiquantitative data from GC/MS were log10-transformed. The

transformed data were imported into SIMCA-P 14.1 software

(Germany, Sartorius, Goettingen) and pre-processed for

multivariate statistical analysis using par scaling. Principal

component analysis (PCA) and partial least square to latent

structure discriminant analysis (PLS-DA) models were built and

plotted to show the clustering or separation of samples from

different groups. PLS-DA models were constructed and plotted to

show the clustering or separation of samples from different groups.

The goodness of fit for the PLS-DA models was evaluated using

three quantitative parameters: R2X, R2Y and Q2. R2X and R2Y are

the explained variations, and Q2 is the predicted variation, with a

higher level of R2Y and Q2Y indicating the model’s better fit and

predictive performance. To avoid the classification obtained by

supervised learning methods being chance and to test whether the

model reproduces well and whether the data in the model are over-

fitted, the validity of the built model was examined by a 7-fold cross-

check and replacement test (200 times, cross-validation). The

intercept of the R2 and Q2 regression lines to the axes was used to

measure overfitting, and the model was valid when the intercept of

Q2 was negative.

To assess the differences among the groups, analysis of variance

(ANOVA) and multiple comparisons (LSD) were used. The

independent-sample t-test and Mann-Whitney U test were used

to analyze normally and non-normally distributed data. OR

calculations and ROC curve analysis were performed using SPSS

26.0 (SPSS Inc., Chicago, IL, USA), bar graphs were produced using

GraphPad Prism 8.0, and heatmap and pathway analysis were

performed using the online software MetaboAnalyst (https://

www.metaboanalyst.ca/).
Model development and evaluation

All individuals were randomly divided into train and validation

datasets in a ratio of seven to three. Hyperparameters of seven

machine learning models [including XGBoost, AdaBoost, Random

Forest (RF), Gaussian Naive Bayes (GNB), Multilayer Perceptron

(MLP), Support Vector Machine (SVM), and k-Nearest Neighbors

(KNN)] were optimized using 10-fold cross-validation. Ten groups

were created randomly from the training set. In each iteration of the

10-fold cross-validation method, nine groups were randomly

selected for training and the remaining groups were used as test

sets. Thus, the test sets for each group were selected sequentially,

which ensured that the evaluation results did not overlap. Then, to

minimize errors due to unreasonable test set selection, the results of

the 10 evaluations were averaged.
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The ROC curve analysis, calibration curve, decision curve

analysis (DCA), accuracy, F1-score, sensitivity and specificity

were used to assess the model ’s performance. Model

discrimination was assessed with ROC analysis, and the accuracy

of its predictions was assessed with AUC. The calibration curve

showed the calibration and the extent to which the model’s

predictions deviated from actual events. Clinical utility and net

benefit were assessed with DCA, which allows estimating the net

benefit by calculating the difference between the true positive rate

and the false positive rate, weighted by the odds ratio of the selected

risk threshold probabilities.

All analyses were performed with R software (version 4.0) and

Python version 3.7.
Transcriptomics database

RNA-sequencing expression (level 3) profi les and

corresponding clinical information for lung adenocarcinoma were

downloaded from the TCGA dataset (https://portal.gdc.com). The

current-release (V8) GTEx datasets were obtained from the GTEx

data portal website (https://www.gtexportal.org/home/datasets).

Statistical analyses were performed using R software v4.0.3 (R

Foundation for Statistical Computing, Vienna, Austria). P-value

<0.05 was considered statistically significant. All analyses were

performed using the online website HOME for Researchers

(https://www.home-for-researchers.com/static/index.html#/).
Cell culture

A549 and BEAS-2B cell lines were purchased from the Type

Culture Center, Chinese Academy of Sciences (Shanghai, China).

These cell lines were grown in RPMI-1640 medium supplemented

with 10% (v/v) fetal bovine serum and 100 U/mL penicillin and

streptomycin at 37°C and 5% CO2. GC/MS and metabolomics

analysis methods were the same as previously reported (16).
Results

Metabolic phenotypes of LUAD and
the controls

A total of 1083 subjects were included in this study, including

670 lung adenocarcinoma (LUAD), 135 benign lung nodules (BLN)

and 278 healthy controls (HC). Benign lung nodules mainly include

pulmonary hamartomas, hemangiomas, and inflammatory

pseudotumors. LUAD and BLN participants were newly

diagnosed and had not undergone anti-cancer treatment,

including radiation therapy, chemotherapy, surgical intervention,

or medication administration. All patients included in this study

were diagnosed by pathological examination. The distribution of

subjects is shown in Figure 1A and Supplementary Table 1.

GC/MS analysis of the plasma samples aligned the metabolites

in typical chromatograms (Supplementary Figure 1).
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Deconvolution of the GC/MS chromatograms produced 103

independent peaks from the plasma samples, 54 of which were

authentically identified as metabolites (Supplementary Table 2).

Quantitative data were acquired for each metabolite in the plasma

samples of the HC, BLN and LUAD cases.

The PCA and PLS-DA score plots (Figures 1B, C) demonstrated

good clustering of pooled QC samples, indicating reproducibility of

the assay and consistent instrument performance throughout the

experiment. The supervised PLS-DA model showed that the

samples in the HC and lung nodule groups (including LUAD and

BLN) were distributed in different quadrants (Figure 1C), indicating

significant metabolic differences between the two groups. Similarly,

the overlap between LUAD and BLN indicates similar metabolic

models. R2X, R2Y and Q2 of the PLS-DA model were 0.628, 0.552
Frontiers in Oncology 04
and 0.527, respectively, which suggested that the PLS-DA model

had good adaptability and predictability. The permutation plot

(Supplementary Figure 2) demonstrated that the PLS-DA models

were valid: the Q2 regression line had a negative intercept, and all of

the permuted R2 values to the left of the intercept were lower than

the original point to the right. These results suggest that both

variability and similarity in metabolic patterns are present in the

three groups.
Metabolic features of LUAD

Based on statistical analysis (Table 1), 43 and 42 discriminant

metabolites were found to differentiate LUAD and BLN patients
A

B

D E F

G IH

C

FIGURE 1

Distribution of subjects in this study and analysis of metabolic differences. (A) Distribution of subjects included in this study. (B) PCA score plot.
(C) PLS-DA score plot. (D) Relative abundance of plasma glycolate, creatinine, aminomalonic acid and 4-hydroxybutanoic acid. (E) Relative
abundance of plasma glycine, phosphate and fructose-6-phosphate. (F) Relative abundance of plasma lysine, myo-inositol and arachidonic acid (*,
**and *** to denote 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and p < 0.001, respectively). (G) Metabolic pathway analysis of identified differential
metabolites in BLN and HC groups; (H) Metabolic pathway analysis of identified differential metabolites in LUAD and HC groups; (I) Metabolic
pathway analysis of identified differential metabolites in LUAD and BLN groups.
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TABLE 1 List of discriminant metabolites: BLN vs. HC, LUAD vs. HC and LUAD vs. BLN.

Metabolites HC (n=278) BLN (n=135) LUAD (n=670) P1 P2 P3

Pyruvate 4.66 ± 0.16 4.58 ± 0.37 4.65 ± 0.42 <0.001 0.038 ns

Lactate 6.39 ± 0.21 6.32 ± 0.23 6.37 ± 0.36 <0.001 0.002 <0.001

Glycolate 3.86 ± 0.10 3.91 ± 0.17 3.93 ± 0.15 0.009 <0.001 0.020

Alanine 6.34 ± 0.20 6.26 ± 0.18 6.32 ± 0.17 <0.001 <0.001 0.004

Oxalate 5.38 ± 0.15 5.53 ± 0.17 5.42 ± 0.21 <0.001 <0.001 <0.001

3-Hydroxybutyric acid 4.82 ± 0.32 4.65 ± 0.33 4.67 ± 0.30 <0.001 <0.001 ns

Monomethylphosphate 4.53 ± 0.13 4.53 ± 0.15 4.54 ± 0.16 ns 0.017 ns

Valine 5.32 ± 0.15 5.25 ± 0.13 5.27 ± 0.14 <0.001 <0.001 ns

4-Hydroxybutanoic acid 4.84 ± 0.19 4.78 ± 0.18 4.71 ± 0.20 0.001 <0.001 <0.001

Phosphate 6.09 ± 0.06 6.09 ± 0.14 6.14 ± 0.18 ns <0.001 0.004

Leucine 5.91 ± 0.15 5.86 ± 0.13 5.87 ± 0.13 <0.001 <0.001 ns

Isoleucine 5.51 ± 0.27 5.47 ± 0.21 5.47 ± 0.24 <0.001 <0.001 ns

Proline 5.63 ± 0.34 5.52 ± 0.33 5.59 ± 0.37 <0.001 0.032 0.012

Glycine 4.90 ± 0.20 4.92 ± 0.18 5.00 ± 0.22 ns <0.001 <0.001

Succinate 3.80 ± 0.13 3.65 ± 0.18 3.64 ± 0.24 <0.001 <0.001 ns

Glyceric acid 3.92 ± 0.08 3.97 ± 0.17 4.00 ± 0.17 0.005 <0.001 ns

Fumarate 4.12 ± 0.17 4.07 ± 0.16 4.07 ± 0.24 0.007 <0.001 ns

Serine 5.52 ± 0.18 5.43 ± 0.14 5.47 ± 0.14 <0.001 <0.001 0.004

Threonine 5.15 ± 0.17 5.09 ± 0.12 5.11 ± 0.13 <0.001 <0.001 0.025

b-Alanine 4.97 ± 0.03 4.98 ± 0.03 4.97 ± 0.02 0.021 ns 0.017

Aminomalonic acid 5.42 ± 0.21 5.55 ± 0.17 5.59 ± 0.16 <0.001 <0.001 0.018

Malate 3.99 ± 0.10 3.80 ± 0.23 3.85 ± 0.25 <0.001 <0.001 0.018

Aspartate 4.36 ± 0.15 4.25 ± 0.22 4.29 ± 0.24 <0.001 <0.001 ns

Methionine 4.72 ± 0.14 4.65 ± 0.13 4.64 ± 0.14 <0.001 <0.001 ns

Pyroglutamate 5.63 ± 0.07 5.53 ± 0.24 5.61 ± 0.30 <0.001 <0.001 0.012

Cysteine 4.44 ± 0.10 4.42 ± 0.12 4.43 ± 0.12 0.036 ns ns

Creatinine 4.45 ± 0.21 4.60 ± 0.17 4.67 ± 0.17 <0.001 <0.001 <0.001

Glutamate 5.29 ± 0.20 5.24 ± 0.23 5.26 ± 0.29 0.014 0.009 ns

Phenylalanine 5.22 ± 0.13 5.17 ± 0.11 5.17 ± 0.12 <0.001 <0.001 ns

Pyrophosphoric acid 5.10 ± 0.11 4.99 ± 0.13 5.03 ± 0.18 <0.001 <0.001 <0.001

Asparagine 4.41 ± 0.17 4.27 ± 0.15 4.32 ± 0.17 <0.001 <0.001 0.002

Glutamine 6.05 ± 0.13 5.91 ± 0.12 5.94 ± 0.13 <0.001 <0.001 0.003

Citrate 5.69 ± 0.10 5.58 ± 0.10 5.61 ± 0.10 <0.001 <0.001 0.008

Ornithine 5.00 ± 0.22 4.83 ± 0.25 4.95 ± 0.30 <0.001 0.006 <0.001

Glucose 5.89 ± 0.25 5.93 ± 0.55 5.84 ± 0.52 ns 0.040 ns

Lysine 4.53 ± 0.20 4.46 ± 0.18 4.54 ± 0.20 <0.001 ns <0.001

Tyrosine 5.58 ± 0.13 5.52 ± 0.13 5.52 ± 0.12 <0.001 <0.001 ns

Palmitelaidic acid 4.08 ± 0.27 4.03 ± 0.31 4.04 ± 0.30 0.045 0.008 ns

Palmitic acid 5.71 ± 0.10 5.63 ± 0.12 5.66 ± 0.13 <0.001 <0.001 0.027

(Continued)
F
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from healthy controls, respectively. Similarly, LUAD cases

primarily showed different metabolomic patterns from BLN

patients. According to the statistical analysis, 26 distinct

metabolites were identified between LUAD and BLN.

Of the 42 metabolites differentiating BLN from HC, the levels of

glycolate, creatinine and aminomalonic acid were higher in BLN,

while 4-hydroxybutanoic acid was lower, and all the above

metabolites deviated further in LUAD (Figure 1D). These findings

indicate that the above metabolites are involved in the development

of lung nodules (from averagely minimal damage to lung cancer).

Although glycine, phosphate and fructose-6-phosphate showed

significant differences between the LUAD and BLN groups, they

had no significant difference between the BLN and HC groups

(Figure 1E). It is, therefore, suggested that these markers are

associated with LUAD. In addition, BLN cases showed deviations

in lysine, myo-inositol, and arachidonic acid levels, whereas the

LUAD and HC groups did not show any significant differences

(Figure 1F), suggesting that they are markers associated with BLN.

Metabolic pathway analysis showed that patients with lung

nodules were more affected by the following metabolic pathways:

aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate

metabolism, glyoxylate and dicarboxylate metabolism, citrate

cycle, arginine biosynthesis (Figures 1G, H). The differential

metabolic pathways between LUAD patients and BLN were:

aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate

metabolism, glyoxylate and dicarboxylate metabolism, glutathione

metabolism, arginine biosynthesis (Figure 1I).
Potential risk factors for LUAD

The ROC analysis showed monopalmitin, succinate, glutamine,

alpha-tocopherol, malate, asparagine and pyroglutamate performed

well for HC and BLN differentiation (AUC ≥ 0.80) (Supplementary

Table 3). Meanwhile, succinate and creatinine performed well for the

differentiation of HC and LUAD (AUC ≥ 0.80) (Supplementary

Table 4). However, each metabolite performed poorly in

differentiating LUAD and BLN (AUC< 0.65) (Supplementary Table 5).
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ORs values were calculated to assess the role of the above

metabolites as risk factors for predicting BLN/LUAD occurrence

(Table 2). Glycolate, oxalate, glyceric acid, b-alanine, aminomalonic

acid, creatinine, cystine and arachidonic acid were found to be risk

factors for BLN (ORs>1.0, P<0.05). In the meantime, glycolate, oxalate,

glycine, glyceric acid, aminomalonic acid and creatinine were risk

factors for LUAD (ORs>1.3, P<0.05). These results suggest that high

levels of glycolate, oxalate, glyceric acid, aminomalonic acid and

creatinine were independent risk factors of lung nodules. Whereas

glycine may be a LUAD-specific risk factor, similarly, b-alanine, cystine
and arachidonic acid may be BLN-specific risk factors.

Analyzing the differential metabolites between LUAD and BLN

(Table 2), we found that alanine, phosphate, proline, glycine, serine,

threonine, aminomalonic acid, malate, pyroglutamate, creatinine,

pyrophosphoric acid, asparagine, glutamine, ornithine, lysine,

palmitic acid, myo-inositol, monopalmitin 18 substances may be

risk factors for the development of BLN to LUAD (ORs>1.1, P<0.05).
Oxalate characterizes the progression
of LUAD

The occurrence and progression of lung adenocarcinoma are

progressive processes over time. Identifying the metabolic changes

during lung adenocarcinoma progression is highly important for

diagnosing, treating, and prognosis. The pTNM staging is the most

commonly used method of tumor staging, which mainly consists of

three parts: T-primary tumor size, N-lymph node metastasis and

M-distant metastasis. We set to stage 0, stage I and stage II as early-

stage, stage III and stage IV as advanced-stage, considering the

progression of LUAD and pTNM staging.

Statistical analysis showed that the metabolism in lung

adenocarcinoma changes with tumorigenesis and progression

(Table 3). Thirty-nine differential metabolites were found between

early-stage LUAD and HC groups, and thirteen between advanced-

stage LUAD and early-stage LUAD (Figure 2A). Notably, plasma

asparagine, myo-inositol, ornithine, pyrophosphoric acid, threonine,

and glutamine levels gradually decreased with increasing pTNM
TABLE 1 Continued

Metabolites HC (n=278) BLN (n=135) LUAD (n=670) P1 P2 P3

Uric acid 5.80 ± 0.15 5.73 ± 0.20 5.72 ± 0.18 <0.001 <0.001 ns

Myo-Inositol 4.74 ± 0.12 4.67 ± 0.12 4.73 ± 0.15 <0.001 ns <0.001

Linoleic acid 5.15 ± 0.13 5.01 ± 0.17 5.04 ± 0.18 <0.001 <0.001 ns

Oleic acid 5.57 ± 0.15 5.57 ± 0.14 5.56 ± 0.15 ns 0.046 ns

Cystine 3.93 ± 0.23 4.00 ± 0.30 3.96 ± 0.27 0.028 ns ns

Fructose-6-Phosphate 3.88 ± 0.14 3.88 ± 0.14 3.84 ± 0.15 ns <0.001 0.005

Arachidonic acid 4.23 ± 0.18 4.27 ± 0.19 4.23 ± 0.21 0.016 ns 0.003

Monopalmitin 4.32 ± 0.11 4.16 ± 0.11 4.21 ± 0.12 <0.001 <0.001 <0.001

Alpha-Tocopherol 5.12 ± 0.12 4.90 ± 0.26 4.89 ± 0.35 <0.001 <0.001 ns

Cholesterol 5.86 ± 0.06 5.84 ± 0.08 5.83 ± 0.14 0.013 0.003 ns
The data were log10 transformed and expressed as mean ± SD. P1, BLN vs. HC; P2, LUAD vs. HC; P3, LUAD vs. BLN; ns, P>0.05.
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TABLE 2 List of risk factors: BLN vs. HC, LUAD vs. HC and LUAD vs. BLN.

Cohorts Risk factors OR 95%CI P-value OR (adjusted) 95%CI (adjusted) P-value (adjusted)

BLN vs. HC Glycolate 2.283 [1.386, 3.761] 0.001 2.43 [1.464, 4.034] 0.001

Oxalate 10.37 [5.911, 18.193] <0.001 11.437 [6.356, 20.579] <0.001

Glyceric acid 3.081 [1.762, 5.390] <0.001 3.139 [1.786, 5.518] <0.001

b-Alanine 13.991 [1.307, 149.738] 0.029 12.874 [1.171, 141.589] 0.037

Aminomalonic acid 2.855 [1.991, 4.092] <0.001 2.952 [2.033, 4.284] <0.001

Creatinine 3.659 [2.465, 5.430] <0.001 3.861 [2.570, 5.802] <0.001

Cystine 1.045 [0.998, 1.095] 0.061 1.042 [0.994, 1.093] 0.09

Arachidonic acid 1.533 [1.081, 2.174] 0.017 1.547 [1.083, 2.210] 0.016

LUAD vs. HC Creatinine 2.892 [2.089, 4.003] <0.001 3.408 [2.413, 4.813] <0.001

Oxalate 1.394 [1.107, 1.756] 0.005 1.287 [1.031, 1.607] 0.026

Glycine 1.985 [1.610, 2.448] <0.001 2.055 [1.656, 2.551] <0.001

Glyceric acid 3.211 [2.302, 4.479] <0.001 3.204 [2.281, 4.502] <0.001

Aminomalonic acid 4.62 [3.511, 6.079] <0.001 4.371 [3.307, 5.778] <0.001

Creatinine 6.319 [4.768, 8.373] <0.001 6.473 [4.850, 8.639] <0.001

LUAD vs. BLN Alanine 1.771 [1.267, 2.475] 0.001 1.71 [1.222, 2.393] 0.002

Phosphate 1.824 [1.222, 2.722] 0.003 1.935 [1.283, 2.919] 0.002

Proline 1.158 [1.007, 1.331] 0.04 1.174 [1.018, 1.353] 0.027

Glycine 1.768 [1.346, 2.322] <0.001 1.812 [1.371, 2.395] <0.001

Serine 2.052 [1.339, 3.146] 0.001 2.337 [1.510, 3.616] <0.001

Threonine 1.597 [1.031, 2.474] 0.036 1.858 [1.182, 2.922] 0.007

Aminomalonic acid 1.535 [1.094, 2.152] 0.013 1.47 [1.040, 2.080] 0.029

Malate 1.316 [1.034, 1.676] 0.026 1.296 [1.019, 1.647] 0.034

Pyroglutamate 1.356 [1.077, 1.708] 0.01 1.406 [1.113, 1.777] 0.004

Creatinine 1.956 [1.412, 2.710] <0.001 1.993 [1.425, 2.787] <0.001

Pyrophosphoric acid 1.35 [1.006, 1.811] 0.045 1.474 [1.091, 1.993] 0.012

Asparagine 1.773 [1.240, 2.537] 0.002 2.033 [1.401, 2.951] <0.001

Glutamine 1.935 [1.246, 3.007] 0.003 2.193 [1.393, 3.454] 0.001

Ornithine 1.596 [1.299, 1.960] <0.001 1.64 [1.326, 2.028] <0.001

Lysine 1.857 [1.382, 2.494] <0.001 1.982 [1.463, 2.686] <0.001

Palmitic acid 1.752 [1.119, 2.742] 0.014 1.69 [1.069, 2.672] 0.025

Myo-Inositol 2.871 [1.802, 4.573] <0.001 2.429 [1.495, 3.945] <0.001

Monopalmitin 2.803 [1.781, 4.411] <0.001 2.954 [1.860, 4.693] <0.001
F
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All ORs were adjusted for age and gender.
TABLE 3 List of discriminant metabolites: early-stage vs. HC and advanced-stage vs. early-stage.

Metabolites
HC

(n=278)
Early-stage
(n=475)

Advanced-stage
(n=39)

P1 P2

Glycolate 3.86 ± 0.10 3.92 ± 0.15 3.84 ± 0.17 <0.001 0.007

Oxalate 5.38 ± 0.15 5.45 ± 0.21 5.56 ± 0.14 <0.001 <0.001

Glycine 4.90 ± 0.20 4.97 ± 0.20 4.85 ± 0.21 <0.001 <0.001

(Continued)
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TABLE 3 Continued

Metabolites
HC

(n=278)
Early-stage
(n=475)

Advanced-stage
(n=39)

P1 P2

Fumarate 4.12 ± 0.17 4.04 ± 0.21 4.10 ± 0.18 <0.001 0.017

Threonine 5.15 ± 0.17 5.11 ± 0.13 5.07 ± 0.11 <0.001 0.042

Aminomalonic acid 5.42 ± 0.21 5.58 ± 0.16 5.51 ± 0.16 <0.001 0.006

Pyrophosphoric acid 5.10 ± 0.11 5.03 ± 0.20 4.92 ± 0.17 <0.001 <0.001

Asparagine 4.41 ± 0.17 4.30 ± 0.16 4.25 ± 0.17 <0.001 0.026

Glutamine 6.05 ± 0.13 5.94 ± 0.13 5.86 ± 0.13 <0.001 <0.001

Ornithine 5.00 ± 0.22 4.92 ± 0.28 4.80 ± 0.26 <0.001 0.014

Myo-Inositol 4.74 ± 0.12 4.71 ± 0.12 4.66 ± 0.18 0.011 0.005

b-Alanine 4.97 ± 0.03 4.97 ± 0.02 4.96 ± 0.02 ns 0.003

Arachidonic acid 4.23 ± 0.18 4.24 ± 0.22 4.36 ± 0.24 ns 0.004

Pyruvate 4.66 ± 0.16 4.60 ± 0.40 4.67 ± 0.37 <0.001 ns

Lactate 6.39 ± 0.21 6.33 ± 0.39 6.35 ± 0.21 <0.001 ns

Alanine 6.34 ± 0.20 6.30 ± 0.15 6.28 ± 0.15 <0.001 ns

3-Hydroxybutyric acid 4.82 ± 0.32 4.67 ± 0.31 4.71 ± 0.32 <0.001 ns

Valine 5.32 ± 0.15 5.25 ± 0.15 5.23 ± 0.10 <0.001 ns

4-Hydroxybutanoic acid 4.84 ± 0.19 4.71 ± 0.21 4.76 ± 0.27 <0.001 ns

Leucine 5.91 ± 0.15 5.86 ± 0.12 5.84 ± 0.11 <0.001 ns

Isoleucine 5.51 ± 0.27 5.47 ± 0.21 5.32 ± 0.47 <0.001 ns

Proline 5.63 ± 0.34 5.58 ± 0.35 5.42 ± 0.53 0.005 ns

Succinate 3.80 ± 0.13 3.61 ± 0.21 3.64 ± 0.28 <0.001 ns

Glyceric acid 3.92 ± 0.08 4.00 ± 0.16 4.05 ± 0.15 <0.001 ns

Serine 5.52 ± 0.18 5.46 ± 0.13 5.43 ± 0.11 <0.001 ns

Malate 3.99 ± 0.10 3.82 ± 0.22 3.88 ± 0.28 <0.001 ns

Aspartate 4.36 ± 0.15 4.27 ± 0.23 4.24 ± 0.23 <0.001 ns

Methionine 4.72 ± 0.14 4.65 ± 0.12 4.63 ± 0.12 <0.001 ns

Pyroglutamate 5.63 ± 0.07 5.56 ± 0.24 5.59 ± 0.23 <0.001 ns

Creatinine 4.45 ± 0.21 4.65 ± 0.16 4.58 ± 0.20 <0.001 ns

Glutamate 5.29 ± 0.20 5.22 ± 0.28 5.27 ± 0.22 <0.001 ns

Phenylalanine 5.22 ± 0.13 5.16 ± 0.11 5.18 ± 0.11 <0.001 ns

Citrate 5.69 ± 0.10 5.62 ± 0.10 5.60 ± 0.11 <0.001 ns

Tyrosine 5.58 ± 0.13 5.51 ± 0.11 5.52 ± 0.11 <0.001 ns

Palmitelaidic acid 4.08 ± 0.27 4.02 ± 0.30 3.96 ± 0.35 <0.001 ns

Palmitic acid 5.71 ± 0.10 5.65 ± 0.13 5.66 ± 0.12 <0.001 ns

Uric acid 5.80 ± 0.15 5.71 ± 0.18 5.67 ± 0.22 <0.001 ns

Linoleic acid 5.15 ± 0.13 5.04 ± 0.18 5.07 ± 0.17 <0.001 ns

Fructose 6-phosphate 3.88 ± 0.14 3.85 ± 0.14 3.86 ± 0.12 0.009 ns

Monopalmitin 4.32 ± 0.11 4.19 ± 0.11 4.21 ± 0.11 <0.001 ns

Alpha-Tocopherol 5.12 ± 0.12 4.89 ± 0.37 4.87 ± 0.35 <0.001 ns
F
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The data were log10 transformed and expressed as mean ± SD. P1, Early-stage vs. HC; P2, Advanced-stage vs. Early-stage; ns, P>0.05.
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staging, while oxalate was elevated (Figure 2B). OR values suggested

that oxalate may be a risk factor for progressive exacerbation of LUAD

disease (Supplementary Table 6). These findings suggest that the above

metabolites may be implicated in the development and progression of

LUAD (from early to the advanced stage).

The correlation between metabolites and tumor size was analyzed

with Spearman. Ten metabolites (alanine, valine, phosphate, leucine,

asparagine, glutamine, ornithine, lysine, palmitic acid, and linoleic acid)

were negatively correlated with tumor size (Supplementary Figure 3).

With the appearance of lymphatic metastases, plasma levels of oxalate,

glyceric acid, nonanoic acid, and arachidonic acid increased in LUAD,

and phosphate, proline, glycine, serine, methionine, creatinine,

pyrophosphoric acid, asparagine, glutamine, ornithine, lysine, uric

acid, and myo-inositol were decreased (Figure 2C; Supplementary

Table 7). In addition, high plasma levels of oxalate and glyceric acid

may be risk factors for lymphatic metastasis in lung adenocarcinoma

(Supplementary Table 7). Significant differences were observed in the

glycolate, oxalate, glycine, and arachidonic acid levels between LUAD
Frontiers in Oncology 09
with distant metastasis and non-distant metastases (Supplementary

Table 8). High levels of oxalate and arachidonic acid may be prognostic

biomarkers for distant metastasis in lung adenocarcinoma (Figure 2D;

Supplementary Table 8).

In summarizing the changes in metabolites during lung

adenocarcinoma progression, it is clear that patients’ metabolic

profiles are changing. As the pTNM stages advanced and tumor

metastasis, plasma oxalate levels increased, indicating that oxalate is

closely associated with lung adenocarcinoma progression. Notably,

OR values suggested that plasma oxalate may be a risk marker of the

progression in LUAD (Figure 2E).

Development and evaluation of machine
learning predictive models

To improve the differential diagnostic performance between

HC, BLN and LUAD, we developed AI-based prediction models

using seven machine learning algorithms (including XGBoost, RF,
A B

D E

C

FIGURE 2

Metabolic features associated with the progression of lung adenocarcinoma. (A) Changes in the number of differential metabolites during lung
adenocarcinoma development. (B) Relative abundance of asparagine, myo-inositol, ornithine, pyrophosphoric acid, threonine, and glutamine
decreased, and oxalate increased in HC, early-stage, and advanced-stage patients. (C) Relative abundance of oxalate, glyceric acid, nonanoic acid,
and arachidonic acid were elevated in patients with lymphatic metastasis, and levels of phosphate, proline, glycine, serine, methionine, creatinine,
pyrophosphoric acid, asparagine, glutamine, ornithine, lysine, uric acid, and myo-inositol were decreased (N1 + 2+3, patients with lymphatic
metastasis; N0, patients without lymphatic metastasis). (D) Relative abundance of oxalate and arachidonic acid in patients with distant metastatic (M1,
patients with distant metastatic; M0, patients without distant metastatic). *, **and *** to denote 0.01 ≤ p < 0.05, 0.001 ≤ p < 0.01, and p < 0.001,
respectively. (E) Odds ratio values of oxalate.
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AdaBoost, MLP, SVM, KNN and GNB). Glycolate, oxalate, glyceric

acid, aminomalonic acid and creatinine were used to build

predictive models for lung nodules and healthy controls. The

results are shown in Figure 3; Supplementary Table 9. Compared

with others, the RF model performs best in both the training and

validation set (accuracy =1.00 and 0.85; F1-score =1.00 and 0.87;

AUC=1.00 and 0.89, respectively). The calibration curves showed

high consistency between the validation cohorts’ predicted and

observed survival probability. The DCA results showed that the RF

model had an excellent net benefit across the whole range of

threshold probabilities. Meanwhile, the RF models also showed

excellent differentiation effects for distinguishing BLN or LUAD

from HC, respectively (Supplementary Figures 4, 5). These results

suggested that the RF model has the best diagnostic accuracy and

applicability for distinguishing lung nodules from healthy controls.

4-hydroxybutanoic acid, monopalmitin, myo-inositol, b-
alanine, oxalate, alanine, fructose-6-phosphate, glycolate,

phosphate, and aminomalonic acid were screened out to

construct prediction models for LUAD and BLN (Supplementary

Figure 6). The results are shown in Figure 4; Supplementary

Table 10. Compared with others, the RF model performs best in

both the training and validation set (accuracy =1.00 and 0.73; F1-

score =1.00 and 0.79; AUC=1.00 and 0.76, respectively). The
Frontiers in Oncology 10
calibration curves showed high consistency between the validation

cohorts’ predicted and observed survival probability. The DCA

results showed that the RF model had an excellent net benefit across

the whole range of threshold probabilities. These results suggested

that the RF model can distinguish LUAD from BLN with high

performance and accuracy.
RF modeling and plasma oxalate in an
external validation set

A sample set was obtained from the Affiliated Hospital of

Nanjing University Medical School in Nanjing, China for the

purpose of external validation. This sample set comprised of 33

healthy controls, 23 patients with benign lung nodules, and 77

patients diagnosed with LUAD. The RFmodel previously developed

was assessed on this distinct sample set, with the outcomes

presented in Figure 5. The model exhibited high accuracy in

predicting healthy controls and benign lung nodules, achieving an

AUC of 0.99 (Figure 5A). The calibration curve and decision curve

analysis further validated the model’s precision and substantial net

benefit (Figures 5B, C). In patients with benign lung nodules and

lung adenocarcinoma, the model demonstrated an AUC of 0.866,
A B
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FIGURE 3

Performance of various machine learning models in pulmonary nodules and healthy controls. (A) The ROC curves of the training set. (B) The ROC
curves of the validation set. (C) The calibration plots of the validation set. Each graph’s 45° straight line perfectly matches the observed (y-axis) and
predicted (x-axis) survival probabilities. A closer distance between two curves indicates greater accuracy. (D) Decision curve analysis graph showing
the net benefit against threshold probabilities based on decisions from model outputs. (E) Shapley additive explanation (SHAP) summary plot of 5
feature clusters, derived by aggregating related values of a particular feature (e.g., the average, minimum, and maximum). Each dot corresponds to
the SHAP value of the feature cluster for the lung cancer risk score of a given case patient or control subject at a certain point in time. A feature’s
SHAP value (x-axis) represents the contribution of the specific feature to the risk score, with positive values indicating a contribution that increases
the risk score and negative values indicating a contribution that lowers the score. The location of the dot on the x-axis represents its SHAP value,
whereas its color represents the cluster’s value (the actual value of the feature that is represented in the cluster), with red representing higher values
(for features measured along a continuum) or affirmative responses (for binary features). The dots are piled up vertically to show their density. The
feature clusters are sorted by their mean absolute SHAP values.
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indicating its relevance to these specific subgroups (Figures 5D, F).

A noteworthy finding of the study was the correlation between

elevated plasma oxalate levels and advanced pTNM stage and

tumor metastasis in LUAD patients, as evidenced by an

independent external validation set, underscoring the significant

association between oxalate and LUAD progression (Figures 5G–I).
Alterations in pivotal enzymes involved in
the metabolic pathway of oxalate

The primary sources of oxalate in humans are exogenous

dietary intake (20-50%) and endogenous synthesis (50-80%) (17).

The subjects collected in this study were mainly from Jiangsu

Province, China, and there was slight dietary variation between

subjects. Although ascorbic acid has been shown to have an

essential effect on oxalate production, the process proceeds

mainly through a non-enzymatic reaction, and the mechanism of

action is unknown (18). In addition, we have ruled out the

possibility of additional ascorbic acid supplementation in LUAD

patients during treatment.

Glyoxalate is the primary precursor of endogenous oxalate

synthesis (19). TCGA and GTEx database results showed

significant differences in the expression of enzymes and

transporters related to oxalate metabolism (LDHA, GRHPR,

AGT, DAO, HAO2 and SLC26A1) in tumor tissues of lung

adenocarcinoma patients (Figures 6A, B). Univariate and

multivariate Cox regression analyses showed (Figure 6C) that
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LDHA, a key enzyme in the biosynthesis of oxalate, was

significantly associated with the overall survival (OS) of LUAD

patients and was a separately available prognostic indicator (HR =

1.66, 95% CI = 1.34 - 2.07, P < 0.001). A risk score was then

calculated for each patient based on LDHA expression levels and

risk factors, and patients were classified into low-risk and high-risk

(Figure 6D). The heatmap revealed that high-risk patients tended to

express LDHA genes at high levels, and low-risk patients tended to

express LDHA genes at low levels (Figure 6D). Survival curves

showed that patients with low-risk scores significantly had longer

survival times than those with high-risk scores (Figure 6E). ROC

analysis showed that LDHA could predict prognosis (Figure 6F).

The expression of LDHA in tumor tissues of lung

adenocarcinoma increases with the advancement of the pTNM

stage and lymphatic metastasis, suggesting that LDHA may be

associated with abnormal immune function (Figures 7A–C). The

European prospective investigation into cancer and nutrition (EPIC)

array was used to analyze the correlation between immune cells and

LDHA in the TCGA dataset. LDHA was negatively correlated with

the expression of B cells, T cell CD8+, and endothelial cells

(Figures 7D–F) and positively correlated with the expression of NK

cells and uncharacterized cells (Figures 7G, H). In conclusion, LDHA

is positively associated with the progression and prognosis of lung

adenocarcinoma. The performance of LDHA further demonstrates

the strong potential of oxalate as a risk factor of tumor progression in

lung adenocarcinoma.

In order to assess the LDHA expression levels in LUAD, the

protein expression of the LDHA gene was analyzed through
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FIGURE 4

Performance of various machine learning models in LUAD and BLN groups. (A) The ROC curves of the training set. (B) The ROC curves of the
validation set. (C) The calibration plots of the validation set. (D) Decision curve analysis graph showing the net benefit against threshold probabilities
based on decisions from model outputs. (E) SHAP summary plot of 10 feature clusters.
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immunohistochemistry, utilizing data from the Human Protein

Atlas (HPA) database (https://www.proteinatlas.org/). The results

indicated a significantly higher expression of LDHA in lung

adenocarcinoma tissue compared to normal lung tissue (Figure 7I).
Oxalate and LDHA in lung
adenocarcinoma cells

The relative content of oxalate and the expression of LDHA

were further examined and analyzed in A549 and BEAS-2B cells.

The results, depicted in Figures 7J, K, indicated a significantly

higher oxalate content in A549 cells compared to BEAS-2B cells,

accompanied by elevated LDHA expression. These findings suggest

that increased LDHA and oxalate levels may represent a specific

alteration in LUAD.
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Discussion

Researchers have reported that genetic and microenvironmental

factors drive clonal evolution within tumors, leading to metabolic

liabilities and facilitating cancer progression (20, 21). Identifying the

metabolic profile of lung adenocarcinoma is essential to understanding

its progression and diagnosis. This study screened risk factors for

LUAD by metabolomic analysis of plasma samples. We applied the

machine learning algorithm to metabolite data to develop prediction

models for lung nodules and LUAD. We confirmed that plasma

oxalate is a risk factor associated with LUAD progression and

further explored the interaction between oxalate and LDHA.

We analyzed plasma metabolites and confirmed the metabolic

differences and similarities between lung adenocarcinoma and

benign lung nodules. For metabolic differences, glycine and

arachidonic acid may be LUAD and BLN-specific risk factors.
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FIGURE 5

RF modeling and plasma oxalate in the external validation set. (A) The ROC curve of the external validation set comparing pulmonary nodules and
healthy controls. (B) The calibration plots of the external validation set comparing pulmonary nodules and healthy controls. (C) The DCA plots of the
external validation set comparing pulmonary nodules and healthy controls. (D) The ROC curve of the external validation set comparing LUAD and BLN.
(E) The calibration plots of the external validation set comparing LUAD and BLN. (F) The DCA plots of the external validation set comparing LUAD and
BLN. (G) Plasma oxalate increased in HC, early-stage, and advanced-stage LUAD. (H) Plasma oxalate was elevated in LUAD with lymphatic metastasis
(N1 + 2+3, patients with lymphatic metastasis; N0, patients without lymphatic metastasis). (I) Plasma oxalate in LUAD with distant metastatic (M1, patients
with distant metastatic; M0, patients without distant metastatic). * and *** to denote 0.01 ≤ p < 0.05 and p < 0.001, respectively.
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The abnormal glycine metabolism has been widely reported in

cancer (22, 23), so elevated plasma glycine in LUAD may be a

common manifestation of cancer. Significantly, elevated plasma

glycine may be an important phenomenon that distinguishes

LUAD from benign nodules/healthy individuals. Surprisingly,

arachidonic acid did not change significantly in the early-stage

LUAD but was significantly elevated in BLN and advanced-stage

LUAD (Tables 1, 3; Supplementary Tables 9, 10). Thus, plasma
Frontiers in Oncology 13
arachidonic acid may be important in distinguishing early-stage

lung adenocarcinoma from benign lung nodules. This variable

profile may be related to the degree of inflammatory response

and abnormal immune response function. Based on the differences

in metabolic patterns, we identified two panels of metabolites to

distinguish LUAD from BLN/HC. Surprisingly, the machine

learning models constructed with these two panels showed good

prediction accuracy and diagnostic performance.
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FIGURE 6

Oxalate metabolism in lung adenocarcinoma. (A) Oxalate-related metabolism in LUAD. (B) The oxalate-related enzymes [lactate dehydrogenase A
(LDHA), glyoxylate reductase/hydroxypyruvate reductase (GRHPR), alanine–glyoxylate aminotransferase (AGT), d-amino acid oxidase (DAO), hydroxy acid
oxidase 2 (HAO2) and solute carrier family 26 member 1 (SLC26A1)] are significantly changed in the tumor (n = 516) compared with normal tissue (n =
637). ***p < 0.001. (C) The p-value, risk coefficient (HR) and confidence interval are analyzed by univariate and multivariate Cox regression. (D) The gene
expression, survival time and survival status of the TCGA dataset. The top scatterplot represents the gene expression from low to high. Different colors
represent different groups. The scatter plot distribution represents the gene expression of different samples correspond to the survival time and survival
status. The bottom Figure is the gene expression heatmap. (E) Kaplan-Meier survival analysis of the gene signature from the TCGA dataset, comparison
among different groups was made by log-rank test. HR (High exp) represents the hazard ratio of the low-expression sample relatives to the high-
expression sample. HR> 1 indicates the gene is a risk factor, and HR<1 indicates the gene is a protective factor.HR(95%Cl), the median survival time
(LT50) for different groups. (F) The ROC curve of the gene. The higher values of AUC correspond to higher predictive power.
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For metabolic similarity, we found that glycolate, oxalate,

glyceric acid, aminomalonic acid and creatinine were elevated in

both LUAD and BLN, showing potential as risk factors for lung

nodules (with LUAD and BLN). Furthermore, a panel composed of

these five metabolites showed excellent diagnostic performance for

differentiating lung nodules from healthy controls. Interestingly,

except for oxalate, the levels of the other four substances did not

consistently increase with the exacerbation of LUAD. These results

suggested that changes in glycolate, glyceric acid, aminomalonic

acid, and creatinine may be co-occurring changes associated with

the development of lung nodules. Machine learning models built
Frontiers in Oncology 14
from these metabolites could be used for the early screening of

lung nodules.

With the improvement of technology and the availability of

various kinds of big data, combining omics with machine learning

algorithms has attracted increasing attention from the scientific

community (24). Recently, machine learning algorithms (such as

deep learning, random forest, and XGBoost) were applied to lung

cancer research because of their advantages, which include high

precision, robustness, simple operation, and fast response (9, 25–

27). These machine learning methods have their merits and

demerits, so choosing the best methods that best suit our research
A B D

E F G

I

H

J

K

C

FIGURE 7

Expression and immune correlation analysis of LDHA in lung adenocarcinoma. (A) Expression distribution of LDHA gene in early-stage and
advanced-stage LUAD tumor tissues. (B) Expression distribution of LDHA gene in LUAD tumor tissues of lymphatic metastasis and non-lymphoid
metastasis groups. (C) Expression distribution of LDHA gene in LUAD tumor tissues of distant and non-distant metastasis groups. ****p < 0.0001,
asterisks (*) stand for significance levels. (D–H) The correlations between LDHA gene expression and the immune score were analyzed with
Spearman. The abscissa represents the distribution of the LDHA gene expression, and the ordinate represents the distribution of the immune score.
The density curve on the right represents the trend in the distribution of the immune score, and the upper-density curve represents the trend in the
distribution of the gene expression or the score. The value on the top represents the correlation p-value, correlation coefficient and correlation
calculation method. (I) (IHC) The Immunohistochemistry (IHC) labelling images of normal lung tissue and tumor tissue were obtained from The
Human Protein Atlas (http://www.proteinatlas.org/). (J) The relative content of oxalate in BESA-2B and A549 cells. (K) Expression of LDHA in BESA-
2B and A549 cells. ***p < 0.001; ‘ns’ stands for non-significant, indicating that P > 0.05.
frontiersin.org

http://www.proteinatlas.org/
https://doi.org/10.3389/fonc.2024.1277206
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2024.1277206
is crucial. Seven commonly used machine learning algorithms were

applied to this study. We found that the random forest model

performed best by evaluating various metrics such as prediction

accuracy, AUCs, positive predictive values, and negative predictive

values. Machine learning models are considered ‘black boxes,’

which can be considered a limitation of the study. In this study,

calibration curves, DCA analysis curves, and SHAP values were

constructed to maximize model credibility and transparency.

Generally, we were very rigorous in model screening, evaluation,

and validation. Finally, we constructed an early screening model for

lung nodules and a diagnostic model for lung adenocarcinoma

using machine learning algorithms.

The present study is the first to identify oxalate as a risk factor

closely associated with lung adenocarcinoma progression.

Combining plasma metabolites and gene expression results from

the TCGA and GTEx databases, and we found that elevated oxalate

may be associated with LDHA overexpression. Many studies have

documented elevated oxalate in tumor tissues and blood of lung

cancer, and inhibition of LDHA expression can effectively reduce

oxalate production (28–31). Therefore, it can be concluded that the

overexpression of LDHAmay cause an increase in plasma oxalate in

lung adenocarcinoma patients, and inhibition of LDHAmay reduce

oxalate production.

LDHA is a promising therapeutic target for various malignancies,

which plays important roles in tumorigenesis, progression, invasion

and metastasis (32). Surprisingly, although LDHA promotes oxalate

production, oxalate is a competitive inhibitor of LDHA (33). Several

studies have shown that oxalate has anticancer effects on various

cancer cell lines, including liver, breast, colorectal, lymphoma,

medulloblastoma and ovarian cancer (33–38). In addition, oxalate

has been shown to inhibit cell proliferation and migration and

promote oxidative phosphorylation and epithelial-to-mesenchymal

transition (35, 39). However, the oxalate concentrations required for

significant therapeutic effects are too high for clinical use (40, 41).

Because oxalate is an ionized conjugate base that readily complexes

with divalent cations such as Mg2+ and Ca2+ (42). Hence, it could be

hypothesized that free oxalate may have a potential protective effect

and oxalate elevation may be a negative feedback-like ‘protective

response’ against LDHA overexpression. However, high oxalate

concentrations can lead to the formation of oxalate crystals,

limiting its inhibitory effect on LDHA. Therefore, increasing the

concentration of free oxalate and reducing the formation of oxalate

crystals may be a new idea to inhibit LDHA expression and improve

the prognosis of LUAD.
Limitations

This study analyzed the metabolic profile of patients with lung

adenocarcinoma, but some limitations remain. The inclusion of

solely Jiangsu Province, China subjects has resulted in a relatively

small sample size, and it is possible that these results will not be

reproducible on a wide scale across regions and populations. The

mechanism of action between oxalate and LDHA was superficially

investigated in this study, and further studies are needed to follow.
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Conclusion

We analyzed the plasma metabolic profi le of lung

adenocarcinoma and provided an understanding of the progress

of LUAD. This study has important implications for further

translating basic research into more accurate diagnosis and

treatment for clinical purposes.
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