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Predictive value of 18F-FDG PET/
CT radiomics for EGFR mutation
status in non-small cell lung
cancer: a systematic review
and meta-analysis
Ning Ma1, Weihua Yang1, Qiannan Wang1, Caozhe Cui1,
Yiyi Hu1 and Zhifang Wu1,2*

1Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China,
2Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University,
Taiyuan, China
Objective: This study aimed to evaluate the value of 18F-FDG PET/CT radiomics

in predicting EGFR gene mutations in non-small cell lung cancer by

meta-analysis.

Methods: The PubMed, Embase, Cochrane Library, Web of Science, and CNKI

databases were searched from the earliest available date to June 30, 2023. The

meta-analysis was performed using the Stata 15.0 software. The methodological

quality and risk of bias of included studies were assessed using the Quality

Assessment of Diagnostic Accuracy Studies 2 and Radiomics Quality Score

criteria. The possible causes of heterogeneity were analyzed by meta-regression.

Results: A total of 17 studies involving 3763 non-small cell lung cancer patients were

finally included. We analyzed 17 training cohorts and 10 validation cohorts

independently. Within the training cohort, the application of 18F-FDG PET/CT

radiomics in predicting EGFR mutations in NSCLC demonstrated a sensitivity of

0.76 (95% CI: 0.70-0.81) and a specificity of 0.78 (95% CI: 0.74-0.82), accompanied

by a positive likelihood ratio of 3.5 (95% CI:3.0-4.2), a negative likelihood ratio of 0.31

(95% CI: 0.24-0.39), a diagnostic odds ratio of 11.0 (95% CI: 8.0-16.0), and an area

under the curve (AUC) of 0.84 (95% CI: 0.80-0.87). In the validation cohort, the

values included a sensitivity of 0.76 (95% CI: 0.67-0.83), a specificity of 0.75 (95% CI:

0.68-0.80), a positive likelihood ratio of 3.0 (95% CI:2.4-3.8), a negative likelihood

ratio of 0.32 (95% CI: 0.24-0.44), a diagnostic odds ratio of 9 (95% CI: 6-15), and an

AUC of 0.82 (95% CI: 0.78-0.85). The average Radiomics Quality Score (RQS) across

studies was 10.47 ± 4.72. Meta-regression analysis identifies the application of deep

learning and regions as sources of heterogeneity.
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Conclusion: 18F-FDG PET/CT radiomics may be useful in predicting mutation

status of the EGFR gene in non-small cell lung cancer.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO,

identifier CRD42022385364.
KEYWORDS

non-small cell lung cancer, EGFR mutation,
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1 Introduction

Lung cancer is one of the most prevalent malignant tumors with

high incidence and mortality rates (1, 2). Non-small-cell lung

cancer (NSCLC) accounts for approximately 85% of primary lung

cancers, and most patients are diagnosed with an advanced stage of

the disease, leading to a 5-year survival rate of less than 20%. The

use of tyrosine kinase inhibitors targeting the epidermal growth

factor receptor (EGFR) has been an effective treatment of improving

the prognosis of NSCLC patients with EGFR mutation (3, 4).

Therefore, the early identification of EGFR gene mutation status

in NSCLC patients is critical. Nevertheless, gene detection methods

usually require an invasive tissue or cell biopsy, a process that is

time-consuming and possibly risky. Therefore, it is essential to

develop a non-invasive and faster detection method to predict

EGFR mutation status.18F-fluorodeoxyglucose positron emission

tomography/computed tomography (18F-FDG PET/CT) is

routinely used for tumor staging, treatment decision-making, and

response monitoring in NSCLC patients (5, 6). Previous studies

have shown that semi-quantitative parameters derived from 18F-

FDG PET/CT, including maximum standard uptake value

(SUVmax) and total lesion glycolysis (TLG), have reasonable

diagnostic utility in detecting EGFR mutation status in NSCLC

patients. However, meta-analysis indicates that SUVmax has a low

pooled sensitivity and specificity in predicting EGFR mutation

status in NSCLC patients (7, 8). Therefore, it is necessary to

investigate additional parameters such as radiomic features of
18F-FDG PET/CT to predict EGFR mutation status in NSCLC.

Radiomics is an emerging field that analyzes quantitative

medical images to extract a large number of objective and

quantitative image features that are correlated with clinical,

pathological, molecular, and genetic features that may reflect

tumor genetic phenotypes by utilizing artificial intelligence

algorithms (9). Previously published studies have exhibited

significant variations in methodology and outcomes (10, 11).

Thus, Consequently, the objective of this study is to conduct a

meta-analysis of published studies on 18F-FDG radiomics for

predicting EGFR mutation status in patients with NSCLC.
02
2 Materials and methods

This study followed the Preferred Reporting Item of the

Guidelines for Systematic Reviews and Meta-Analysis (PRISMA)

and was registered in PROSPER (CRD42022385364, https://

www.crd.york.ac.uk/prospero).
2.1 Literature search

The PubMed, Embase, Web of Science, Cochrane Library, and

CNKI databases were searched by two independent observers to

identify eligible studies up to June 30, 2023. The searches used a

combination of subject headings and free terms, including

“radiomics”, “texture analysis”, “artificial intelligence”, “lung

cancer”, “PET/CT”, “EGFR”, and “18F-FDG”. The search

strategies are shown in Supplementary Tables S1-S5.
2.2 Inclusion and exclusion criteria

We selected publications for review if they met several of the

following inclusion criteria: (1) All patients were NSCLC patients

with pathology confirmation and underwent 18F-FDG PET/CT

scans. (2) Radiomics or deep learning algorithms applied to

predict EGFR mutation status. (3) The number of true positives

(TP), false positives (FP), true negatives (TN), and false negatives

(FN) must be reported or quantified in the studies. Exclusion

criteria: (1) Reviews, meta-analyses, conference abstracts,

editorials, and notes. (2) Duplicated and irrelevant studies. (3)

Studies where diagnostic data could not be obtained.
2.3 Data extraction

Data from each eligible study were independently extracted by

two reviewers. The following data were collected: first author,

publication year, country/region, study object, study design,
frontiersin.org
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blindness to EGFR mutation results when reviewing the PET/CT

image, sample size, EGFR mutation rate, patient characteristics

(age, gender, and 18F-FDG injection dose), tumor segmentation,

feature extraction, feature type, validation and radiomics

algorithms, receiver operating characteristic curve (AUC),

sensitivity, specificity, TP, FP, TN, and FN. In situations where

a study reported accuracy data for multiple models, we utilized the

2 × 2 tables for the model with the highest AUC.
2.4 Quality assessment

Two independent investigators used the Quality Assessment for

Diagnostic Accuracy Studies-2 (QUADAS-2) and the Radiomics

Quality Score (RQS) to assess the methodological quality and risk of

bias of the included studies (12, 13). Where there were differences of

opinion, we had recourse to a third reviewer for conflict resolution.

QUADAS-2 primarily includes assessment of risk of bias and

clinical applicability. Risk of bias includes “patient selection”,

“index test”, “reference standard”, and “flow and timing”, while

clinical applicability requires assessment of the first three. The

quality of radiomics processes and reports was evaluated using

the Radiomics Quality Score (RQS), which comprised 16

dimensions. The total scores ranged between -8 and +36. A score

between -8 and 0 was equivalent to 0%, while a score of 36 was

equivalent to 100%. The inter-reviewer agreement for each item of

the RQS was quantified using the modified Fleiss kappa statistic,

tailored for ordered variables. Overall inter-reviewer agreement,

including for the RQS, was assessed using intergroup correlation

coefficients (ICCs), calculated via a single-source, two-way random

effects model to ascertain absolute agreement between reviewers.
2.5 Statistical analysis

Meta-analysis was performed by utilizing Stata 15.0 software

(Stata Corp, College Station, Texas, USA) and the MIDAS bivariate

random-effects model. Heterogeneity among the studies included in

our analysis was assessed using the Cochran Q test and the I2

statistic. The significance level was set at P<0.05. According to the

Cochrane Handbook for Systematic Reviews of Diagnostic Test

Accuracy, the I2 value reflects the degree of heterogeneity, with an I2

value of more than 50% indicating high heterogeneity (14). The

effectiveness of 18F-FDG PET/CT in detecting EGFR mutation

status in NSCLC patients was evaluated by calculating the pooled

statistics of sensitivity (SEN), specificity (SPE), positive likelihood

ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio

(DOR), and their corresponding 95% confidence intervals (CI).

Predictive accuracy was also evaluated using summary receiver

operating characteristic and area under the curves. Spearman’s

correlation coefficient was calculated using Meta-Disc 1.4 software

(Ramon y Cajal Hospital, Madrid, Spain) to investigate the potential

threshold effect. A threshold effect was considered present if r > 0.5

and P < 0.05. Publication bias was assessed using the Deeks funnel

plot, where significant asymmetry was indicated if P <0.10.
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Sensitivity analysis was to observe the stability of the synthetic

results. In our meta-regression, aimed at pinpointing sources of

heterogeneity, analyzed covariates such as blinding to EGFR

mutation results in PET/CT reviews (yes or unclear), modeling

methods (deep learning or radiomics algorithms), sample (<130 or

≥130), study focus (NSCLC or ADC only), and the radiomics

software (Pyradiomics or others), publication year (before or after

2022). Factors in model construction included the integration of

clinical information,gender number (≥50 or <50), number of

smokers (≥100 or <100), Radiomics Quality Score (RQS ≥12 or

<12), and region (mainland China or others). For assessing clinical

utility, we calculated posttest probabilities and created Fagan plots.
3 Results

3.1 Literature search

A comprehensive search was conducted through various

databases including PubMed, Embase, Cochrane Library, Web of

Science, and CNKI. Initially, a total of 87 studies were found. After

removing 29 duplicate articles, the remaining articles were screened

by two independent reviewers based on their titles and abstracts. 5

conference abstracts, 15 reviews, 1 editorial, 13 irrelevant studies

and 1 note were excluded subsequently. Further assessment of the

full texts led to the exclusion of 4 studies with insufficient data and 3

studies without PET radiomics feature. Ultimately, 17 diagnostic

studies that met the inclusion criteria were included in the analysis.

The PRISMA flow-chart of the literature search of our systematic

review and meta-analysis is presented in Figure 1. All studies

included were retrospective cohort studies.

A total of 3763 patients were included, and the sample sizes of

the studies ranged from 50-583, Our study’s training cohort

comprised 2877 individuals, averaging 169 participants per study

and a median size of 127, while the validation group encompassed

1021 individuals. In the training set, 1239 patients reported a

smoking history, and 1321 were female. Additionally, nine of the

studies integrated clinical characteristics, including demographic

data (age, gender), smoking history, and tumor stage, to enhance

EGFR mutation prediction accuracy. Our analysis encompassed 17

studies: 15 from China, one from Canada, and one utilizing public

datasets (‘TCGA LUAD’ and ‘NSCLC Radiogenomics’). Of these,

seven specifically investigated lung adenocarcinoma (ADC), while

the others included ADC and other NSCLC subtypes. The radiomic

features analyzed were diverse, spanning first-order, texture, shape,

size, and deep learning features. Commonly employed feature types

included Gray Level Co-occurrence Matrix, Gray Level Dependence

Matrix, Gray Level Run Length Matrix, Gray Level Size Zone

Matrix, and Neighborhood Gray Tone Difference Matrix. In

radiomics analysis, five studies utilized Pyradiomics for feature

extraction. Of the studies reviewed, thirteen used classical

machine learning algorithms and four used deep learning

approaches. The literature’s publication dates range from 2019 to

2023. The literature’s publication dates range from 2019 to 2023.

The specific characteristics of the included literature are shown in

Tables 1, 2.
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3.2 Data quality assessment

The results of the QUADAS-2 quality assessment for the

literature are shown in Figure 2. Due to inappropriate or

incomplete exclusion criteria, eleven studies exhibited high or

unclear risk of bias in terms of patient selection. Concerning the

reference standard, ten studies showed an unclear risk of bias due to

missing information on blindness compared to the reference test.

Flow and timing introduced uncertainty regarding the risk of bias in

six studies, as they exhibited an unclear risk of bias owing to

ambiguity in the time interval between the index test and the

reference standard. The patient selection of the included studies

was of low applicability concern. One study had unclear

applicability concerns because the index test was performed with

different PET/CT scanners. Another study had high applicability

concerns because no information on PET/CT acquisition was

provided. Regarding the reference standard, none of the included

studies showed an unclear or high risk of bias. Overall, most studies

have low or unclear bias risks and moderate clinical applicability

problems. The details of the QUADAS-2 assessment are presented

in Figure 2 and Supplementary Figure S2.

The included studies achieved a mean ± standard deviation

RQS of 10.47 ± 4.72, a median of 12, and a range of 3 to 19. The

highest RQS score was 19 (52.8%). RQS scores showed
Frontiers in Oncology 04
improvement over time (Supplementary Figure S2). About half of

the studies scored greater than 10. Since no study considered the

three items “Phantom study on all scanners”, “Imaging at multiple

time points”, and “Prospective study”, these three items received a

score of zero. Most studies provided details about the items

“Imaging protocol”, “Feature reduction”, “Non Radiomics”,

“Biological correlates”, “Discrimination and resampling” and

“Gold standard”. The other items that underperformed included

“Multiple segmentation,” “Cutoff analysis,” “Calibration statistics,”

“Validation,” “Clinical utility,” “Cost-effectiveness analysis,” and

“Open science and data,” each with an average score of less than

15%. A detailed description of the RQS scores is provided in

Supplementary Table S6, Supplementary Figure S1. Inter-reviewer

agreement for the Radiomics Quality Score (RQS) was quantified

using the ICC, which stood at 0.97 (95% CI 0.82-0.99). Across the

seven RQS criteria, moderate agreement was observed, while nine

items reached substantial or near-perfect concordance, as detailed

in Table 3.
3.3 Meta-analysis combined results

We performed a meta-analysis to combine the results of the 17

included studies. For train cohort, the pooled SEN, SPE, PLR, NLR,
frontiersin.or
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Flow diagram of study selection.
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TABLE 1 Characteristics of the included studies.

Features Type
Modeling
method

Validation

Histogram, GLCM,
Formfactor, GLSZM, RLM

logistic
regression

Split Sample, 100–
folds leave-group-

out
cross-validation

Intensity, shape, size, and
texture features

LLR, SVM
Split
sample

First-order, second-order
and higher-order

GBDT
Split
sample

Deep learning features Res-Net
External
validation

First-order, second-order
and higher-order

RF, SVM,
logistic

regression

10-fold
cross-validation

s

Textural features, GLCM,
RLM,

Shape features

Univariate
analysis

NR

First-order, second-order
and higher-order, deep

learning feature

multivariate
logistic

regression

Split
sample

Histogram, shape, GLCM,
NGLDM,GLRLM,GLZLM

logistic
regression

Split
sample
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Study
ID

Study
object

Sample
size

Age
Gender
(M/F)

Country
EGFR

mutation
rate

18F-FDG
injection
dose

Segmentation
Method

(Software/
Algorithm)

Feature
Extraction

Chang
et al.
(15)
(2021)

ADC 583

EGFR (–):63
(56–67)

EGFR(+):61
(53–67)

278/305 China 49.40%
0.10-0.15
mci/kg

Semi-automatic
(ITK-SNAP)

Artificial
Intelligence

Kit

Ruan
et al.
(16)
(2022)

NSCLC 100
EGFR(-):66
EGFR(+):63

58/42 China 46%
0.10-0.2
mci/kg

Manual (LIEFx) LIEFx

Wang
et al.
(17)
(2022)

NSCLC 161

EGFR(-):62.48
± 10.89
EGFR

(+):58.47
± 11.42

106/55 China 38.51%
4.44-5.55
MBq/kg

Manual (MITK) Pyradiomics

Mu et al.
(18)
(2020)

NSCLC 616

EGFR
(–):63.26 ±

8.94
EGFR

(+):62.79
± 8.65

235/194 China 46.59%
4.38 ± 1.0
MBq/kg

Manual (ITK-SNAP) Python

Zhang
et al.
(19)
(2020)

NSCLC 173

EGFR
(–):32~83
EGFR

(+):27~86

115/58 China 41.04%
5.55

MBq/KG
Semi-automatic
(ITK-SNAP)

Pyradiomics

Liu et al.
(20)
(2020)

NSCLC 51

EGFR
(–):61.48 ±

9.12
EGFR

(+):58.21
± 12.06

28/23 China 52.94% 4.0 MBq/kg Manual (Medex)
Research

Omni Kinetic

Huang
et al.
(21)
(2022)

NSCLC 195

EGFR
(–):62.54 ±

11.26
EGFR(+):58.5

± 10.48

123/72 China 49.23% 5.55 MBq/kg
Semi-

automatic (MITK)
Pyradiomics

Zhao
et al.
(22)
(2022)

ADC 88

EGFR
(–):61.46 ±

11.58
EGFR

49/39 China 42.05%
3.7-7.4
MBq/kg

Semi-
automatic (LIEFx)

LIEFx
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TABLE 1 Continued

n
Features Type

Modeling
method

Validation

Basic, Histogram, shape
features, GLCM, GLRLM,

NGLDM, GLZLM

logistic
regression

10-fold
cross-validation

Morphological, grayscale
statistic, GLCM

logistic
regression

10-fold
cross-validation

Basic features, Histogram,
shape, Texture features

multivariate
logistic

regression

Split
sample

g
Shape, intensity, texture,

wavelet features
logistic

regression
NR

Deep learning features
SE-

ResNet, SVM
Split
sample

first-order, volume, higher
order and texture features

logistic
regression

Leave-One-Out
Cross-Validation

first-order, shape, GLCM,
GLDM,GLRLM,
GLSZM, NGTDM

logistic
regression

Split
sample

s

first-order, shape, GLCM,
GLDM GLRLM, GLSZM,

NGTDM, Deep
learning features

ResNet,SVM
Nested five-folds
cross validation
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Study
ID

Study
object

Sample
size

Age
Gender
(M/F)

Country
EGFR

mutation
rate

18F-FDG
injection
dose

Segmentation
Method

(Software/
Algorithm)

Feature
Extractio

(+):61.29
± 11.77

Yang
et al.
(23)
(2021)

ADC 114

EGFR
(–):60.80 ±

9.8
EGFR

(+):61.20
± 8.4

64/50 China 46.49%
3.7-4.44
MBq/kg

Manual (LIEFx) LIEFx

Li et al.
(24)
(2019)

NSCLC 115 63 (28–77) 53/62 China 44.35% 4 MBq/kg
Semi-automatic
(ImageJ 1.50i)

MATLAB

Zhang
et al.
(25)
(2020)

ADC 248

EGFR
(–):63.41 ±

9.71
EGFR

(+):62.25
± 8.58

135/113 China 53.63%
350-

550 MBq
Semi-

automatic (LIEFx)
LIEFx

Wang
et al.
(26)
(2019)

NSCLC 127

EGFR (–):60
± 11

EGFR(+):60
± 9

76/51 China 53.53%
3.70-5.55
MBq/kg

Manual
(HuiYiHuiYing)

HuiYiHuiYi

Yin et al.
(11)
(2021)

ADC 301

EGFR (–):63.5
(28–74)

EGFR(+):63
(37–75)

162/139 China 50.83% 4.2 MBq/kg Manual (3D Slicer)
Pytorch,

scikit-learn

Nair
et al.
(27)
(2021)

NSCLC 50 NR 32/18 Canada 42% 15 mCi Manual (OsiriX) MATLAB

Li et al.
(28)
(2022)

ADC 179

EGFR (–):59
(53.45-64)
EGFR(+):60
(53-66.3)

76/103 China 58.66%
0.10–0.15
mCi/kg

Manual (Artificial
Intelligence Kit)

Artificial
Intelligenc

Kit

Chen
et al.
(29)
(2022)

NSCLC,
ADC

147

EGFR
(–):68.56 ±

9.97
EGFR

94/53
Public
datasets

25.17% NR Semi-automatic PyRadiomic
n

e
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and DOR for the radiomics based on 18F-FDG PET/CT in diagnose

EGFR mutation status of NSCLC patients were 0.76(0.70,0.81), 0.78

(0.74,0.82), 3.5(3.0,4.2), 0.31(0.24,0.39), and 11.0(8.0,16.0)

respectively. The forest plot showed significant heterogeneity in

sensitivity (I2 = 78.34, P<0.01) and specificity (I2 = 69.92, P=0.01).

For the validation cohort of 10 studies, the pooled SEN, SPE, PLR,

NLR and DOR were 0.76 (0.67,0.83), 0.75 (0.68–0.80), 3.0 (2.4,3.8),

0.32 (0.24,0.44) and 9 (6, 15). Figures 3, 4 show the forest plots for

the training cohort and validation cohort, respectively. For the

training and validation cohorts, the area under the curve (AUC) was

0.84 (95% CI: 0.80-0.87) and 0.82 (95% CI: 0.78-0.85), respectively

(Figures 5A, B).
3.4 Sensitivity analysis and publication bias

In the included study, the Deek’s test was used to investigate

potential publication bias; however, the funnel chart asymmetry test

did not show significant publication bias in both training cohorts

(t=0.33, p=0.75, Figure 6A) or validation t=0.01, p=0.99, Figure 6B).

We deleted each study individually and combined the rest of the

studies to summarize the effect again. The results show that the

comprehensive effect of each index changes little, indicating that the

stability of the literature is good and the reliability of the results is

high (Supplementary Figure S4).
3.5 Meta-regression subgroup analysis

To elucidate heterogeneity causes, we conducted a meta-

regression analysis, detailed in Figure 7. Modeling method and

region emerged as significant heterogeneity factors, with respective

p-values of 0.01 and 0.04. Subgroup analysis indicated that studies

(n=10) covering both ADC and other NSCLC subtypes showed

enhanced sensitivity (78% vs. 73%, p=0.06) and specificity (81% vs.

75%, p<0.01) compared to ADC-only studies (n=7). Deep learning

studies (n=4) outperformed radiomics algorithm studies (n=13) in

specificity (85% vs. 74%, p<0.01). Blinded studies (n=7) achieved

higher specificity (82% vs. 70%, p=0.10) compared to those with

unclear blinding (n=10). Intriguingly, studies utilizing Pyradiomics

for feature extraction (n=5) demonstrated superior sensitivity (82%

vs. 73%, p=0.15) compared to those employing other software (n=6).

Higher RQS studies (n=11) demonstrated increased sensitivity (77%)

and specificity (81%) over lower RQS studies (n=6; sensitivity: 74%,

p=0.06; specificity: 79%, p<0.01). Larger sample sizes (≥130) were

associated with higher sensitivity (78% vs.72%,p=0.57) and specificity

(79% vs.78%, p<0.01). Studies with fewer smokers (<100, n=12)

outperformed those with more smokers (≥100, n=4) in both

sensitivity (75% vs. 73%, p=0.02) and specificity (80% vs. 77%,

p<0.01). Similarly, studies with a higher proportion of female

participants (n=12) reported better sensitivity (78% vs. 69%,

p=0.31) and specificity (78% vs. 77%, p<0.01) than those with

fewer females (n=5). Notably, studies integrating clinical data in

their radiomics models (n=9) achieved higher specificity (80% vs.

76%, p<0.01) in EGFR mutation prediction.
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3.6 Clinical utility

The Fagan plot analysis for the training cohort (Figure 8A)

demonstrates that 18F-FDG PET/CT-based radiomics increased

the post-test probability of an EGFR mutation prediction from
Frontiers in Oncology 08
20% to 47% with a positive likelihood ratio (PLR) of

5. Conversely, a negative pre-test reduced the post-test

probability to 6% with a negative likelihood ratio (NLR) of

0.31. Comparable outcomes were observed in the validation

cohort (Figure 8B).
TABLE 2 Results of the included studies.

Study ID TP
(T/V)

FP
(T/V)

FN
(T/V)

TN
(T/V)

Sensitivity %
(T/V)

Specificity %
(T/V)

AUC(Train) AUC
(Validation)

Chang et al.
(2021) (15)

145/47 62/12 62/41 140/74 70/53 69/86 0.76 (0.72~0.81) 0.75 (0.68~0.82)

Ruan et al.
(2022) (16)

20/10 7/2 10/6 33/12 66.7/62.5 82.5/85.7 0.75 0.62

Wang et al.
(2022) (17)

54/17 11/13 6/2 32/17 90.7/89.5 73.9/56.7 0.874(0.81,0.93) 0.786(0.67,0.89)

Mu et al. (2020) (18) 170/68 50/27 31/7 178/85 84.58/90.67 78.07/75.89 0.86 (0.83, 0.90) 0.83 (0.78, 0.89)

Zhang et al.
(2020) (25)

66/48 34/34 5/23 68/68 92.8/67.11 66.3/67.04 0.87 0.77

Liu et al. (2020) (20) 16 4 9 5 59.3 83.3 0.73(0.59, 0.87) —

Huang et al.
(2022) (21)

54/28 8/6 10/4 66/19 77/88 91/78 0.90 (0.85–0.95) 0.85 (0.77,0.93)

Zhao et al.
(2022) (22)

15/5 9/2 13/4 28/12 53.6/55.6 75.7/85.7 0.727
(0.603,0.851)

0.778(0.585,0.970)

Yang et al.
(2021) (23)

49 18 4 43 92.5 70.5 0.866
(0.799,0.933)

—

Li et al. (2019) (24) 53 11 11 40 82.6 78.3 0.81 —

Zhang et al.
(2020) (25)

63/31 14/8 34/5 64/29 64.95/86.11 82.05/78.38 0.79 (0.73,0.86) 0.85 (0.76–0.94)

Wang et al.
(2019) (26)

47 12 21 47 69.7 79.1 0.819
(0.716, 0.921)

—

Yin et al.
(2021) (11)

73/41 15/10 29/10 81/42 71.75/80.39 84.38/80.77 0.86 (0.80-0.91) 0.84 (0.75-0.90)

Nair et al.
(2021) (27)

16 4 11 20 78.7 68 0.87 —

Li et al. (2022) (28) 56/23 10/5 17/9 42/17 76.7/71.9 80.8/77.3 0.853
(0.794, 0.905)

0.804 (0.699, 0.898)

Chen et al.
(2022) (29)

22 11 15 99 60 90 0.81 ± 0.07 —

Gao et al.
(2023) (30)

118/55 75/17 43/15 168/24 73.3/78.6 68.3/58.5 0.76(0.713,0.807) 0.73(0.633,0.828)
T, Training cohort; V, Validation cohort.
FIGURE 2

The risk of bias and concerns regarding applicability of included studies.
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4 Discussion

EGFR gene is a critical factor in determining the treatment and

prognosis of patients with non-small cell lung cancer (NSCLC).

EGFR has received increasing attention in recent years as it is

frequently overexpressed and directly associated with prolonged

survival. EGFR tyrosine kinase inhibitors (TKIs) are more effective

in patients with EGFR-mutated NSCLC. Medical imaging

techniques such as CT and PET scans are more cost-effective and

convenient than biopsies for predicting mutation status. Nguyen

et al. first systematic review to the diagnostic accuracy of AI-based

radiomics algorithms in predicting EGFR mutation status in lung

cancer. The results showed satisfactory diagnostic accuracy with an

overall AUC value of 0.789 (31). The combined sensitivity and

specificity were 72.2% and 73.3%, respectively. Subgroup analysis

revealed that diagnostic performance can be improved by using the

radiomics model of PET/CT.

In this review, we detailed synthesize findings from 18F-FDG

PET/CT radiomics studies targeting EGFR mutation prediction in

non-small cell lung cancer. The results of the 17 training cohorts

showed that the 18F-FDG PET/CT radiomics method was promising

for EGFR mutation prediction with a combined sensitivity,

specificity, and AUC of 0.74, 0.78, and 0.84, respectively. The

corresponding values for the ten independent validation cohorts

were 0.76, 0.75, and 0.82, respectively. The results of our study

indicated that 18F-FDG PET/CT radiomics model can enhance the

precision in identifying EGFR mutations in NSCLC patients, aiding

clinicians in tailoring treatment regimens, and potentially improving

patient outcomes.

The training cohort exhibited significant heterogeneity, necessitating

an exploration of its sources. To begin with, threshold effects were
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considered as they can lead to an overestimation of diagnostic

performance. Spearman’s correlation coefficient was evaluated to

eliminate the possibility of threshold effects. The results indicated that

threshold effects were unlikely to be a source of heterogeneity (r=0.316,

p=0.216). Besides, in evidence-based medicine, publication bias can

significantly influence the results of meta-analysis, potentially leading to

distorted or misleading conclusions. We used Deek’s funnel plot to

assess publication bias in the included literature. Despite the subjective

limitations of Deek’s funnel plot, our observation of a statistically

insignificant slope coefficient suggests a low probability of publication

bias. We conducted the sensitivity analysis that confirmed the stability of

the included literature and the reliability of our findings. Lastly, we

analyzed other potential sources of heterogeneity through univariate

meta-regression and identified several relevant variables.

Recent systematic evaluations have revealed that the predictive

performance of radiomics models in lung cancer is influenced by the

inclusion of varying radiomics algorithms and clinical features (31, 32),

which explains the heterogeneity of the results based on meta-

regression. This variation underpins the heterogeneity observed in

our meta-analysis. Notably, in predicting EGFR mutations in lung

cancer, deep learning methodologies demonstrate superior

performance over conventional machine learning techniques. This

enhanced efficacy can be attributed to the advanced capabilities of

deep learning models. Unlike traditional machine learning, deep

learning can process original imaging data through intricate linear

and non-linear transformations utilizing a complex, multi-layer neural

network. This approach allows for the extraction of more sophisticated

and potentially revealing features from the images. Additionally, deep

learning algorithms bypass the need for labor-intensive tumor edge

annotation. It can directly learn from the original images, effectively

eliminating the requirement for complex preliminary steps such as

detailed tumor boundary segmentation, feature extraction, and

selection, simplifying the overall process of model development (21).

EGFR mutations exhibit a robust association with clinicopathological

features, including gender, smoking status, and pathological type. Our

subgroup analysis aligns with prior research (33, 34). These results

underscore the efficacy of integrating radiomics with clinical data in

improving the precision of EGFR mutation predictions. Enriching the

model with additional clinical parameters can further elevate diagnostic

accuracy of 18F-FDG PET/CT radiomics.

Divergences in radiomics feature extraction software can

introduce biases in research outcomes. Our subgroup analysis

reveals that studies utilizing Pyradiomics for feature extraction

demonstrated superior diagnostic efficacy in identifying EGFR

mutations, compared to those using alternative software. This

variability stems from the distinct algorithmic methodologies and

parameter configurations inherent to each software. These findings

emphasize the critical influence of feature extraction software

selection on study results, underscoring the necessity for clear

recognition, comprehension, and transparent reporting of the

software’s impact in radiomics research.

Sample size and blinding to reference standards are pivotal in

meta-analyses, significantly influencing study quality and

contributing to heterogeneity. Adequate sample sizes and

reference blinding enhance study reliability and interpretability,

while effectively mitigating selection bias. Our analysis indicates
TABLE 3 Inter-reviewer agreement in RQS assessment.

RQS scoring item Kappa(95%CI)

Image Protocol 0.46(0.45-0.47)

Multiple Segmentations 1.00(1.00-1.00)

Phantom Study 1.00(1.00-1.00)

Multiple Time Points 1.00(1.00-1.00)

Feature Reduction 0.48(0.47-0.49)

Non Radiomics 0.87(0.50-0.88)

Biological Correlates 0.74(0.73-0.76)

Cut-off 0.67(0.66-0.69)

Discrimination and Resampling 0.77(0.75-0.78)

Calibration 0.76(0.75-0.77)

Prospective 1.00(1.00-1.00)

Validation 0.90(0.88-0.91)

Gold Standard 1.00(1.00-1.00)

Clinical Utility 1.00(1.00-1.00)

Cost-effectiveness 1.00(1.00-1.00)

Open Science 0.57(0.57-0.58)
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FIGURE 3

Forest plots of pooled sensitivity and specificity of 18F-FDG PET/CT radiomics diagnostic performance of predicting EGFR mutations in NSCLC
patients for training cohort.
FIGURE 4

Forest plots of pooled sensitivity and specificity of 18F-FDG PET/CT radiomics diagnostic performance of predicting EGFR mutations in NSCLC
patients for validation cohort.
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that studies blinded to reference standards exhibited notably lower

specificity compared to those where blinding status was ambiguous,

potentially due to measurement bias in readers aware of the

reference standard (8). Furthermore, studies with large sample

sizes demonstrated superior diagnostic performance than those

with smaller cohorts. Consequently, sample sizes and ensuring

blinding to reference standards are critical steps for enhancing the

diagnostic accuracy of 18F-FDG PET/CT radiomics in identifying

EGFR mutations.

The dynamic progression of study typically places greater

emphasis on recent studies for their applicability to contemporary

clinical practice. In our subgroup analysis, studies published after

2022 show improved predictive accuracy for EGFR mutations,

possibly due to advancements in imaging equipment, radiomics

algorithms, and enhanced study quality. (35). Recognizing and
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addressing these temporal variations is crucial for deriving precise

and relevant meta-analysis conclusions.

The quality of the studies included in this review was assessed

using QUADAS-2 and RQS. QUADAS-2 was used for diagnostic

accuracy studies, while RQS was used for quality assessment of

radiomics studies. QUADAS-2 revealed high or unclear risks in

reference standards, flow, and timing in many studies. Over two-

thirds had unclear risks due to non-specifics about participant

sampling methods, and three studies showed high selection bias

risk from inappropriate exclusions. The timing of 18F-FDG PET/CT

relative to biopsy, a crucial factor in flow and timing domains, was

often ambiguously reported, leading to unclear temporal domain

risks. Nevertheless, patient selection, index testing, and reference

standards generally had low applicability concerns, indicating a

broadly acceptable quality of the included studies.
A B

FIGURE 5

SROC of for the 18F-FDG PET/CT radiomics for the prediction of EGFR mutation status in NSCLC, In both training (A) and validation cohorts (B).
A B

FIGURE 6

Deeks funnel plot for the publication bias test of 18F-FDG PET/CT radiomics for the prediction of EGFR mutation status in NSCLC, In both training
(A) and validation cohorts (B).
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FIGURE 7

Meta-regression results of 18F-FDG PET/CT radiomics for prediction of EGFR mutation in NSCLC.
A B

FIGURE 8

Fagan plots for assessing the clinical utility, In both training (A) and validation (B) cohorts.
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It is similar to recent systematic evaluations of the quality of

radiomics studies in other fields, the median RQS score of included

studies was 12 (33.3% of the total score), which is overall relatively

low (31, 36). In radiomics research, the RQS critically influences

study results. Studies that garner low RQS ratings are often

plagued by methodological defects. These deficiencies can

introduce significant biases into the meta-analysis, consequently

diminishing the reliability and validity of the research findings. The

methodological rigor of the included studies was inconsistent. A

notable absence of prospective designs and, often, multicenter

independent validation cohorts hindered the assessment of model

reproducibility. Furthermore, limited biological relevance in

investigations and a scarcity of publicly open data could impede a

thorough understanding of how 18F-FDG PET/CT radiomic

features influence EGFR prediction. Our meta-regression found

no significant link between the RQS and result heterogeneity. While

study quality metrics are important, low RQS scores should be

interpreted as indicators of areas for improvement rather than

outright poor quality. Notably, deep learning studies may be

disadvantaged by RQS, which is more suited to hand-crafted

radiomics (21), indicating RQS might not be the optimal tool for

radiomics quality assessment. In contrast, new checklists like

CLEAR have shown efficacy in reporting radiomics modeling

components, which provides a more thorough coverage of study

aspects, enhancing the comprehensive evaluation of study quality

and reliability in radiomics research (37).

This study has several limitations. Predominantly, the population

analyzed was Chinese, with only two of the 17 studies based in the

USA and Canada, while the rest were conducted in China. This led to

significant geographical variations contributing to the heterogeneity

of our results. EGFR mutations were found in 15.4% of North

American NSCLC patients, in contrast to 49.1% in Asian patients,

highlighting substantial regional differences (38). Moreover, the

retrospective nature of all included studies underscores the need for

prospective research to enhance findings’ quality and relevance.

Additionally, the exclusion of gray literature and studies with

inadequate data may result in biased meta-analysis, necessitating

careful consideration in study selection and analysis to ensure the

validity and accuracy of the results.

In conclusion, our meta-analysis demonstrates that 18F-FDG

PET/CT radiomics is a promising tool for predicting EGFR

mutations in NSCLC. Deep learning algorithms particularly stand

out, offering enhanced predictive accuracy. However, the pooled

AUCs for both validation and training cohorts in our study fall

below 0.90, suggesting that this field is still in its developmental

phase. This early stage of research limits the wider clinical

application of these noninvasive methods for EGFR mutation

assessment. Therefore, the development of more advanced deep

learning features based on 18F-FDG PET/CT is essential for

improving the predictive accuracy for EGFR mutations in NSCLC.
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