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Oropharyngeal cancer (OPC) poses a complex therapeutic dilemma for patients

and oncologists alike, made worse by the epidemic increase in new cases

associated with the oncogenic human papil lomavirus (HPV). In a

counterintuitive manner, the very thing which gives patients hope, the high

response rate of HPV-associated OPC to conventional chemo-radiation

strategies, has become one of the biggest challenges for the field as a whole.

It has now become clear that for ~30-40% of patients, treatment intensity could

be reduced without losing therapeutic efficacy, yet substantially diminishing the

acute and lifelong morbidity resulting from conventional chemotherapy and

radiation. At the same time, conventional approaches to de-escalation at a

population (selected or unselected) level are hampered by a simple fact: we

lack patient-specific information from individual tumors that can predict

responsiveness. This results in a problematic tradeoff between the deleterious

impact of de-escalation on patients with aggressive, treatment-refractory

disease and the beneficial reduction in treatment-related morbidity for patients

with treatment-responsive disease. True precision oncology approaches require

a constant, iterative interrogation of solid tumors prior to and especially during

cancer treatment in order to tailor treatment intensity to tumor biology. Whereas

this approach can be deployed in hematologic diseases with some success, our

ability to extend it to solid cancers with regional metastasis has been extremely

limited in the curative intent setting. New developments in metabolic imaging

and quantitative interrogation of circulating DNA, tumor exosomes and whole

circulating tumor cells, however, provide renewed opportunities to adapt and

individualize even conventional chemo-radiation strategies to diseases with

highly variable biology such as OPC. In this review, we discuss opportunities to

deploy developing technologies in the context of institutional and cooperative

group clinical trials over the coming decade.
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Introduction

OPC incidence is increasing

With more than 63,000 cases annually in the US, head and neck

cancer (HNC) represents a significant health burden (1). The

epidemic increase in human papillomavirus (HPV)-associated

HNC will dramatically increase this burden over the coming

decades. Given the epidemiologic shift toward HPV-mediated

diseases and lagging vaccination rates, the rise in HNC incidence

is projected to not begin to abate until the 2050s. The US healthcare

system will need to accommodate medical conditions related to

HNC and HNC treatment for well over 4 million patients projected

to be diagnosed between 2000 and 2060 (2). Previously a relatively

rare entity, HNC was primarily attributable to tobacco and alcohol

exposure and was predominantly a disease of elderly male patients

(3, 4). The rise in HPV-associated HNC (3, 5) affects most age

groups and crosses gender and racial/ethnic barriers (6). Long

known to be a cause of cervical, penile, and anal cancer (7–9),

HPV has been shown to be the primary driver of the increase in

HNC diagnoses particularly for the oropharynx site (OPC).

Preclinical and clinical studies have now conclusively linked HPV

to OPC tumorigenesis in a majority of new diagnoses in the United

States, with an increasing incidence across much of the world

(10–19).
Survival is highly variable

The shift toward HPV-associated disease was accompanied by

the first significant improvements in HNC treatment response and

survival in the last 50 years of clinical research and medicine. First

brought to light by the landmark retrospective analysis of RTOG

0129 by Ang et al. (10), HPV-associated OPC demonstrates a

drastically improved survival compared to its HPV-independent

counterpart. At a population level, younger OPC patients, without a

history of tobacco exposure and early T-stage tumors were shown to

have a significantly improved survival in the early 2000s compared

to the previous half century (3). Despite these promising shifts in

survival, the same analysis showed that a subset of OPC patients

continues to demonstrate poor disease free and overall survival,

consistent with historical data, despite application of new

therapeutic strategies (3, 10).

Following a decade of clinical trial and retrospective data

analysis, the AJCC Staging Manual received a significant update

in its 8th Edition, with a dichotomization of OPC into HPV-

associated and HPV-independent disease, and a concomitant

reduction in stage in the context of HPV-associated OPC meant

to more accurately reflect the improved survival of patients with

what in the past would have been considered Stage II-III and even

Stage IV disease (20). The newest large scale clinical trials

conducted in OPC, including RTOG1016 and De-ESCALaTE

confirmed that the survival parameters for HPV-associated OPC

had indeed shifted critically compared to historical data (21, 22).
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This improvement in survival, predicated on an excellent

response to conventional radiation and chemotherapy strategies

in a large subset of HPV-associated OPC has given hope to patients

and clinicians alike, given the prevailing failures to improve HNC

survival over previous decades. Yet at the same time, the same

improvement in survival has drastically complicated the clinical

management of the disease, at a time when its increasing incidence

is exacerbating potential errors in an exponential fashion. Although

as a group, HPV-associated OPC patients do well compared to their

HPV-independent OPC counterparts, this effect is not uniform.

There remains considerable heterogeneity in HPV-associated OPC

response to treatment. Among Veterans with high rates of heavy

tobacco exposure, survival for HPV-associated OPC remains lower

compared to non-smokers by approximately 20% (4, 23) in line

with the Ang et al. intermediate-risk rates (4, 24). These

characteristics are conserved in both white and black patients,

resulting in similar disease behavior and oncologic outcomes (25).

Re-analyzed data from RTOG 0129 and RTOG 0522 demonstrated

that the overall (OS) and progression free survival (PFS) rates for

low-, intermediate- and high-risk OPC patients persisted with a

difference in PFS between low- and intermediate- risk groups of

over 15% (26). Our recent analysis of over 600 OPC patients treated

in the modern era showed that heavy tobacco exposure reduced

survival by the same amount as a shift in disease stage of 1 (e.g.,

stage I migrated to stage II) (27), in line with data published earlier

by Vawda et al. (28).

Whereas some risk factors (e.g., tobacco) portend inferior

survival in a subset of HPV-associated OPC patients, there is

increasing evidence that a subset of HPV-associated OPC patients

demonstrates excellent response to chemo-radiation. A recent

analysis of over 1000 HPV-associated OPC patients showed that

low levels of multinucleation identified on analysis of pre-treatment

biopsy specimens were associated with dramatic improvements in

overall, disease free and distant metastasis free survival, with hazard

ratios ranging from 1.78 to 1.94 (29). In parallel, even when the

analysis is restricted by stage, as was done by our collaborative

group in a cohort of 439 stage I patients, infiltrative lymphocyte

levels can drive further stratification of survival with hazard ratios

>2.0 (30).

Together these data indicate that new HPV-associated OPC

patients cannot be expected to demonstrate uniform response to

chemo-radiation and thus equivalent survival. Furthermore, there is

no evidence that this divergent survival is likely to change over the

coming decades due to significant shifts in treatment paradigms.

Surgery has not replaced radiation for most patients and there is no

evidence that post-treatment function will be better with surgery

(31–33). Targeted agents are inferior to conventional chemotherapy

and no less toxic (21, 22). Immunotherapy has not yet

demonstrated utility in the definitive, frontline setting for HNC

and thus will be unlikely to replace conventional chemotherapy as a

radiosensitizer in the near future (34). The only viable option to

achieve a precision oncology approach that appropriately balances

treatment effectiveness and toxicity is to maximize separation of

patients into high-risk and low-risk groups.
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Limitations to conventional
risk stratification

Although largely self-evident, it remains important to

understand why it is critical that we accurately risk-stratify OPC

patients. Standard NCCN guidelines for OPC treatment include

definitive external beam radiation (EBRT) regimens (66-70Gy) or

surgical resection followed by adjuvant EBRT with a slight

reduction in dose based on pathologic features of the disease and

conventional chemotherapy with cisplatin being the current

standard of care (21, 22). As indicated above, these conventional

approaches are extremely effective in a majority of HPV-associated

OPC patients but they carry significant acute toxicity and the

potential for life-long debilitating morbidity (e.g., chronic renal

insufficiency, peripheral neurotoxicity, chronic aspiration, lower

cranial nerve neuropathies) (35–43). There is currently no

definitive evidence that we can safely shift away from current

NCCN guidelines for HPV-associated OPC disease as a whole.

Omission of cisplatin has not been shown to be safe at a population

level prospectively (HN002) (44) and direct replacement of cisplatin

with cetuximab has failed in 2 prospective clinical trials (21, 22).

Replacement of cisplatin with immune checkpoint inhibitors does

not appear to be on the horizon for at least another decade based on

the most recent negative clinical trial data (34). Altered

fractionation regimens designed to reduce EBRT toxicity have

been investigated for over 3 decades without a significant impact,

although IMRT has indeed greatly reduced toxicity over previous

EBRT delivery approaches (35). Dose de-escalation appears

promising in very select patients, but has not yet been shown to

be safe across the broader HPV-associated OPC population in large

randomized clinical trials. Incorporation of surgery into treatment

paradigms for OPC has shown promise as it relates to risk

stratification and tailoring adjuvant treatment to disease burden.

In EA3311, investigators were able to show that patients deemed

intermediate-risk based on surgical pathologic parameters could

receive a reduced dose of adjuvant radiation of 50Gy without a clear

decrease in treatment efficacy as measured using progression free

survival (PFS) (45).

Recurrence from HPV-associated OPC is deadly; no less so

compared to that from HPV-independent disease. Salvage with

surgery, re-irradiation or systemic treatment fails in >60% of

recurrent disease patients (46–49). Taken together, the severe

toxicity from current treatment regimens and the nearly uniform

fatality of recurrent disease create a Hobson’s choice for patients

and a difficult balancing act for oncologists. Reducing treatment

intensity at a population level will undoubtedly result in more

recurrences yet failure to reduce treatment intensity will result in

overtreatment and unnecessary toxicity in a large fraction of the

OPC population. Importantly, some of this toxicity will translate

into treatment related mortality (e.g., aspiration), making the need

for accurate risk-stratification of OPC patients critical.

Conventional risk stratification has been standard for HNC ever

since the first introduction of TNM classification and has continued

throughout the 8 editions of the AJCC Staging Manual. That

conventional risk stratification is clinically useful is evidenced by

the significant divergence of survival by disease stage across tens of
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thousands of treated patients; that incorporation of HPV status into

OPC staging has been impactful is similarly made plain by both

prospective and retrospective datasets (10, 11, 21, 27, 46, 50). Yet at

the same time, conventional risk stratification has had a modest

impact on our ability to develop treatment regimens better tailored

to disease biology. Whereas positive margins and extra-nodal

extension (ENE) were shown to be useful in assigning patients to

treatment escalation with the addition of conventional

chemotherapy in the adjuvant setting, their utility in the setting

of HPV-associated disease may be more limited (47). For aggressive,

advanced-stage disease, attempted escalation with induction

chemotherapy failed to improve survival in the PARADIGM and

DECIDE trials (51, 52), and in a recent in-depth retrospective

analysis appeared to be associated with reduced survival in OPC

patients (53). As mentioned above, changing from cisplatin to

cetuximab, a drug assumed to be more tolerable and thus better

suited for the lower risk HPV-associated OPC population failed to

maintain adequate survival in both RTOG1016 (which included

intermediate-risk OPC) and De-ESCALaTE (which included

exclusively low-risk OPC) trials (21). HN002 concluded that

although a modest reduction in EBRT dose was safe, the omission

of cisplatin could not be deemed safe even in non-smokers with

HPV-associated OPC (low-risk OPC) (44).

One limitation of conventional risk stratification is that it

requires very large signals (difference in survival), very large

cohorts or both. An excellent example of this is the initial Ang

et al. study in which HPV-associated OPC demonstrated ~75%

survival at 2 years compared to HPV-independent OPC patients

which demonstrated ~30% survival at 2 years, with HPV-associated

smokers essentially in the middle (10). These very large differences

have persisted in retrospective analysis across multiple cohorts and

are reproduced in the aggregate when data from RTOG1016 and

De-ESCALaTE are analyzed head to head. Despite decades of

investigation, no other biological variable in HNC has

demonstrated such dramatic stratifying effects (e.g., TP53) across

multiple prospective and retrospective cohorts and thus, no other

biological variables are included in the AJCC staging or considered

in NCCN guidelines for HNC treatment generally. Effect sizes from

shifts in treatment are similarly small. When averaged over tens of

thousands of patients, the effect size for adding conventional

chemotherapy to radiation in the definitive setting results in

merely a 7-8% improvement in survival in the latest MACH-NC

analysis, yet its elimination in the setting of low risk disease has not

been shown to be safe (54). For decades, nodal metastasis was

considered one of the most compelling predictors of survival in

HNC, and indeed for HPV-independent disease it remains so as was

recently show in oral cavity disease (47). In contrast, HPV-

associated OPC demonstrates excellent survival even when nodal

metastasis is present, which resulted in the substantial down-staging

of tumors with significant nodal disease in the 8th edition of the

AJCC Staging Manual (20).

A second limitation of conventional risk stratification is a

fundamental lack of knowledge - we simply don’t know what we

don’t know. Decades were required to properly observe the

presence of, measure the impact for, and develop risk

stratification based on, HPV status alone in OPC. More recent
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work from us and others has now identified other potential

stratifiers for treatment response and survival, including

multinucleation, infiltration of tumors by cytotoxic immunocytes,

the presence of complex immune frameworks in a subset of OPC

tumors and differential tumor mutational burden (30, 46, 55, 56).

Yet none of these potential risk-stratification markers are fully

proven, and it is unlikely that they would be incorporated into

staging and used for treatment de-intensification without extensive

prospective testing.

One critical limitation to incorporating biologically specific

biomarkers into risk stratification algorithms stems from the

potential for false negative findings. Many individual genomic

events (e.g., TP53 mutation, KEAP1 mutation) can be quite rare

depending on the subtype of OPC and thus most retrospective and

prospective institutional datasets and even cooperative group trial

cohorts will be underpowered to truly examine their risk

stratification potential. The need to develop large cohorts, with

comprehensive clinical data and appropriate matching tissue has

now been recognized by investigators and funding agencies alike

(e.g., National Institute of Dental and Craniofacial Research).
Risk-stratification and therapeutic
response drivers

Many aspects of tumor biology can confer “risk” as manifested

by reduced survival. However, only those biological events which

drive treatment response can really inform our ability to modulate

existing therapeutic strategies in a meaningful way to reduce

toxicity or improve overall response. In breast cancer and

prostate cancer, hormonal receptor status is utilized to

characterize the disease because it fundamentally influences

response to hormonal blockade (57, 58). In melanoma and to a

lesser degree in thyroid carcinoma, BRAF mutational status is a

critical biomarker because it predicts response to a specific

treatment, namely BRAF +/- MEK inhibition. Unlike in these

diseases, and multiple other examples in adjacent solid tumors

(e.g., lung cancer) (59, 60), HNC broadly and OPC in particular

manifests few, if any, examples of biologically consistent drivers of

response to chemotherapy and radiation which can be used to

mechanistically inform modulation of therapy, especially de-

escalation strategies.

Even within the context of HPV-driven disease, the superior

response of disease to conventional chemotherapy and radiation

remains unclear. Some speculate that maintenance of a wild-type

TP53 status allows for activation of the tumor suppressor under

oxidative stress conditions (e.g., during treatment) and may explain

the improved response rate (61). Others, including us, believe that an

improved tumor immune micro-environment (i.e., enriched for

functional immunocytes) may somehow result in an improved

response, although this is somewhat mechanistically unclear since

HPV-associated tumors do not demonstrate a substantially better

response to immune checkpoint inhibitors compared to their HPV-

independent counterparts (46, 62, 63). Another subset of

investigators suggest that higher levels of oncogene-driven
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easily activate programmed cell death pathways (61) or that non-

canonical p16 signalingmay be key to enhanced radiation response in

this disease subset (64). The fact that we cannot consistently explain

WHY HPV-associated OPC responds better to radiation (with or

without chemotherapy) provides a clear impediment to a logical

escalation or de-escalation strategy for this patient population.

Whereas HPV oncogenic infections and their downstream impact

on intra-cellular tumor suppressors and signaling cascades have been

studied for years, some of the more recent pathomic and radiomic

features correlated with improved survival in HPV-associated disease

have never been mechanistically explored and thus are highly

unlikely to really impact treatment intensity decisions for the near

future without extensive preclinical and clinical investigation.

This limitation also applies to what many consider the

treatment of the future, namely immunotherapy in the form of

immune checkpoint inhibitors (ICIs). Starting with CheckMate141

and followed by Keynote048, ICIs have now demonstrated

meaningful activity in HNC broadly and OPC specifically in the

recurrent metastatic disease setting (63, 65). However, their use has

encountered some of the same difficulties experienced when trying

to improve upon the radiation vs surgery +/- conventional

chemotherapy approach with targeted agents (e.g., cetuximab) or

conventional induction chemotherapy in previous decades:

treatment optimization. Combinatorial therapy studies have failed

in the definitive upfront setting to date (e.g., JAVELIN Head and

Neck 100) (34). In part, this is likely driven by the same limitation

we face with conventional treatment. We have no predictive

biomarker of ICI response in HNC or OPC specifically. PDL1

status although utilized, is far from being informative enough to

further optimize utilization beyond the dichotomous chemotherapy

versus no chemotherapy decision point. More sophisticated

transcriptomic approaches published in recent years (e.g., TGEP)

or our pathomic approaches (MuNI, OP-TIL) remain far from

being prospectively validated and even with validation they remain

poorly linked mechanistically to ICI effects (29, 30, 66, 67). It is also

important to note, that immunotherapy in the form of existing ICIs,

is not quite as benign as was initially hoped. Significant levels of

immunotherapy-related adverse events (irAEs) have been reported

in non-small cell lung cancer (NSCLC) (68, 69), melanoma (70) and

HNSCC (71) especially when multiple ICIs are combined.

Particularly problematic is the consistent observation that ICI

toxicity and effectiveness are extremely correlated suggesting a

substantial hurdle to ICI deployment for HNSCC particularly

when combined with other toxic regimens/treatments.
Adaptive risk stratification

In the second half of the last century, John Boyd introduced

the OODA (observe, orient, decide, act) loop concept, first in the

context of military conflict and then more generally in the context

of human behavior and interaction. Conventional risk stratification

for cancers has optimized the utilization of the OODA concept,

even more so with the revolution in genomic, transcriptomic and
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proteomic characterization of tumors. However, a key component

of Boyd’s approach to action was the loop itself, the iterative and

ever informative nature of a repetitive cycle. Modern risk

stratification runs the loop once; after the decision to act is made,

no further information is easily available to the oncologist until the

complete course of chemo-radiation runs its course. This approach

violates basic principles of biology, which is adaptive in the setting

of exogenous stress (particularly in highly flexible cancer cells) in

addition to reducing the proven benefits of the loop. Oncologists are

not to blame for this failure. The failure stems from the difficulties

of obtaining new information from solid tumors that are

meaningful, actionable, and timely. Yet new techniques are being

increasingly deployed which may make this a reality in the not-too-

distant future.

In addition to the difficulties associated with conventional risk

stratification outlined above, conventional risk-stratification suffers

from a fatal flaw. It is static; it ignores the effect of the treatment itself

which can manifest in many ways. Radiation can impact ICI response

through local destruction of immunocytes. Chemotherapy can

impact ICI effectiveness through systemic myelosuppression. Both

can generate significant shifts in tumor biology which may be anti-

immunogenic (72). Conversely, these interactions can occur in a

positive feedback loop through damage-associated molecular patterns

(DAMPs) or generation of mutational or more commonly

expression-based neoantigens (73, 74). Unlike other solid cancers,

truly ingrained events such as BRAF, ALK and EGFR mutations

simply do not exist in OPC or even HNC with sufficient frequency to

drive treatment selection on the basis of predicted response. As a

result, all biological shifts during treatment, small and subtle as they

may be, can greatly impact the effectiveness of the chosen treatment

and affect the predictive potential of any risk stratification schema

(Figure 1). This limitation applies to ICIs as well which still lack a
Frontiers in Oncology 05
robustly informative biomarker of response in OPC and to some

degree in many other solid tumors.
Leveraging tumor shedding for adaptive
risk stratification

While hematopoietic malignancies have an intrinsic circulating

component, solid tumors are highly anatomically restricted and

defined (even in the metastatic setting). However, the presence of

solid tumors can be detected at a systemic level through a multitude

of circulating markers, including viral DNA (for oncogenic viruses

such as EBV and HPV), tumor exosomes, cell free DNA (cfDNA),

and even fully viable circulating tumor cells. These markers provide

a compelling avenue to indirectly interrogate events in solid tumors

to inform treatment selection and make clinical decisions in an

iterative fashion for an individual patient.

Plasma EBV DNA levels have been capable of detecting a prior

infection and associated malignancies for over 2 decades (75, 76).

Nearly 80% of patients with active nasopharyngeal cancer mediated

by EBV shed detectable EBV DNA prior to treatment and EBV

remains systemically detectable in the post-treatment setting when

patients presented with initially higher stage disease (77). In

contrast to serology, circulating DNA levels can be at least

partially correlated to relative tumor burden generating a more

useful biomarker of relative tumor burden in the post treatment

setting (78). Recent studies have extended this approach to the HPV

counterpart of EBV leveraging the fact that both are oncogenic

viruses with a direct link to the biological genesis of the underlying

disease. Oncogenic HPV infection can be detected at a single-cell

level in basal keratinocytes suggestive of potential for a mechanistic

biomarker with a high sensitivity albeit likely a low specificity for

development of cancer in the short term (79). HPV viral loads have

been correlated with survival in patients with OPC (80) in both

retrospective and prospective series. The ability to detect

measurable changes in circulating tumor tissue modified viral

DNA (TTMV) during treatment holds some potential to inform

de-escalation strategies for patients with HPV-associated OPC.

Although the accuracy of such a biomarker would need to be

extremely high, a more proximate application of this approach is as

early biomarker of recurrence. TTMV has been utilized in large

series (81) of patients (>1000) to track recurrence post-treatment

with an overall positive predictive value for recurrent disease of 95%

and a point-in-time negative predictive value is 95% (with the

caveat that some patients with a one-time negative test did go on to

develop recurrence). Detection of EBV and HPV can thus be useful

but is not currently actionable as it does not reflect events

downstream from the individual viral oncogenes and thus cannot

inform how chemotherapy, radiation or ICIs might interact with an

individual tumor’s biological features.

Whereas viral DNA can be useful in the setting of virally

mediated HNC, circulating tumor DNA (ctDNA) can be broadly

utilized regardless of underlying tumor pathogenesis. We and

others have previously deployed ctDNA to detect actionable

oncogenic events in solid tumors including melanoma and

anaplastic thyroid carcinoma such as the V600E BRAF mutation
FIGURE 1

Dynamic Adaptive Risk Stratification. Treatment decisions for our
patients balance maximizing disease response and minimizing
treatment-related toxicity. There is currently a scarcity of clear
biologically consistent drivers of response to therapy which can be
used to mechanistically inform modulation of therapy, especially de-
escalation strategies. Dynamic assessment of treatment response
may allow therapeutic modification to balance disease control with
toxicity. Tumor shedding creates a multitude of circulating
biomarkers (e.g., viral DNA, tumor exosomes, viable circulating
tumor cells) that provide high biological resolution regarding
response to therapy, while imaging-based parameters may afford
high spatiotemporal resolution reflective of tumor heterogeneity in
response to treatment.
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(82). Other investigators (83) have used ctDNA and phylogenetic

analysis to track the evolution of lung cancer and development of

chemotherapy resistance. In contrast to HNC and NSCLC, in SCLC

high rates of hematogenous spread are commonly encountered

resulting in rapid and widespread distant metastasis. In this setting

ctDNA is thought to be particularly informative and representative

of the intrinsic tumor biology (84) as was shown via paired analysis

of primary tumors and ctDNA of variant allele frequency of clonal

mutations. Simply put, shifts in ctDNA during and post-treatment

can reflect, albeit with caveats, similar shifts within the primary and

metastatic tumor sites which may be indicative of cure or

recurrence as a function of clonal expansion and/extinction.

Recent work by Cao et al. highlighted the utility of a combined

ctDNA/imaging-based approach to early detection of treatment

response in AJCC (8th edition) stage III OPC patients and

demonstrate significant correlation with freedom from disease

progression (85). Similarly, Chera et al. showed that rapid

clearance of HPV ctDNA (defined as a favorable clearance

profile) achieved cure with conventional chemo-radiation in

contrast to patients with an unfavorable clearance profile (86).

A broader biological approach is to assess exosomes (87), sub-

micrometer tumor cell vesicles, which can be stable in body fluids

and contain not just DNA, but also RNA, tumor proteins, lipids,

and metabolites. In some cases, proteins can be particularly

informative as in the case of PDL1 (88) which has been

correlated to HNC disease progression as compared to non-

exosomal plasma PDL1 levels. Exosomes and their counterpart

microvesicles (89) can be used in a largely agnostic fashion to

characterize data from both tumor and viral DNA as well as

associated proteins and metabolites, forming a biologically rich

dataset and providing increased stability for macromolecules in

inhospitable fluid environments such as saliva which can be of

critical importance to HNC. At the extreme end of the spectrum,

the entire biological landscape of a subset of tumor clones can be

captured in the form of whole, viable circulating tumor cells (CTCs)

(90). In HNC, a pooled survival analysis of 22 studies eligible for

systematic review found that presence of CTCs was associated with

shorter disease-free survival (DFS, HR 4.62, 95% CI 2.51-8.52) with

a very high overall specificity but low sensitivity. An important

limitation to circulating biomarkers is that their actionability

remains in question at this time in the context of OPSCC. All

existing systemic treatments inclusive of ICIs incur significant

toxicity for limited survival benefit and almost none for lasting

cure. As such, treatment in the recurrent/metastatic setting is

reserved for either imaging identifiable lesions (e.g. radiation

based treatment of oligometastasis, surgical resection of isolated

regional recurrence) or for symptomatic disease (e.g. palliative

intent chemotherapy and/or chemo-ICIs). Since there is limited

evidence that earlier initiation of treatment is either feasible, in the

setting of imaging invisible disease, or beneficial, in the setting of

disseminated disease, the utility of early detection of recurrence/

metastasis for this particular disease site remains unclear,

particularly since it often precedes conventionally detectable

disease by only several weeks to months. As such, utility may be
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initially limited to early detection of response to primary treatment

that could assist escalation/de-escalation decision making.
Leveraging metabolic imaging for adaptive
risk stratification

Whereas ctDNA, CTCs and exosomes can provide high biologic

resolution and identify a multitude of genomic, transcriptomic, and

proteomic events related to tumorigenesis and evolution prior to

and during treatment delivery, spatial resolution is absent.

Although a signal may be detected, we have no idea where that

signal is coming from (i.e., primary tumor, regional or distant

metastases, etc). In contrast, imaging can provide outstanding

spatial resolution, but significantly lower biological resolution. It

is not the goal of this review to summarize the massive literature on

the subject of biologic imaging of solid tumors, but rather to

highlight some recent advances in imaging which may be

applicable to dynamic or adaptive risk stratification strategies

for OPC.

Starting with extensive work using F-labeled fluoromisonidazole

(F-FMISO) (91), pre-treatment measurements of tumor hypoxia

have long been utilized to ascertain potential radio-sensitivity/

radio-resistance of whole tumors or individual tumor voxels given

the known correlation between tumor hypoxia and radiation

responsiveness. The counterpart of hypoxia, namely vascularity can

be ascertained with fairly high sensitivity and specificity using

dynamic contrast-enhanced MRI (DCE-MRI). DCE-MRI can be

deployed in translationally relevant settings particularly when

utilizing anti-angiogenic agents where imaging parameters may be

altered prior to clinical effect (92). By capturing vascular parameters

throughout the entire treatment field (tumor and adjacent normal

tissue) DCE-MRI has the additional potential to be a real-time

biomarker of normal tissue toxicity driven by shifts in vascularity.

One such application pioneered by our group is the use of DCE-MRI

for early detection of subclinical osteoradionecrosis (ORN) and

identification of patients at high risk for severe ORN (93–95).

Extension of this work using multi-parametric (MRI) (96) has

been used to predict complete response (CR) in patients with OPC

prior to treatment completion in a manner suitable for potential

treatment de-escalation in responders. Although additional work

will be required to optimize multi-parametric and even DCE-MRI

to fully capture biological data from the primary tumor and

associated cervical lymphadenopathy common to OPC,

preliminary findings are promising (97). This is particularly true

since the approach appears to be scalable across institutions as

shown in a comprehensive analysis (98) of the accuracy of diffusion-

weighted imaging (DWI) for predicting locoregional failure of

chemo-radiation in HNC across 9 studies and 421 patients, with

a sensitivity of 82%, specificity of 70% and an area under the sROC

curve of 84%.

While tumor vascularity, cellularity and hypoxia are transient

on a slow scale (days-weeks), tumor metabolism is a continuously

changing biological variable that has extremely high temporal
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resolution (minutes-hours), and when interrogated via metabolic

imaging can be analyzed with an equally high spatial resolution.

Over the last 2 decades, both FDG-PET and hyperpolarized

magnetic resonance imaging (HP-MRI) techniques have been

used to assess the aggressiveness of solid tumors including HNC

and have been explored as tools to predict treatment response in

preclinical models and patients (99–109). Although FDG-PET is

available in clinical settings, prospective clinical trial data suggest

that measurement of mid-therapy glucose uptake does not allow for

adaptive reduction in tumor volumes (110–115). Furthermore,

glucose uptake does not correlate with radiation response and

provides no information on intracellular metabolic fluxes (116–

118). In contrast HP-MRI of labeled pyruvate and lactate provides a

unique opportunity to obtain real-time metabolic information from

within solid tumors. Its ability to detect differential metabolic

activity in tumor tissue has been established (99, 109). Substantial

work from other groups has advanced the development of HP-MRI

into a clinically viable tool for characterization of intrinsic tumor

aggressiveness (prostate) and towards deployment of HP-MRI as a

tool to measure treatment response (e.g., breast cancer) (101, 103,

119–121). HNC sensitivity to genotoxic agents is a function of

multiple discrete biological events, such as activation of pathways

associated with the human papillomavirus (HPV) or mutation of

tumor suppressors such as TP53.Unfortunately, we and others have

shown that individual patient responses are not completely uniform

across patient groups (e.g., HPV-associated vs. HPV-independent,

wildtype vs. mutant TP53), and this may be due in large part to the

heterogenous activation of acquired resistance pathways once

treatment starts (3, 4, 10, 122–127). Therefore, even if genomic

biomarkers such as TP53 and HPV start to be used in treatment-

selection decisions at baseline, tailoring treatment intensity to

individual patients in the face of acquired resistance potentially

based upon changes in metabolic response will still be required for

true precision oncology approaches and personalized

cancer treatment.

In 2014, we were the first to show that kPL measured with

noninvasive HP [1- (13)C]-pyruvate MRI is decreased under

conditions of depleted REDOX following genotoxic stress in

animal models of HNC and other tumors (128). We have

developed a multi-compartment model of intracellular kPL which

increases the fidelity of our measurements (129). In 2020, for the

first time, we measured these metabolic changes in a patient during

treatment. This first-in-human assessment of metabolic response to

treatment serves as a critical proof-of-principle and demonstrates

our technical capability to execute the proposed studies. On the

basis of these robust preliminary data, we propose to test the

potential of metabolic interrogation as a clinical tool that can (1)

predict treatment response and (2) be used to develop treatment

strategies tailored to individual tumor biology. Our innovative

approach is supported by (1) studies that link reducing potential

to genotoxic stress (127, 130–136); (2) clinical and preclinical data

that link lactate to tumor progression and treatment response (137–

139); and (3) studies that confirm the excellent spatiotemporal

resolution of HP [1- (13)C]-pyruvate MRI (128, 140–143).

The biologically rich data from anatomic and metabolic studies

can be enhanced by nearly an order of magnitude when combined
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Utilization of machine learning approaches (144) can generate

meaningful data even from relatively data poor CECT studies to

identify radiomic features which when combined can distinguish

invasive cancer from more benign solid tumors. This approach has

also been deployed (145) to generate combined radiomic risk scores

which can predict disease free and overall survival in the

context of either conventional treatment or in the presence of

immunomodulatory combinatorial strategies.
A path toward clinical translation

Conventional and adaptive risk stratification are not mutually

exclusive. They represent 2 aspects of a combined approach

designed to deliver maximal anti-tumor activity, using the most

appropriate agents, at the lowest possible dose that will achieve a

durable cure. In order to maximize the therapeutic index of both

conventional and targeted strategies the most effective future

algorithms will start with conventional risk stratification that

combines biological data with clinical risk factors. Upon this

baseline approach, treatment algorithms will then incorporate a

complex adaptive risk stratification strategy that combines feasible

aspects of biological interrogation using circulating and imaging

tumor markers (Figure 1). Critically, this second layer of data will be

truly personalized, specific not only to the individual tumor, but

also to the interaction between the individual tumor and the chosen

treatment regimen. Successful implementation of such an approach

will require a rigorous process, outlined by Pepe et al. nearly 2

decades ago (146), whose key ingredients include carefully defining

the target population (carefully selected based on clinically relevant

criteria and relevant disease biology) and the expected outcome for

each individual biomarker (e.g. impact on local recurrence vs

distant metastasis rates), testing in populations large enough to

reduce the number of false negative studies, and a priori definitions

of expected effect size and clinical impact. For solid tumors, which

present challenges to repetitive interrogation with high biological

and spatial resolution (see above), an “n of 1” precision oncology

algorithm is somewhat unlikely using existing approaches and

technologies, however, careful integrated of layered biomarkers

can provide a significant advantage over current clinical

paradigms for OPC. For widespread clinical translation it is

critical to identify circulating markers (high biological resolution)

and imaging modalities (high temporal and spatial resolution)

which can be rapidly deployed and relatively cost-effective.

Finally, the entire platform and associated algorithms must be

readily replicated across institutions and healthcare delivery

systems. Our patients deserve no less.
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