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Mammography with deep
learning for breast
cancer detection
Lulu Wang*

Biomedical Device Innovation Center, Shenzhen Technology University, Shenzhen, China
X-ray mammography is currently considered the golden standard method for

breast cancer screening, however, it has limitations in terms of sensitivity and

specificity. With the rapid advancements in deep learning techniques, it is

possible to customize mammography for each patient, providing more

accurate information for risk assessment, prognosis, and treatment planning.

This paper aims to study the recent achievements of deep learning-based

mammography for breast cancer detection and classification. This review

paper highlights the potential of deep learning-assisted X-ray mammography

in improving the accuracy of breast cancer screening. While the potential

benefits are clear, it is essential to address the challenges associated with

implementing this technology in clinical settings. Future research should focus

on refining deep learning algorithms, ensuring data privacy, improving model

interpretability, and establishing generalizability to successfully integrate deep

learning-assisted mammography into routine breast cancer screening programs.

It is hoped that the research findings will assist investigators, engineers, and

clinicians in developing more effective breast imaging tools that provide accurate

diagnosis, sensitivity, and specificity for breast cancer.
KEYWORDS

breast cancer, classification, X-ray mammography, artificial intelligence, machine
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1 Introduction

Breast cancer is one of the most prevalent cancers among females worldwide (1).

Several factors, including gender, age, family history, obesity, and genetic mutations,

contribute to the development of breast cancer (2). Early diagnosis with prompt treatment

can significantly improve the 5-year survival rate of breast cancer (3). Medical imaging

techniques like mammography and ultrasound are widely used for breast cancer detection

(4, 5). Mammography utilizes low-dose X-rays to generate breast images that aid

radiologists in identifying abnormalities like lumps, calcifications, and distortions (6).

Mammography is recommended for women over 40, particularly those with a family

history of breast cancer, as it effectively detects early-stage breast cancer (7). However,
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mammography has limitations, such as reduced sensitivity in

women with dense breast tissue. To overcome these limitations,

various imaging methods, such as digital breast tomosynthesis

(DBT), ultrasound, magnetic resonance imaging (MRI), and

positron emission tomography (PET), have been investigated as

alternative tools for breast cancer screening.

DBT uses X-rays to generate three-dimensional breast images,

which is particularly useful for detecting breast cancer in dense

breasts (8). Compared to mammography, DBT provides higher

accuracy and sensitivity in detecting breast cancer lesions. However,

the interpretation of DBT images still faces inter-observer

variability, which can affect its accuracy. Ultrasound imaging uses

high-frequency sound waves to produce detailed images of breast

tissue. Unlike mammography, ultrasound does not involve

radiation, making it a safe method for detecting breast

abnormalities, especially in women with dense breast tissue.

Ultrasound helps evaluate abnormalities detected on a

mammogram and can be used to monitor disease progression

and assess treatment effectiveness (9). MRI has been

recommended for women with high risks of breast cancer (10).

PET utilizes a radioactive tracer to create breast images and is often

used in conjunction with other imaging techniques, such as CT or

MRI, to identify areas of cancer cells (11). Each of these imaging

methods has its own set of advantages and disadvantages (12).

Artificial intelligence (AI) technologies have been extensively

investigated to develop cancer prediction models (13, 14). AI-based

models, such as machine learning (ML) algorithms, can analyze

medical image datasets and patient characteristics to identify breast

cancer or predict the risk of developing breast cancer. ML

algorithms can extract quantitative features from medical images,

such as mammograms or ultrasound images, through radiomics.

AI-based prediction models can incorporate various cancer risk

factors, including genetics, lifestyle, and environmental factors, to

establish personalized imaging and treatment plans. In recent years,

deep learning (DL) algorithms have emerged as promising AI tools

to enhance the accuracy and efficiency of breast cancer detection

(15). These data-driven techniques have the potential to

revolutionize breast imaging by leveraging large amounts of data

to automatically learn and identify complex patterns associated

with malignancy.

This paper provides an overview of the recent developments in

DL-based approaches and architectures used in mammography,
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along with their strengths and limitations. Additionally, the article

highlights challenges and opportunities associated with integrating

DL-based mammography to enhance breast cancer screening and

diagnosis. The remaining sections of the paper are as follows:

Section 2 describes the most popular medical imaging application

for breast cancer detection. Section 3 discusses DL-based

mammography techniques. Section 4 describes breast cancer

prediction using DL techniques. Section 5 highlights the

challenges and future research directions of DL approaches in

mammography. Finally, Section 6 concludes the present study.
2 Medical imaging techniques for
breast cancer detection

Medical imaging techniques have become essential in the

diagnosis and management of breast cancer. This section provides

an overview of several commonly used medical imaging techniques

for breast cancer detection. Table 1 compares the most widely

utilized medical imaging methods for breast cancer.
2.1 Mammography

This section presents the working principle, recent advancements,

advantages, and disadvantages of mammography. Mammography is a

well-established imaging modality used for breast cancer screening. It is

a non-invasive technique that utilizes low-dose X-rays to generate high-

resolution images of breast tissue. Mammography operates based on the

principle of differential X-ray attenuation. The breast tissue is

compressed between two plates, and a low-dose X-ray beam is

directed through the breast to create an image. Different types of

breast tissues, such as fatty, glandular, and cancerous tissue, attenuate

X-rays differently. The X-rays that pass through the breast tissue are

detected by a digital detector, and an image of the breast is formed. The

resulting image is a two-dimensional projection of the breast tissue. In

recent years, mammography has undergone significant advancements.

Digital mammography has replaced film-screen mammography,

leading to improved image quality and reduced radiation dose.

Digital breast tomosynthesis (DBT), a 3D mammography technique,

has enhanced breast cancer detection rates and reduced false positives.

Automated breast ultrasound (ABUS) is another imagingmodality used
TABLE 1 Comparison of medical imaging methods for breast cancer.

Reference Techniques Sensitivity Tumor size
corresponding

to
sensitivity

Advantages Disadvantages

(16) Mammography 85% ≤2 cm Improved image resolution,
widely available

Limited sensitivity in dense breast
tissue, exposure to radiation

(17) Ultrasound 82% 2 cm No ionizing radiation, suitable for dense
breasts and implant imaging

Operator-dependent, limited specificity

(18) MRI 95% ≤2 cm Images small details of soft tissues Expensive

(19) Diffused optical
tomography

92.35% 1 cm Non-invasive, safe Illposed problem during reconstruction
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in conjunction with mammography for breast screening, particularly in

women with dense breast tissue.

Numerous studies have investigated the effectiveness of

mammography for breast cancer screening, demonstrating that it

can reduce breast cancer mortality rates, especially for women aged

50-74 years. Additional screening with MRI or ultrasound may be

recommended for women with higher risk of breast cancer, such as

those with a family history or genetic predisposition. Several leading

companies and research groups have achieved significant

advancements in the past decade. For example, Hologic’s Genius

3D mammography technology provides higher-resolution 3D

images, increasing detection rates while reducing false positives

(20). However, it entails higher radiation exposure and higher costs

compared to traditional mammography.

Other developments include GE Healthcare and Siemens

Healthineers’ contrast-enhanced spectral mammography (CESM),

which combines mammography with contrast-enhanced imaging to

improve diagnostic accuracy (21). Artificial intelligence tools

developed by companies like iCAD and ScreenPoint Medical have

been utilized to enhance mammography interpretation, leading to

earlier breast cancer detection (22). Gamma Medica and Dilon

Technologies have introduced new breast imaging technologies,

such as molecular breast imaging and breast-specific gamma

imaging, which utilize different types of radiation to provide more

detailed images of breast tissue (23).

The University of Chicago has made strides in contrast-enhanced

mammography (CEM), which is more accurate in detecting invasive

breast cancers than traditional mammography alone. CEM provides

detailed images of breast tissue without ionizing radiation, though it is

not widely available and may not be covered by insurance (24). The

Karolinska Institute’s work on breast tomosynthesis has shown that it is

more sensitive in detecting breast cancer than traditional

mammography. Tomosynthesis provides a 3D image of the breast,

facilitating the detection of small tumors and reducing the need for

additional imaging tests. However, it exposes patients to slightly more

radiation, takes longer to perform, and is more expensive (25).

Mammography has certain limitations, including limited sensitivity

in women with dense breast tissue, false positives leading to

unnecessary procedures, radiation exposure that accumulates over

time, inability to distinguish between benign and malignant lesions,

inaccuracy in detecting small cancers or cancers in certain breast

regions, and limited utility in detecting specific types of breast cancer,

such as inflammatory breast cancer. To address these limitations,

various new imaging technologies, such as DBT, ultrasound

elastography, and molecular breast imaging, have been proposed and

investigated. These technologies aim to provide more accurate and

reliable breast cancer detection, particularly in high-risk individuals.

Future research directions for mammography include improving test

accuracy, utilizing AI for image interpretation, and developing new

techniques utilizing different radiation or contrast agents.
2.2 Digital breast tomosynthesis

DBT was first introduced in the early 2000s. Unlike traditional

Mammography, DBT can generate three-dimensional images,
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leading to more accurate breast cancer detection by reducing

tissue overlap. DBT is particularly effective in detecting small

tumors and reducing false positive results compared to

mammography (26). Additionally, it exposes patients to less

radiation. However, DBT is more expensive and may not be

covered by insurance for all patients. It also requires specialized

equipment and training for interpretation, which may not be widely

available in all areas.
2.3 Ultrasound

Ultrasound imaging is a non-invasive, relatively low-cost

imaging technique that does not involve exposure to ionizing

radiation. It can be used as an adjunct to mammography for

breast cancer screening, especially in women with dense breast

tissue. Nakano et al. (27) developed real-time virtual sonography

(RVS) for breast lesion detection. RVS combines the advantages of

ultrasound and MRI and can provide real-time, highly accurate

images of breast lesions. However, RVS requires specialized

equipment and software, and its diagnostic accuracy may depend

on the operator. Standardization of RVS protocols and operator

training may improve its accuracy and accessibility.

Zhang et al. (28) conducted a study on a computer-aided

diagnosis (CAD) system called BIRADS-SDL for breast cancer

detection using ultrasound images. BIRADS-SDL was compared

with conventional stacked convolutional auto-encoder (SCAE) and

semi-supervised deep learning (SDL) methods using original

images as inputs, as well as an SCAE using BIRADS-oriented

feature maps (BFMs) as inputs. The experimental results showed

that BIRADS-SDL performed the best among the four networks,

with classification accuracy of around 92.00 ± 2.38% and 83.90 ±

3.81% on two datasets. These findings suggest that BIRADS-SDL

could be a promising method for effective breast ultrasound lesion

CAD, particularly with small datasets. CAD systems can enhance

the accuracy and efficiency of breast cancer detection while

reducing inter-operator variability. However, CAD systems may

produce false-positive or false-negative results, and their diagnostic

accuracy may depend on the quality of the input images. Integrating

CAD systems with other imaging modalities and developing

algorithms to account for image quality variations may improve

their accuracy and reliability (29).

GE Healthcare (USA) developed the Invenia Automated Breast

Ultrasound (ABUS) 2.0, which improves breast cancer detection,

especially in women with dense breasts, by providing high-

resolution 3D ultrasound images (30). Siemens Healthineers

(Germany) developed the ACUSON S2000 Automated Breast

Volume Scanner (ABVS), which also provides high-resolution 3D

ultrasound images for accurate breast cancer detection, particularly

in women with dense breasts (31). These automated systems

enhance breast cancer detection rates, improve workflow, and

reduce operator variability.

Canon Medical Systems (Japan) developed the Aplio i-series

ultrasound system with the iBreast package, which offers high-

resolution breast imaging, leading to improved diagnostic

performance for breast cancer detection. Invenia ABUS 2.0 and
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ACUSON S2000 ABVS are automated systems, while Aplio i-series

with iBreast package requires manual scanning. The advantages of

ABUS 2.0 and ACUSON S2000 ABVS include enhanced image

quality, improved workflow, and reduced operator variability.

However , they are more expens ive than tradi t iona l

mammography, and image interpretation may be time-

consuming. Ultimately, the choice of system depends on the

needs and preferences of healthcare providers and patients.

Future research is likely to focus on improving the accuracy of

ultrasound imaging techniques, developing new methods for

detecting small calcifications, and reducing false-positive results.
2.4 Magnetic resonance imaging

MRI utilizes strong magnetic fields and radio waves to generate

images of the body’s internal structures, making it one of the most

important diagnostic tools. It has various applications, including the

diagnosis and monitoring of neurological, musculoskeletal,

cardiovascular, and oncological conditions. Its ability to image

soft tissues makes it well-suited for breast imaging. Breast MRI is

a non-invasive technique used for the detection and monitoring of

breast cancer. It is often used in conjunction with mammography

and ultrasound to provide a comprehensive evaluation of

breast tissue.

Kuhl et al. (32) were the first to investigate post-contrast

subtracted images and maximum-intensity projection for breast

cancer screening with MRI. This approach offers advantages in

terms of speed, cost-effectiveness, and patient accessibility.

However, abbreviated MRI has limitations, including lower

specificity and the potential for false positives. Mann et al. (33)

studied ultrafast dynamic contrast-enhanced MRI for assessing

lesion enhancement patterns. The use of new MRI sequences and

image reconstruction techniques improved the specificity in

distinguishing between malignant and benign lesions. Zhang et al.

(34) explored a deep learning-based segmentation technique for

breast MRI, which demonstrated accurate and consistent

segmentation of breast regions. However, this method has

limitations, such as its reliance on training data and

potential misclassification.

MRI has several advantages, including the absence of ionizing

radiation and increased accuracy in detecting small tumors within

dense breast tissue. However, it is expensive, time-consuming, and

associated with a higher false-positive rate. Future research

directions involve developing faster and more efficient MRI

techniques and utilizing AI techniques to enhance image analysis

and interpretation.

Contrast-enhanced MRI (DCE-MRI) has recently become a

crucial method in clinical practice for the detection and evaluation

of breast cancer. Figure 1 illustrates the workflow of unsupervised

analysis based on DCE-MRI radiomics features in breast cancer

patients (35). Ming et al. (35) utilized DCE-MRI to calculate voxel-

based percentage enhancement (PE) and signal enhancement ratio

(SER) maps of each breast. This study collected two independent

radiogenomics cohorts (n = 246) to identify and validate imaging

subtypes. The results demonstrated that these imaging subtypes,
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with distinct clinical and molecular characteristics, were reliable,

reproducible, and valuable for non-invasive prediction of the

outcome and biological functions of breast cancer.
2.5 Positron emission tomography

PET is an advanced imaging technique that has made

significant contributions to the diagnosis and treatment of breast

cancer. It is a non-invasive procedure that provides healthcare

professionals with valuable information about the spread of

cancer to other parts of the body, making it an essential tool in

the fight against breast cancer. With ongoing technological

advancements, PET plays a crucial role in the detection and

treatment of breast cancer.

PET utilizes radiotracers to generate three-dimensional images

of the interior of the body. It operates by detecting pairs of gamma

rays emitted by the radiotracer as it decays within the body. PET

imaging was first introduced in the early1950s, and the first PET

scanner was developed in the 1970s. Since then, PET has become an

indispensable tool for cancer detection. It has been commonly used

to diagnose and stage cancer and assess the effectiveness of cancer

treatments. It is also utilized in cardiology, neurology, breast,

and psychiatry.

PET is more sensitive than mammography and ultrasound in

detecting small breast tumors, and it can also distinguish between

benign and malignant lesions with higher accuracy (36). The

advantages of PET include its non-invasive and safety for

repeated use. However, PET does have limitations, including

limited availability, higher cost compared to mammography and

ultrasound, a higher rate of false positives, and the requirement for

radiotracer injection.
3 Deep learning-based
mammography techniques

Several DL architectures, including convolutional neural

networks (CNN), transfer learning (TL), ensemble learning (EL),

and attention-based methods, have been developed for various

applications in mammography. These applications include breast

cancer detection, classification, segmentation, image restoration

and enhancement, and computer-aided diagnosis (CAD) systems.

CNN is an artificial neural network with impressive results in

image recognition tasks. CNN recognizes image patterns using

convolutional layers that apply filters to the input image. The

filters extract features from the input image, passing through fully

connected layers to classify the image. Several CNN-based methods

have been proposed in mammography for breast tumor detection.

Wang et al. (37) applied CNN with transfer learning in ultrasound

for breast cancer classification. The proposed method achieved an

area under the curve (AUC) value of 0.9468 with five-folder cross-

validation, for which the sensitivity and specificity were 0.886 and

0.876, respectively. Shen et al. (38) proposed a deep CNN in

Mammography to classify benign and malignant and achieved an

accuracy of 0.88, higher than radiologists (0.83). The study showed
frontiersin.org
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that CNN had a lower false-positive rate than radiologists. Yala et al.

(39) developed CNN-based mammography to classify

mammograms as low or high risk for breast cancer and achieved

an AUC of 0.84, which was higher than that of radiologists (0.77).

CNN had a lower false-positive rate than radiologists, which has

shown promising results in improving the accuracy of

mammography screening. CNN has several advantages over

traditional mammography screening, including higher accuracy,

faster processing, and the ability to identify subtle changes in

mammograms. CNN requires large amounts of data to train the

network and may not be able to detect all types of breast cancer.

Further research is needed to investigate the use of CNN

in Mammography.

CNN is an artificial neural network that has shown impressive

results in image recognition tasks. It recognizes image patterns

using convolutional layers that apply filters to the input image.
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These filters extract features from the input image, which then pass

through fully connected layers to classify the image. In

Mammography, several CNN-based methods, such as DenseNet,

ResNet, and VGGNet, have been proposed for breast tumor

detection. For example, Wang et al. (37) applied CNN with

transfer learning in ultrasound for breast cancer classification,

achieving an area under the curve (AUC) value of 0.9468 with

five-fold cross-validation. The sensitivity and specificity were 0.886

and 0.876, respectively. Shen et al. (38) proposed a deep CNN in

mammography to classify between benign and malignant tumors,

achieving an accuracy of 0.88, higher than that of radiologists (0.83).

Yala et al. (39) developed a CNN-based mammography system to

classify mammograms as low or high risk for breast cancer,

achieving an AUC of 0.84, higher than that of radiologists (0.77).

These studies demonstrated that CNN had a lower false-positive

rate than radiologists, showing promise in improving the accuracy
FIGURE 1

Workflow of unsupervised analysis based on DCE-MRI features in breast cancer patients (35).
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of mammography screening. CNN offers advantages over

traditional mammography screening, including higher accuracy,

faster processing, and the ability to identify subtle changes in

mammograms. However, CNN requires large amounts of data to

train the network and may not be able to detect all types of breast

cancer. Further research is needed to investigate the use of CNN

in mammography.

TL utilizes pre-trained DL models to train on small datasets.

TL-based methods have shown promising results in improving the

accuracy of mammography for breast tumor detection. EL

combines multiple DL models to improve the accuracy of

predictions. EL-based approaches, such as stacking, boosting, and

bagging, have been proposed in mammography for breast

tumor detection.

Attention-based methods use attention mechanisms to focus on

critical features of the image. Several attention-based methods, such

as SE-Net and Channel Attention Networks (CAN), have been

proposed for breast tumor detection in mammography. DL is a type

of ML that uses neural networks to learn and make predictions. DL

methods have gained popularity in recent years due to their ability

to work with large datasets and extract meaningful patterns

and insights.

DL methods have revolutionized the field of machine learning

and are being used in an increasing number of applications, ranging

from self-driving cars to medical imaging. As datasets and

computing power continue to grow, these methods are expected

to become even more powerful and prevalent in the future.
4 Breast cancer prediction using
deep learning

This section presents the recent developments in DL methods

for breast cancer prediction. The DL-based breast cancer prediction

techniques involves the following steps:
Fron
• Data Collection: Breast datasets are obtained from various

sources such as medical institutions, public repositories,

and research studies. These datasets consist of

mammogram images, gene expression profiles, and

clinical data.

• Data Preprocessing: The collected datasets are preprocessed

to eliminate noise, normalize, and standardize the data.

This step involves data cleaning, feature extraction, and

data augmentation.

• Model Building: DL models, such as CNNs, RNNs, DBNs,

and autoencoders, are developed using the preprocessed

breast cancer datasets. These models are trained and

optimized using training and validation datasets.

• Model Evaluation: The trained DL models are assessed

using a separate test dataset to determine their

performance. Performance metrics, including sensitivity,

specificity, accuracy, precision, F1 score, and AUC, are

used for evaluation.
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• Model Interpretation: The interpretability of the DL models

is evaluated using techniques such as Grad-CAM, saliency

maps, and feature visualization. These techniques help

identify which features of the input data are utilized by

the DL models for making predictions.

• Deployment: The DL model is deployed in a clinical setting

to predict breast cancer in patients. The performance of the

model is regularly monitored and updated to enhance

accuracy and efficiency.
By utilizing DL techniques, breast cancer prediction can be

significantly improved, leading to better detection and

treatment outcomes.
4.1 Data preprocessing techniques
and evaluation

4.1.1 Preprocessing techniques
When applying DL algorithms to analyze breast images, noise can

have a negative impact on the accuracy of the image classifier. To address

this issue, several image denoising techniques have been developed.

These techniques, including the Median filter, Wiener filter, Non-local

means filter, Total variation (TV) denoising, Wavelet-based denoising,

Gaussian filter, anisotropic diffusion, BM3D denoising, CNN, and

autoencoder, aim to reduce image noise while preserving important

features and structures that are relevant for breast cancer diagnosis.

After denoising, a normalization method, such as min-max

normalization, is typically employed to rescale the images and

reduce the complexity of the image datasets before feeding them

into the DL model. This normalization process ensures that the

model can effectively learn meaningful patterns from the images

and improve its ability to accurately classify them.

4.1.2 Performance metrics
Several performance metrics are utilized to evaluate DL

algorithms for breast screening. The selection of a specific metric

depends on the task at hand and the objectives of the model. Some

of the most commonly employed metrics include:
• Accuracy: measures the proportion of correct predictions

made by the model.

• Precision: measures the proportion of true positive

predictions out of all positive predictions made by

the model.

• Sensitivity: measures the proportion of true positive

predictions out of all actual positive cases in the dataset.

• F1 score: a composite metric that balances precision

and sensitivity.

• Area under the curve (AUC): distinguishes between positive

and negative points across a range of threshold values.

• Mean Squared Error (MSE): measures the average squared

difference between predicted and actual values in a

regression task.
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• Mean Absolute Error (MAE): measures the average

absolute difference between the predicted and actual

values in a regression task.
The commonly used equation for calculating accuracy, as stated

in reference (40), is:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Where TP and TN are the numbers of true positives and true

negatives, FP and FN are the numbers of false positives and false

negatives, respectively.

Precision =
TP

TP + FP
(2)

Sensitivity =
TP

TP + FN
  (3)

F1 score =
2 ∗ (Precision  ∗  Sensitivity)

Precision + Sensitivity
(4)

AUC is typically computed by plotting the true positive rate

against the false positive rate at different threshold values and then

calculating the area under this curve.

MSE = (1=n) ∗o(ytrue − ypred)
2  (5)

MAE = (1=n) ∗o ytrue − ypred
�
�

�
� (6)

Where ytru is the true value and ypred is the predicted value, and

n is the number of samples.

Equations 1–6 provide a general idea of how performance

metrics are computed, but the actual implementation may vary

depending on the specific task and the software.
4.2 Datasets

Breast datasets play a crucial role in evaluating DL approaches.

These datasets offer a comprehensive collection of high-quality and

labelled breast images that can be utilized for training and testing

DL algorithms. Table 2 presents commonly utilized publicly

available breast datasets in mammography for breast screening.
4.3 Breast lesion segmentation

The Nottingham Histological Grading (NHG) system is

currently the most commonly utilized tool for assessing the

aggressiveness of breast cancer (50). According to this system,

breast cancer scores are determined based on three significant

factors: tubule formation (51), nuclear pleomorphism (52), and

mitotic count (53). Tubule formation is an essential assessment

factor in the NHG grading system for understanding the level of

cancer. Before identifying tubule formation, detection or

segmentation tasks need to be performed. Pathologists typically
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conduct these tasks visually by examining whole slide images

(WSIs). Medical image segmentation assists pathologists in

focusing on specific regions of interest in WSIs and extracting

detailed information for diagnosis. Conventional and AI methods

have been applied in medical image segmentation, utilizing

handcrafted features such as color, shapes, and texture (54–56).

Traditional manual tubule detection and segmentation techniques

have been employed in medical images. However, these methods

are challenging, prone to errors, exhaustive, and time-consuming

(57, 58).

Table 3 provides a comparison of recently developed DL

methods in mammography for breast lesion segmentation. These

methods include the Conditional Random Field model (CRF) (59),

Adversarial Deep Structured Net (60), Deep Learning using You-

Only-Look-Once (61), Conditional Residual U-Net (CRU-Net)

(62), Mixed-Supervision-Guided (MS-ResCU-Net) and Residual-

Aided Classification U-Net Model (ResCU-Net) (63), Dense U-Net

with Attention Gates (AGs) (64), Residual Attention U-Net Model

(RU-Net) (65), Modified U-Net (66), Mask RCNN (67), Full-

Resolution Convolutional Network (FrCN) (68), U-Net (69),

Conditional Generative Adversarial Networks (cGAN) (70, 71),

DeepLab (72), Attention-Guided Dense-Upsampling Network

(AUNet) (73), FPN (74), modified CNN based on U-Net Model

(76), deeply supervised U-Net (77), modified U-Net (78), and

Tubule-U-Net (79). Among these DL methods, U-Net is the most

commonly employed segmentation method.

Naik et al. (80) developed a likelihood method for the

segmentation of lumen, cytoplasm, and nuclei based on a

constraint: a lumen area must be surrounded by cytoplasm and

a ring of nuclei to form a tubule. Tutac et al. (81) introduced a

knowledge-guided semantic indexing technique and symbolic rules

for the segmentation of tubules based on lumen and nuclei.

Basavanhally et al. (82) developed the O’Callaghan neighborhood

method for tubule detection, allowing for the characterization of

tubules with multiple attributes. The process was tested on 1226

potential lumen areas from 14 patients and achieved an accuracy of

89% for tubule detection. In reference (83), the authors applied a k-

means clustering algorithm to cluster pixels of nuclei and lumens.

They employed a level-set method to segment the boundaries of the

nuclei surrounding the lumen, achieving an accuracy of 90% for

tubule detection. Romo-Bucheli et al. (84) developed a

Convolutional Neural Network (CNN) based detection and

classification method to improve the accuracy of nuclei detection

in tubules, achieving an accuracy of 90% for tubule nuclei detection.

Hu et al. (85) proposed a breast mass segmentation technique using

a full CNN (FCNN), which showed promising results with high

accuracy and speed. Abdelhafiz et al. (86) studied the application of

deep CNN for mass segmentation in mammograms and found

increased performance in terms of accuracy. Tan et al. (87) recently

developed a tubule segmentation method that investigates

geometrical patterns and regularity measurements in tubule and

non-tubule regions. This method is based on handcrafted features

and conventional segmentation techniques, which are not effective

and efficient for tubule structures due to their complex, irregular

shapes and orientations with weak boundaries.
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4.4 Deep learning approaches in
mammography for breast lesion detection
and classification

DL approaches have garnered considerable attention in

mammography for the detection and classification of breast lesions,

primarily due to their ability to automatically extract high-level

features from medical images. Numerous popular DL algorithms

have been employed in mammography for breast screening,

including convolutional neural networks (CNN), deep belief

networks (DBN), recurrent neural networks (RNN), autoencoders,

generative adversarial networks (GAN), capsule networks (CN),

convolutional recurrent neural networks (CRNN), attention

mechanisms, multiscale CNN, and ensemble learning (EL).

CNN proves highly effective in extracting and classifying image

features into distinct categories. DBN is particularly advantageous in

identifying subtle changes in images that may be challenging for

human observers to discern. RNN utilizes feedback loops to facilitate

predictions, thereby aiding in the analysis of sequential data.

Autoencoders are utilized for unsupervised feature learning, which

aids in the detection and classification of mammography images. GAN

is exceptionally effective in generating synthetic mammography images

for training DL models. CN is highly proficient in detecting and

classifying mammography images. CRNN combines CNN and RNN,

making it particularly useful in analyzing sequential data. Attention

mechanisms focus on specific areas of mammography images, proving

beneficial in detecting and classifying images that encompass intricate

structures and patterns. Multiscale CNN analyzes images at multiple

scales, proving invaluable in detecting and classifying images with

complex structures and patterns at varying scales. EL combines

multiple DL models to enhance accuracy and reduce false positives.
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Table 4 analyzes the recently developed DL methods for breast

lesion detection using mammography. These methods have the

potential to greatly enhance the accuracy and efficiency of breast

cancer diagnosis. However, it is important to note that most DL

methods for biomedical imaging applications come with certain

limitations. These limitations include the need for large training

datasets, being limited to mass spectrometry images, and being

computationally expensive.

Table 5 presents a comprehensive list of the latest DL-based

mammogram models developed for breast lesion classification. DL

models offer numerous benefits, including exceptional accuracy and

optimal performance achieved with fewer parameters. However, it is

important to acknowledge certain limitations associated with existing

DL methods for breast tumor classification using mammographies.

These limitations include the substantial computational power and

extensive datasets required for training the models, which can be

computationally expensive, intricate, and time-consuming.
5 Challenges and future
research directions

The emergence of DL techniques has revolutionized medical

imaging, offering immense potential to enhance the diagnosis and

treatment of various diseases. DL algorithms present several

advantages compared to traditional ML methods. For instance,

DL algorithms can be trained using robust hardware such as

graphical processing units (GPU) and tensor processing units

(TPU), greatly accelerating the training process. This has enabled

researchers to train large DL models with billions of parameters,

yielding impressive results in diverse language tasks. However, to
TABLE 2 Breast image dataset.

Year Country Dataset Sample
Number

Human
Number

Task

1998
(41)

US Digital Database for Screening
Mammography (DDSM)

2,620 N/A Breast cancer detection

1998
(42)

US Mammographic Image Analysis Society (Mini-MIAS) 322 N/A Breast cancer classification

2012
(43)

US INbreast 410 N/A Breast cancer detection

2017
(44)

US Breast Cancer Digital Repository (BCDR) 1,224 N/A Breast cancer classification

2017
(45)

US Curated Breast Imaging Subset of DDSM
(CBIS-DDSM)

753 N/A Breast cancer detection

2011
(46)

US BCDR-F01 362 N/A Breast cancer classification

2018
(47)

USA DDSM 2,620 N/A Classification,
segmentation

2016
(48)

Netherlands Mammographic Image Analysis Society (MIAS) 322 N/A Classification,
segmentation

2012
(49)

Multi-
country

BCDR 1,875 N/A Classification, density
N/A, Not Applicate.
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TABLE 3 Deep learning approaches in mammography for breast lesion segmentation.

Year Model Evaluation
Dataset

Noise
remove
method

Performance Metrics (results)

2015
(59)

CRF INbreast and
DDSM-BCRP

NA The method achieved an 89.0% Dice index in 0.1.

2018
(60)

adversarial deep
structured net

INbreast and
DDSM-BCRP

NA The method achieved a segmentation rate of 97.0%.

2018
(61)

deep learning using You-
Only-Look-Once

INbreast NA The method achieved detection rate of 98.96%, Matthews correlation coefficient
(MCC) of 97.62%, and F1 score of 99.24%.

2018
(62)

CRU-Net INbreast and
DDSM-BCRP

NA The CRU-Net achieved a Dice Index DI of 93.66% for INbreast and a DI of 93.32%
for DDSM-BCRP.

2019
(63)

MS-ResCU-Net and
ResCU-Net

INbreast NA The MS-ResCU-Net achieved an accuracy of 94.16%, sensitivity of 93.11%, specificity
of 95.02%, DI of 91.78%, Jac of 85.13%, and MCC of 87.22%, while ResCU-Net
correspondingly achieved 92.91%, 91.51%, 94.64%, 90.50%, 83.02%, and 84.99%.

2019
(64)

dense U-Net with AGs DDSM NA The method achieved 82.24% F1 score, 77.89% sensitivity, and overall accuracy
of 78.38%.

2019
(65)

RU-Net DDSM, BCDR-01,
and INbreast

cLare filter The proposed model achieved a mean test pixel accuracy of 98.00%, a mean Dice
coefficient index (DI) of 98.00%, and mean IOU of 94.00%.

2019
(66)

modified U-Net DDSM Laplacian filter The method produced 98.50% of the F-measure and a 97.80% Dice score, Jaccard
index of 97.40%, and average accuracy of 98.20%.

2020
(67)

mammographic CAD
based on pseudocolour
mammograms and
mask RCNN

INbreast morphological
filters

The DSI achieved for mass segmentation was 0.88Â ± 0.10, and GMs and mask
RCNN yielded an average TPR of 0.90Â ± 0.05.

2020
(68)

FrCN INbreast NA FrCN achieved an overall accuracy of 92.97%, 85.93% for MCC, 92.69% for Dice, and
86.37% for the Jaccard similarity coefficient.

2020
(69)

U-Net CBIS-DDSM,
INbreast,
UCHCDM, and
BCDR-01

adaptive
median filter

The U-Net model achieved a mean Dice coefficient index of 95.10% and a mean IOU
of 90.90%.

2020
(70)

cGAN INbreast median filter The cGAN achieved an accuracy of 98.0%, Dice coefficient of 88.0%, and Jaccard
index of 78.0%.

2020
(71)

cGAN DDSM
and INbreast

Morphological
operations

The proposed cGAN model achieved a Dice coefficient of 94.0% and an intersection
over union (IoU) of 87.0%

2020
(72)

mask RCNN and DeepLab MIAS and DDSM Savitzky
Golay filter

The mask RCNN achieved an AUC of 98.00%, DeepLab achieved an AUC of 95.00%.

2020
(73)

AUNet CBIS-DDSM
and INbreast

NA produced an average Dice similarity coefficient of 81.80% for CBIS-DDSM and 79.10%
for INbreast

2020
(74)

mask RCNN-FPN training on DDSM
and testing on the
INbreast database

NA The model achieved a mean average precision of 84.0% for multidetection and 91.0%
segmentation accuracy.

2020
(75)

U-Net DDSM NA The model achieved a sensitivity of 92.32%, specificity of 80.47%, accuracy of 85.95%,
Dice coefficient index of 79.39%, and AUC of 86.40%.

2021
(76)

modified CNN based on
U-Net model

DDSM-400 and
CBIS-DDSM

NA The method achieved a diagnostic performance of 89.8% and AUC of 86.20% based
on ground-truth segmentation maps and a maximum of 88.0% and 86.0% for U-Net-
based segmentation for DDSM-400 and CBIS-DDSM, respectively.

2021
(77)

deeply supervised U-Net DDSM
and INbreast

cLare filter The method achieved 82.70% of Dice, 85.70% of Jaccard coefficient, 99.70% accuracy,
83.10% sensitivity, and 99.80% specificity.

2021
(78)

modified U-Net MIAS, DDSM, and
CBIS-DDSM

NA The method achieved accuracy of 98.87%, AUC of 98.88%, sensitivity of 98.98%,
precision of 98.79%, and F1 score of 97.99% on the DDSM datasets

2023
(79)

Tubule-U-Net 30820 polygonal
annotated tubules
in 8225 patches

NA achieved 95.33%, 93.74%, and 90.02%, dice, sensitivity, and specificity
scores, respectively
F
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TABLE 4 DL-based mammography for breast tumor detection.

Reference Year Method Database Number
of
images

Accuracy AUC Sensitivity Specificity

(88) 2016 Deep CNN DDSM 600 96.7% NA NA NA

(89) 2016 AlexNet FFDM 607 NA 86% NA NA

(90) 2016 CNN BCDR-F03 736 NA 82% NA NA

(91) 2016 SNN UCI, DDSM NA 89.175%, 86% NA NA NA

(92) 2016 ML-NN ED(US) NA 98.98% 98% NA NA

(93) 2016 DBN ED(US-SW E) NA 93.4% 94.7% 88.6% 97.1%

(94) 2017 Deep CNN FFDM 3185 82% 88% 81% 72%

(95) 2017 CNN (COM) INbreast 115 95% 91% NA NA

(96) 2017 Deep CNN SFM, DM 2242 NA 82% NA NA

(97) 2017 CNN-CT IRMA 2796 83.74% 83.9% 79.7% 85.4%

(97) 2017 CNN-WT IRMA 2796 81.83% 83.9% 78.2% 83.3%

(98) 2017 VGG19 FFDM 245 NA 86% NA NA

(99) 2017 Custom CNN FFDM 560 NA 79% NA NA

(100) 2017 VGG16 IRMA 2795 100% 100% NA NA

(101) 2017 SNN DDSM 480 79.5% NA NA NA

(101) 2017 CNN (COM) MIAS,
CBIS-INBreast

NA 57% 77% NA NA

(96) 2017 Multitask DNN ED(Mg),
DD SM

1057
malignant,
1397 benign

82% NA NA NA

(102) 2017 CNN (COM) ED (HP) NA 95.9% (2
classes), 96.4%
(15 classes)

NA NA NA

(103) 2017 ImageNet BreakHis NA 93.2% NA NA NA

(104) 2018 GoogLeNet BCDR-F03 736 81% 88% NA NA

(104) 2018 AlexNet BCDR-F03 736 83% 79% NA NA

(104) 2018 Shallow CNN BCDR-F03 736 73% 82% NA NA

(105) 2018 Faster R-CNN INbreast 115 NA 95% NA NA

(105) 2018 Faster R-CNN DREAM 82,000 NA 85% NA NA

(106) 2018 ROI based CNN DDSM 600 97% NA NA NA

(107) 2018 Inception V3 DDSM 5316 97.35% ( ± 0.80) 98% NA NA

(107) 2018 Inception V3 INbreast 200 95.50% ( ± 2.00) 97% NA NA

(107) 2018 Inception V3 BCDR-F03 600 96.67% ( ± 0.85) 96% NA NA

(107) 2018 VGG16 DDSM 5316 97.12% ( ± 0.30) NA NA NA

(107) 2018 ResNet50 DDSM 5316 97.27% ( ± 0.34) NA NA NA

(108) 2018 Deep CNN MIAS 120 96.7% NA NA NA

(109) 2018 AlexNet, Transfer Learning University
of Pittsburgh

20,000 NA 98.82% NA NA

(110) 2018 Faster R-CNN DDSM,
INbreast &

2620,115,
847

NA 95% NA NA

(Continued)
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fully leverage the potential of DL in medical imaging, several

challenges must be addressed. One of the primary challenges is

the scarcity of data. DL algorithms require abundant, high-quality

data for effective training. Yet, acquiring medical imaging data is

often challenging, particularly for rare diseases or cases requiring

long-term follow-up. Furthermore, data privacy regulations and

concerns can further complicate the availability of medical imaging
Frontiers in Oncology 11
data. Another challenge lies in the quality of annotations. DL

algorithms typically demand substantial amounts of annotated

data for effective training. However, annotating medical imaging

data can be subjective and time-consuming, leading to issues with

annotation quality and consistency. This can significantly impact

the performance of deep learning algorithms, particularly when

accurate annotations are vital for diagnosing or treating specific
TABLE 4 Continued

Reference Year Method Database Number
of
images

Accuracy AUC Sensitivity Specificity

Semmelweis
University data

(111) 2018 CNN FFDM 78 NA 81% NA NA

(112) 2018 MV-DNN BCDR-F03 736 85.2% 89.1% NA NA

(113) 2018 Deep CNN MIAS 322 65% NA NA NA

(114) 2018 SDAE ED (HP) 58 98.27% (Benign),
90.54%
(Malignant)

NA 97.92%
(Benign),
90.17%
(Malignant)

NA

(115) 2018 CNN (UDM) BreakHis NA 96.15%, 98.33%
(2 Classes),
83.31-88.23%
(8 Classes)

NA NA NA

(116) 2018 CNN-CH BreakHis 400× (×
represents
magnificati
on factor)

96% NA 97.79% 90.16%

(116) 2018 CNN-CH BreakHis 400× (×
represents
magnificati
on factor)

97.19% NA 98.20% 94.94%

(117) 2019 CNN DDSM 190 93.24% NA 91.92% 91.92%

(117) 2019 CNN based LBP DDSM 190 96.32% 97% 96.81% 95.83%

(118) 2020 InceptionV3 DDSM 2620 79.6% NA 89.1% NA

(118) 2020 ResNet 50 DDSM 2620 85.7% NA 87.3% NA

(119) 2020 ResNet50 DDSM patch 10713 75.1% NA NA NA

(119) 2020 Mobile Net DDSM patch 10713 77.2% NA NA NA

(119) 2020 MVGG16 DDSM patch 10713 80.8% NA NA NA

(119) 2020 MVGG16 + ImageNet DDSM patch 10713 88.3% 93.3% NA NA

(71) 2020 GAN and CNN DDSM 292 80% 80% NA NA

(120) 2021 Optimal Multi-Level Thresholding-
based Segmentation with DL
enabled Capsule Network
(OMLTS-DLCN)

Mini-MIAS
dataset and
DDSM dataset

NA 98.5% for Mini-
MIAS, 97.55%
for DDSM

NA NA NA

(121) 2021 Inception-ResNet-V2 BreastScreen
Victoria dataset

28,694 0.8178 0.8979 NA NA

(122) 2021 AI-powered imaging biomarker 2,058 NA 0.852 NA NA

(123) 2022 DualCoreNet DDSM NA NA 0.85 NA NA

(123) 2022 DualCoreNet INbreast NA NA 0.93 NA NA
N/A, Not Applicate.
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conditions. Additionally, imbalanced classes pose another challenge

in medical imaging.

In numerous instances, the occurrence of certain states may be

relatively low, which can result in imbalanced datasets that have a

detrimental effect on the performance of DL algorithms. This situation

can pose a significant challenge, especially for rare diseases or

conditions with limited data availability. Another crucial concern in

medical imaging is the interpretability of models. Although DL

algorithms have showcased remarkable performance across various
Frontiers in Oncology 12
medical imaging tasks, the lack of interpretability in these models can

hinder their adoption. Clinicians frequently necessitate explanations for

the predictions made by these algorithms in order to make informed

decisions, but the opacity of DL models can make this task arduous.

Data privacy is a paramount concern in medical imaging. Medical

images encompass confidential patient information, stringent

regulations dictate the utilization and dissemination of such data.

The effective training of DL necessitates substantial access to

extensive medical imaging data, thereby introducing challenges
TABLE 5 DL-based mammography for breast tumor classification.

Reference Year Method Database Number
of images

Accuracy AUC Sensitivity Precision F1-
Score

(95) 2017 Transfer learning,
Random Forest

INbreast 108 90% NA 98% 70% NA

(124) 2018 Deep
GeneRAtive Multitask

CBIS-DDSM NA 89% 0.884 NA NA NA

(125) 2019 VGG, Residual Network CBIS-DDSM NA NA NA 86.10% 80.10% NA

(126) 2019 DCNN, Alexnet CBIS-DDSM 1696 75.0% 0.80 NA NA NA

(127) 2019 MA-CNN MIAS 322 96.47% 0.99 96.00% NA NA

(128) 2019 DCNN, MSVM MIAS 322 96.90% 0.99 NA NA NA

(129) 2019 CNN
Improvement
(CNNI-BCC)

MIAS NA 90.50% 0.90 89.47% 90.71% NA

(130) 2020 MobileNet, VGG, Resnet,
Xception

CBIS-DDSM 1696 84.4% 0.84 NA NA 85.0%

(131) 2020 MobilenetV1, MobilenetV2 CBIS-DDSM 1696 74.5% NA NA 70.00% 76.00%

(132) 2020 DE-Ada* CBIS-DDSM NA 87.05% 0.9219 NA NA NA

(133) 2020 AlexNet MIAS 68 98.53% 0.98 100% 97.37% 98.3%

(133) 2020 GoogleNet MIAS 68 88.24% 0.94 80% 94.74% 85.71%

(134) 2020 Inception ResNet V2 INbreast 107 95.32% 0.95 NA NA NA

(132) 2020 De-ada* INbreast NA 87.93% 0.9265 NA NA NA

(135) 2021 CNN CBIS-DDSM 1592 91.2% 0.92 92.31% 90.00% 91.76%

(136) 2021 MobilenetV2, Nasnet
Mobile, MEWOM

CBIS-DDSM 1696 93.8% 0.98 93.75% 93.80% 93.77%

(137) 2021 ResNet-18, (ICS-ELM) MIAS 322 98.13% NA NA NA NA

(135) 2021 CNN MIAS 322 93.39% 0.94 92.72% 94.12% 93.58%

(136) 2021 Mobilenet V2 & NasNet
Mobile,
MEWOA

MIAS 300 99.80% 1.00 99.00% 99.33% 99.16%

(137) 2021 ResNet-18, (ICS-ELM) INbreast 179 98.26% NA NA NA NA

(135) 2021 CNN INbreast 387 93.04% 0.94 94.83% 91.23% 93.22%

(136) 2021 Fine-tuned MobilenetV2,
Nasnet, MEWOM

INbreast 108 99.7% 1.00 99.0% 99.0% 99.0%

(123) 2022 DualCoreNet CBIS-DDSM NA NA 0.85
± 0.021

NA NA NA

(138) 2022 CNN
classifier with
different fine-tuning

DDSM 13128 99.96% 1.00 100% 99.92% 99.96%
front
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concerning data privacy and security. Additionally, computational

resources pose another challenge in the realm of medical imaging.

DL algorithms mandate substantial computational resources for the

effective training and of models. This predicament can prove

particularly troublesome in medical imaging, given the size and

intricacy of medical images, which can strain computing resources.

DL algorithms can be vulnerable to adversarial attacks, where small

perturbations to input data can cause significant changes in the model’s

output. This can be particularly problematic for medical imaging,

where even small changes to an image can have substantial

implications for diagnosis and treatment.

Several potential strategies can be employed to address these

challenges effectively. One approach involves the development of

transfer learning techniques, enabling DL models to be trained on

smaller datasets by leveraging information from related tasks or

domains. This approach holds particular promise in medical

imaging, where data scarcity poses a significant obstacle. Another

approach involves placing emphasis on the development of annotation

tools and frameworks that enhance the quality and consistency of

annotations. This becomes important in cases where annotations play a

critical role in diagnosing or treating specific conditions. Furthermore,

improved data sharing and collaboration between institutions can

help alleviate both data scarcity and privacy concerns. By pooling

resources and sharing data, it becomes feasible to construct more

extensive and diverse datasets that can be employed to train DLmodels

with greater effectiveness. Additionally, enhancing the interpretability

of DL models in medical imaging techniques stands as another critical

area of research. The development of explainable AI techniques can

provide clinicians with valuable insights into the underlying factors

contributing to a model’s predictions. Lastly, bolstering the robustness

of DL models constitutes a crucial focal point. This entails exploring

adversarial training techniques, as well as leveraging ensemble methods

and other strategies to enhance the overall robustness and

generalizability of DL models.

DL techniques have the potential to revolutionize medical

imaging. However, to fully leverage this potential, it is crucial to

address several challenges. These challenges encompass data scarcity,

annotation quality, imbalanced classes, model interpretability, data

privacy, computational resources, and algorithm robustness. By

prioritizing strategies to tackle these challenges, it becomes possible

to develop DL models that are more effective and reliable for various

medical imaging applications.
Frontiers in Oncology 13
6 Conclusion

This paper examines the recent advancements in DL-based

mammography for breast cancer screening. The authors have

investigated the potential of DL techniques in enhancing the

accuracy and efficiency of mammography. Additionally, they

address the challenges that need to be overcome for the successful

adoption of DL techniques in clinical practice.
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110. Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying
lesions in mammograms with deep learning. Sci Rep (2018) 8(1):4165. doi: 10.1038/
s41598-018-22437-z

111. Mendel K, Li H, Sheth D, Giger M. Transfer learning from convolutional neural
networks for computer-aided diagnosis: a comparison of digital breast tomosynthesis
and full-field digital mammography. Acad Radiol (2019) 26(16):735–43. doi: 10.1016/
j.acra.2018.06.019

112. Wang H, Feng J, Zhang Z, Su H, Cui L, He H, et al. Breast mass classification via
deeply integrating the contextual information from multi-view data. Pattern Recognit
(2018) 80:42–52. doi: 10.1016/j.patcog.2018.02.026

113. Charan S, KhanMJ, Khurshid K. (2018). Breast cancer detection inmammograms
using convolutional neural network. In:Proceedings of the 2018 international conference on
computing, mathematics and engineering technologies (iCoMET). Sukkur, Pakistan: IEEE
(2018). pp. 1–5. doi: 10.1109/ICOMET.2018.8346384

114. Feng Y, Zhang L, Yi Z. Breast cancer cell nuclei classification in histopathology
images using deep neural networks. Int J Comput Assist Radiol Surg (2018) 13(2):179–
91. doi: 10.1007/s11548-017-1663-9

115. Bardou D, Zhang K, Ahmad SM. Classification of breast cancer based on
histology images using convolutional neural networks. IEEE Access (2018) 6: 24680–93.
doi: 10.1109/access.2018.2831280

116. Nahid AA, Kong Y. Histopathological breast-image classification using local
and frequency domains by convolutional neural network. Inf (Switzerland) (2018) 9
(1):19. doi: 10.3390/info9010019

117. Touahri R, AzizI N, Hammami NE, Aldwairi M, Benaida F. (2019). Automated
breast tumor diagnosis using local binary patterns (LBP) based on deep learning
classification. In: Proceedings of the 2019 international conference on computer and
information sciences (ICCIS). Sakaka, Saudi Arabia: IEEE (2019). pp. 1–5. doi: 10.1109/
ICCISci.2019.8716428

118. Abdel Rahman AS, Belhaouari SB, Bouzerdoum A, Baali H, Alam T, Eldaraa
AM. (2020). Breast mass tumor classification using deep learning. In: Proceedings of the
Frontiers in Oncology 16
2020 IEEE international conference on informatics, iot, and enabling technologies
(ICIoT). Doha, Qatar: IEEE (2020). pp. 271–6. doi: 10.1109/ICIoT48696.2020.9089535

119. Khamparia A, Khanna A, Thanh DNH, Gupta D, Podder P, Bharati S, et al.
Diagnosis of breast cancer based on modern mammography using hybrid transfer
learning. Multidim Syst Sign Process (2021) 32:747–65. doi: 10.1007/s11045-020-00756-7

120. Kavitha T, Mathai PP, Karthikeyan C, Ashok M, Kohar R, Avanija J, et al. Deep
learning based capsule neural network model for breast cancer diagnosis using
mammogram images. Interdiscip Sci Comput Life Sci (2022) 14:113–29. doi: 10.1007/
s12539-021-00467-y

121. Frazer HM, Qin AK, Pan H, Brotchie P. Evaluation of deep learning-based
artificial intelligence techniques for breast cancer detection on mammograms: results
from a retrospective study using a breastscreen victoria dataset. J Med Imaging Radiat
Oncol (2021) 65(5):529–37. doi: 10.1111/1754-9485.13278

122. Kim KH, Nam H, Lim E, Ock CY. Development of AI-powered imaging
biomarker for breast cancer risk assessment on the basis of mammography alone. J Clin
Oncol (2021) 39(15):10519–9. doi: 10.1200/JCO.2021.39.15_suppl.10519

123. Li H, Chen D, Nailon WH, Davies ME, Laurenson DI. Dual convolutional
neural networks for breast mass segmentation and diagnosis in mammography. IEEE
Trans Med Imaging (2022) 41(1):3–13. doi: 10.1109/TMI.2021.3102622

124. Shams S, Platania R, Zhang J, Kim J, Lee K, Park SJ. (2018). Deep generative
breast cancer screening and diagnosis. In: Proceedings of the international conference on
medical image computing and computer-assisted intervention, Granada, Spain.
Granada, Spain: Springer (2018). 11071:859–67. doi: 10.1007/978-3-030-00934-2_95

125. Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep
learning to improve breast cancer detection on screening mammography. Sci Rep
(2019) 9:1–12. doi: 10.1038/s41598-019-48995-4

126. Tsochatzidis L, Costaridou L, Pratikakis I. Deep learning for breast cancer
diagnosis from mammograms—A comparative study. J Imaging (2019) 5:37. doi:
10.3390/jimaging5030037

127. Agnes SA, Anitha J, Pandian SIA, Peter JD. Classification of mammogram
images using multiscale all convolutional neural network (MA-CNN) J. Med Syst
(2020) 44:1–9. doi: 10.1007/s10916-019-1494-z

128. Kaur P, Singh G, Kaur P. Intellectual detection and validation of automated
mammogram breast cancer images by multi-class SVM using deep learning
classification. Inform Med Unlocked (2019) 16:100151. doi: 10.1016/j.imu.2019.01.001

129. Ting FF, Tan YJ, Sim KS. Convolutional neural network improvement for
breast cancer classification. Expert Syst Appl (2019) 120:103–15. doi: 10.1016/
j.eswa.2018.11.008

130. Falconi LG, Perez M, Aguilar WG, Conci A. Transfer learning and fine tuning
in breast mammogram abnormalities classification on CBIS-DDSM database. Adv Sci
Technol Eng Syst (2020) 5:154–65. doi: 10.25046/aj050220

131. Ansar W, Shahid AR, Raza B, Dar AH. Breast cancer detection and localization
using mobilenet based transfer learning for mammograms. In: International
symposium on intelligent computing systems. Sharjah, United Arab Emirates:
Springer, Cham (2020) 1187:11–21. doi: 10.1007/978-3-030-43364-2_2

132. Zhang H, Wu R, Yuan T, Jiang Z, Huang S, Wu J, et al. DE-Ada*: A novel
model for breast mass classification using cross-modal pathological semantic mining
and organic integration of multi-feature fusions. Inf Sci (2020) 539:461–86. doi:
10.1016/j.ins.2020.05.080

133. Shayma'a AH, Sayed MS, Abdalla MI, Rashwan MA. Breast cancer masses
classification using deep convolutional neural networks and transfer learning.
Multimed Tools Appl (2020) 79:30735–68. doi: 10.1007/s11042-020-09518-w

134. Al-Antari MA, Han SM, Kim TS. Evaluation of deep learning detection and
classification towards a computer-aided diagnosis of breast lesions in digital X-ray
mammograms. Comput Methods Programs Biomed (2020) 196:105584. doi: 10.1016/
j.cmpb.2020.105584

135. El Houby EM, Yassin NI. Malignant and nonmalignant classification of breast
lesions in mammograms using convolutional neural networks. Biomed Signal Process
Control (2021) 70:102954. doi: 10.1016/j.bspc.2021.102954

136. Zahoor S, Shoaib U, Lali IU. Breast cancer mammograms classification using
deep neural network and entropy-controlled whale optimization algorithm. Diagnostics
(2022) 12(2):557. doi: 10.3390/diagnostics12020557

137. Chakravarthy SS, Rajaguru H. Automatic detection and classification of
mammograms using improved extreme learning machine with deep learning. IRBM
(2021) 43:49–61. doi: 10.1016/j.irbm.2020.12.004

138. Mudeng V, Jeong JW, Choe SW. Simply fine-tuned deep learning-based
classification for breast cancer with mammograms. Comput Mater Contin (2022) 73
(3):4677–93. doi: 10.32604/cmc.2022.031046
frontiersin.org

https://doi.org/10.3233/XST-16226
https://doi.org/10.1109/ICSIPA.2017.8120660
https://doi.org/10.1016/j.bbe.2017.01.001
https://doi.org/10.1016/j.patcog.2017.05.010
https://doi.org/10.1016/j.patcog.2017.05.010
https://doi.org/10.1088/1361-6560/aa82ec
https://doi.org/10.1007/s11431-017-9317-3
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.1016/j.cmpb.2018.01.017
https://doi.org/10.1016/j.cmpb.2018.01.011
https://doi.org/10.1016/j.patcog.2017.07.008
https://doi.org/10.1002/mp.12683
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.1038/s41598-018-22437-z
https://doi.org/10.1016/j.acra.2018.06.019
https://doi.org/10.1016/j.acra.2018.06.019
https://doi.org/10.1016/j.patcog.2018.02.026
https://doi.org/10.1109/ICOMET.2018.8346384
https://doi.org/10.1007/s11548-017-1663-9
https://doi.org/10.1109/access.2018.2831280
https://doi.org/10.3390/info9010019
https://doi.org/10.1109/ICCISci.2019.8716428
https://doi.org/10.1109/ICCISci.2019.8716428
https://doi.org/10.1109/ICIoT48696.2020.9089535
https://doi.org/10.1007/s11045-020-00756-7
https://doi.org/10.1007/s12539-021-00467-y
https://doi.org/10.1007/s12539-021-00467-y
https://doi.org/10.1111/1754-9485.13278
https://doi.org/10.1200/JCO.2021.39.15_suppl.10519
https://doi.org/10.1109/TMI.2021.3102622
https://doi.org/10.1007/978-3-030-00934-2_95
https://doi.org/10.1038/s41598-019-48995-4
https://doi.org/10.3390/jimaging5030037
https://doi.org/10.1007/s10916-019-1494-z
https://doi.org/10.1016/j.imu.2019.01.001
https://doi.org/10.1016/j.eswa.2018.11.008
https://doi.org/10.1016/j.eswa.2018.11.008
https://doi.org/10.25046/aj050220
https://doi.org/10.1007/978-3-030-43364-2_2
https://doi.org/10.1016/j.ins.2020.05.080
https://doi.org/10.1007/s11042-020-09518-w
https://doi.org/10.1016/j.cmpb.2020.105584
https://doi.org/10.1016/j.cmpb.2020.105584
https://doi.org/10.1016/j.bspc.2021.102954
https://doi.org/10.3390/diagnostics12020557
https://doi.org/10.1016/j.irbm.2020.12.004
https://doi.org/10.32604/cmc.2022.031046
https://doi.org/10.3389/fonc.2024.1281922
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Mammography with deep learning for breast cancer detection
	1 Introduction
	2 Medical imaging techniques for breast cancer detection
	2.1 Mammography
	2.2 Digital breast tomosynthesis
	2.3 Ultrasound
	2.4 Magnetic resonance imaging
	2.5 Positron emission tomography

	3 Deep learning-based mammography techniques
	4 Breast cancer prediction using deep learning
	4.1 Data preprocessing techniques and evaluation
	4.1.1 Preprocessing techniques
	4.1.2 Performance metrics

	4.2 Datasets
	4.3 Breast lesion segmentation
	4.4 Deep learning approaches in mammography for breast lesion detection and classification

	5 Challenges and future research directions
	6 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


