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of Gansu University of Chinese Medicine, Lanzhou, China, 4Department of Center of Medical
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Purpose: Patients with advanced prostate cancer (PCa) often develop castration-

resistant PCa (CRPC) with poor prognosis. Prognostic information obtained from

multiparametric magnetic resonance imaging (mpMRI) and histopathology

specimens can be effectively utilized through artificial intelligence (AI)

techniques. The objective of this study is to construct an AI-based CRPC

progress prediction model by integrating multimodal data.

Methods and materials: Data from 399 patients diagnosed with PCa at three

medical centers between January 2018 and January 2021 were collected

retrospectively. We delineated regions of interest (ROIs) from 3 MRI sequences

viz, T2WI, DWI, and ADC and utilized a cropping tool to extract the largest section

of each ROI. We selected representative pathological hematoxylin and eosin

(H&E) slides for deep-learning model training. A joint combined model

nomogram was constructed. ROC curves and calibration curves were plotted

to assess the predictive performance and goodness of fit of the model. We

generated decision curve analysis (DCA) curves and Kaplan–Meier (KM) survival

curves to evaluate the clinical net benefit of the model and its association with

progression-free survival (PFS).

Results: The AUC of the machine learning (ML) model was 0.755. The best deep

learning (DL) model for radiomics and pathomics was the ResNet-50model, with

an AUC of 0.768 and 0.752, respectively. The nomogram graph showed that DL

model contributed themost, and the AUC for the combinedmodel was 0.86. The

calibration curves and DCA indicate that the combined model had a good

calibration ability and net clinical benefit. The KM curve indicated that the

model integrating multimodal data can guide patient prognosis and

management strategies.
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Conclusion: The integration of multimodal data effectively improves the

prediction of risk for the progression of PCa to CRPC.
KEYWORDS

radiomics, pathomics, castration-resistant prostate cancer, deep learning, multi-modal
1 Introduction

Prostate cancer (PCa) affects men worldwide and is a significant

health concern, with a global incidence rate of 13.5% (1).

Additionally, the mortality rate of 6.7% makes PCa the fifth

leading cause of death among men (2). Androgen deprivation

therapy (ADT) is considered the primary treatment modality for

men diagnosed with advanced symptomatic PCa, also known as

castration-sensitive PCa (CSPC) (3). However, subsequent to the

initial favorable treatment response, it is frequently observed in PCa

patients that there is a decline in response and eventual progression

to CRPC, which is characterized by a dismal prognosis (3). The

median duration and mean survival period of patients until

progression to CRPC range from 18 to 24 months and 24 to 30

months (4, 5), respectively. The status of the depot condition

(testosterone [TST] 50 ng/dL or 1.7 nmol/L) and subsequent

disease development (a sustained rise in prostate-specific antigen

[PSA] and progression seen in images) are now the two most

important criteria for detecting CRPC. However, tailored precision

medicine is limited by the use of monomodal indicators such as

PSA and serum testosterone (6, 7). The early detection of CRPC can

help physicians determine the optimal timing for administering

second-line therapies, possibly increasing the survival rate among

patients. Predicting the risk of CRPC is an important factor

affecting prognosis in patients with severe PCa. There is an

urgent need for early diagnosis and precise management of CRPC.

Despite advancements in technology, there are still persistent

challenges in accurately detecting, characterizing, and monitoring

cancers (8). The assessment of diseases through radiographic

methods primarily relies on visual evaluations, which can be
, Androgen deprivation
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enhanced by advanced computational analyses. Notably, AI holds

the potential to significantly improve the qualitative interpretation of

cancer imaging by expert clinicians (9). This includes the ability to

accurately delineate tumor volumes over time, infer the tumor’s

genotype and biological progression from its radiographic

phenotype, and predict clinical outcomes (10). Radiomics, and

pathomics have rapidly emerged as cutting-edge techniques to aid

and enhance the interpretation of vast medical imaging data, which

may benefit clinical applications. The techniques have the ability to

directly process images, giving rise to numerous subdomains for

further research (11). Clinical outcomes, such as survival, response to

treatment, and recurrence, may be accurately predicted using AI

models that use multimodal data (12–14). The utilization of

radiomics and pathomics exhibits significant promise in enhancing

clinical decision-making processes and ultimately enhancing patient

outcomes via medical imaging techniques (15–17).

Hence, to effectively and precisely anticipate the likelihood of

developing CRPC without invasive procedures. We constructed

radiomics and pathomics prediction models based on deep-learning

algorithms and investigated their application value in clinical

decision-making and the prognosis of PCa. This may allow more

accurate prediction of the risk of CRPC and provide a reference for

accurate diagnosis and treatment of PCa.
2 Materials and methods

Clinicopathological data from patients with PCa were acquired

retrospectively from the electronic medical record system of the

three centers (center A; center B; center C) after receiving approval

from the ethics committee of the local institution. This retrospective

study was also approved by the Ethics Committee of the Gansu

Provincial Geriatrics Association (2022-61), and the requirement

for informed consent was waived. Our research program was

designed based on the AI model of a local institution.
2.1 Participants

We conducted a retrospective study including patients with a

pathologically confirmed diagnosis of PCa from the three centers

between January 2018 and February 2021. The inclusion criteria

were (a) first pathological diagnosis of PCa; (b) use of the same

ADT treatment regimen; (c) availability of all MRI scans within 30
frontiersin.org
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days of PCa diagnosis to exclude confounding effects of medication

on measurements; and (d) no missing stained tissue slides. The

exclusion criteria were (a) missing clinical information; (b) poor

quality of MRI images (inability to identify the specific location of

the lesion); (c) poor quality of stained tissue slides (uneven

staining); and (d) missing follow-up information.

Clinical data from 399 patients with PCa were collected, including

254 from the Gansu Provincial Hospital (Center A), 112 from the 940

Hospital of Joint Logistics Support Force of Chinese PLA (Center B),

and 33 from the Second People’s Hospital of Gansu Province

(Center C). Figure 1 shows the flowchart for patient recruitment.
2.2 Prostate tumor segmentation

A radiologist (R.W) with 5 years of experience in prostate MRI

diagnosis and a urologist (FH.Z) with 30 years of experience in PCa

MRI diagnosis were involved in delineating the regions of interest

(ROIs). Disagreements regarding individual lesions were resolved

after consultation with a third radiologist (LP. Z), and a consensus

was attained. The radiologist were unaware of the patients’ CRPC

status and adhered to the guidelines outlined the Prostate Imaging

Reporting and Data System Version 2 (PI-RADS-V2). Once the

delineation of the Region of Interest (ROI) was finalized, a random
Frontiers in Oncology 03
screening of the 11 features extracted from the ADC sequences was

performed. Subsequently, Mann-Whitney U tests were conducted

on both sets of features to ascertain the presence of any potential

bias in the results obtained by the two experts (R.W and FH.Z)

during the delineation process. The main sequence parameters of

mp-MRI in Supplementary Table 1. The ITK-SNAP software,

version 4.0.0 (http://itk-snap.org), was used to annotate the ROIs

for each patient from three sequences, including T2-weighted

(T2WI), diffusion-weighted imaging (DWI), and apparent

diffusion coefficient (ADC). The volume of interest was created

by overlapping the ROIs of each patient. To pretrain the DL model,

2-dimensional (2D) ROIs were extracted from the original images

of the three sequences by using a clipping tool based on the tumor’s

3D segmentation mask. The standard protocol of Digital Imaging

and Communications in Medicine (DICOM) is commonly used for

managing medical imaging information and related data. To ensure

data quality, we standardized it to a resampling format with a

resolution of 1 cm × 1 cm × 1 cm and performed N4 bias correction

on all images before delineation.

A pathologist (X.Z) selected a histopathological hematoxylin

and eosin (H&E) slide (20×10 magnification) of a typical tumor

area as the pathological image for the patient. To prevent data

heterogeneity, we used Photoshop to adjust each histopathological

slide to the same pixel size (640×480) for pretraining the DL model.
FIGURE 1

Flow chart of patient recruitment. Center (A) Gansu Provincial Hospital; Center (B) The 940 Hospital of Joint Logistics Support Force of Chinese PLA;
Center (C) Second People’s Hospital of Gansu Province.
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Overall, 141 patients from Center A were included in the training

group, while 60 patients from Center B and Center C were included

in the external validation group for building ML and DL models.
2.3 Signature construction

2.3.1 Radiomics signature construction
PyRadiomics (http://www.radiomics.io/pyradiomics.html) was

used for extracting radiomics features. Additionally, the Z-score was

employed for dataset standardization ([column−mean]/standard).

The method involved using the Spearman correlation coefficient to

evaluate the consistency among observers in feature extraction.

Features with a correlation coefficient greater than 0.9 were

considered reliable and formed a feature set for subsequent

analysis. Normalization was performed by subtracting the mean

value of each feature and dividing it by the standard deviation. The

least absolute shrinkage and selection operator (LASSO) algorithm

was used for feature selection and construction, with multiple

iterations to assess the importance of each feature. Lastly, ML

classifiers, such as logistic regression (LR) and support vector

machines (SVM), were utilized to build the predictive models.

2.3.2 DL signature construction
In this study, ResNet-50, ResNet-34, ResNet-18, Vgg19, and

other deep transfer learning (DTL) models were used for model

pretraining. The number of iterations (epochs) was set to 100, with

a batch size of 32. Imagenet was employed as the regularization

method. To enhance the interpretability of the model’s decision-

making process, we applied the Gradient-weighted Class Activation

Mapping (Grad-CAM) method for visual analysis of the model.

This method utilizes the gradient information from the last

convolutional layer of the neural network to generate a weighted

fusion of the class activation map. This class activation map

highlights the important regions of the classified target image,

thereby allowing us to better understand the decision-making

principles of the model.

2.3.3 Construction of nomogram
We integrated radiomics models, DL models, and pathomics

models to construct a nomogram and investigated the contributions

of various modalities in the joint model.
2.4 Model evaluation

To evaluate the predictive performance of the models, we plotted

ROC curves for each model and calculated the area under the curve

(AUC) values. Decision curve analysis (DCA) curves and calibration

curves were used to assess the net clinical benefit and goodness of fit

of the joint model. Kaplan–Meier (KM) curves were used to evaluate

its relationship with progression-free survival (PFS).
Frontiers in Oncology 04
2.5 Statistical analysis

Statistical Package for Social Sciences (SPSS) 23.0 and R statistical

software (version 3.6.1 R, https://www.r-project.org/) were used for

statistical analysis. The Kolmogorov–Smirnov test was used to evaluate

the normality of the measures, and those that conformed to a normal

distribution were expressed as x ± s. The measures that did not

conform to a normal distribution were expressed as the median

(upper and lower quartiles). An independent samples t-test

(normally distributed with equal variance) or Mann–Whitney U-test

(skewed distribution or unequal variance) was used to compare the

measures. Multi-factor LR analysis was used to screen out the

independent predictors to construct the prediction model and plot

the nomogram. The AUC of the receiver operating characteristics

(ROC) was calculated to evaluate the discriminative power of the

model. A DCA curve was plotted to compare the clinical value of the

model. A p-value of <0.05 indicated a statistically significant difference.
3 Results

3.1 Clinical characteristics

The study flow is shown in Figure 2. A total of 198 patients were

excluded for not meeting the inclusion criteria, and 201 patients

were included; 93 included patients progressed to CRPC. Statistical

analysis revealed no significant differences in clinical features

between the training and validation groups (Table 1).
3.2 Feature selection and
signature construction

We extracted 2553 radiomic features using PyRadiomics. According

to the ROI results presented by the two experts, a random selection of 11

features derived fromADC sequences was subjected to aMann-Whitney

U test. The analysis revealed no statistically significant distinction

between the two groups of features (Supplementary Table 2). Seven

radiomic features were selected using the LASSO algorithm (Figures 3A–

C). Three 2D ROIs with maximum cross-sections were chosen, and

different deep-learning models were used for pretraining and external

validation. Model evaluation (Table 2) demonstrated that ResNet-50 had

better overall performance in the external validation set, with the lowest

loss value. This indicates that ResNet-50 had fewer errors during the

training process and converged faster than any other Convolutional

Neural Network(CNN)model (Figures 4A, B). In terms of model

interpretability, each model had distinct attention regions in the

samples. In comparison, ResNet-50 had clearer attention regions

primarily focused on the internal regions of the tumor, while the

tumor regions in the surrounding tissue were not activated (Figure 5).

Furthermore, the ResNet-50 model performed better in the ADC

sequence among the three sequences (Table 3).
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TABLE 1 Comparison of clinical data of patients with prostate cancer in the training set and validation set.

Characteristic Training Set
(n=140)

External Validation Set
(n=61)

t/Z/X2

Value
P
Value

Age 0.000c 0.985

≤65 30 13

>65 110 48

BMI 0.563c 0.755

<25 96 40

25-30 40 20

>30 4 1

BM 0.394c 0.530

yes 71 28

no 69 33

Gleason Score 0.915c 0.822

≤6 4 3

3+4 15 7

4+3 13 4

≥8 108 47

tPSA 61.99(31.49,100.00) 55.11(29.88,100.00) -0.357b 0.721

Volume 46.30(32.13,67.18) 40.30(29.65,62.99) -0.939b 0.348

PASD 1.11(0.59,1.94) 1.23(0.45,2.05) -0.302b 0.763

ALP 84.00(64.25,130.75) 94.00(70.00,129.00) -1.002b 0.316

(Continued)
F
rontiers in Oncology
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FIGURE 2

Schematic outline of the study. SVM, support vector machine; ROI, region of interest.
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3.3 Validation of radiomics and
pathomics signature

The predictive performance of the models was evaluated using

ROC analysis. The best ML model for radiomics was SVM, with an
Frontiers in Oncology 06
AUC of 0.755 (Figure 6A). For DTL and pathomics, the best model

was ResNet-50, with AUC values of 0.768, 0.714, 0.684, and 0.752

(Figures 6B–E). The nomogram graph showed that DTL

contributed the most in the combined model (Figure 7), and the

AUC of the combined model was 0.86 (Figure 8). Calibration curve
A B

C

FIGURE 3

(A) Coefficient profiles of the features in the LASSO model are shown. Each feature is represented by a different color line indicating its
corresponding coefficient. (B) Tuning parameter (l) selection in the LASSO model. (C) Weights for each feature in the model. LASSO, least absolute
shrinkage and selection operator.
TABLE 1 Continued

Characteristic Training Set
(n=140)

External Validation Set
(n=61)

t/Z/X2

Value
P
Value

Fbg 3.44(2.82,4.36) 3.37(2.88,4.35) -0.514b 0.607

NEUT 3.57(2.91,4.82) 3.57(2.70,4.95) -0.444b 0.657

Lym 1.36(0.93,1.85) 1.38(1.02,1.95) -0.866b 0.386

M 0.44(0.35,0.56) 0.44(0.36,0.57) -0.381b 0.703

Hb 142.00(126.25,154.00) 141.00(125.50,152.00) -0.499b 0.618

PLT 173.50(137.00,215.25) 170.00(144.50,211.00) -0.070b 0.944

SII 753.01±784.31 592.98±480.61 -1.769a 0.079

TST 11.20(1.13,18.98) 1.50(1.00,14.75) -1.737b 0.082
a:statistical analysis performed using T-test;b:statistical analysis performed using Mann-Whitney test.c: statistical analysis performed using X2 test. BMI, Body Mass Index; BM, Bone Metastasis;
PSAD, PSA density; ALP, Alkaline phosphatase; Fbg, Fibrinogen; NEUT, Neutrophil; Lym, lymphocyte; M, Monocyte; Hb, Hemoglobin; PLT, Platelet; SII, Systemic immune inflammatory index,
SII= PLT* NLR; TST, testosterone.
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analysis showed that the joint model has a good fit and strong

calibration capability (Figure 9). The DCA curve showed that all

models had good clinical net benefit, with the combined model

showing higher net benefit (Figure 10).
3.4 Prognosis

In the classification study of CRPC risks, a total of 87 patients

experienced tumor progression-related events. The KM curve

analysis showed that the joint model suggests significantly lower

PFS for patients at high risk of CRPC compared to those at low

risk (Figure 11).
4 Discussion

To our knowledge, in this retrospective cohort study conducted

across multiple centers, a novel prediction model was developed and

validated for the first time. This model integrated radiomics, DTL, and

pathomics data to provide strong predictive capabilities in primary

prostate cancer progressing to CRPC following two years of ADT. The

utilization of multiparametric radiological modeling, as employed in

this investigation, may aid urologist in evaluating the probability of

CRPC progression and formulating personalized treatment strategies.

The prognosis of CRPC is notably unfavorable, and the

challenges in its treatment are diverse among patients (18). The

acquisition of reliable data from an initial diagnosis of localized PCa

managed with ADT is constrained in clinical practice (19). Previous

research has demonstrated a significant correlation between N-

glycan score and adverse prognosis in CRPC (20). Additionally, the

assessment of skeletal muscle index and skeletal muscle attenuation

holds predictive value for the prognosis of metastatic CRPC (21).

PSA nadir and Grade 5 were both associated with CRPC

progression (22). It was also established that AR-V7 mRNA,

significantly predicted biochemical recurrences and CRPC

progression (23). However, none of these findings provided

specific and prospective indications regarding the likelihood of

castration-CRPC progression in patients with PCa. Our approach

demonstrated significant predictive performance and provided

therapeutic advantage. In addition, the calibration curve and KM

survival curve were well-suited for the model and provided useful

predictive information for patients with PCa. This finding could

potentially be attributed to the multimodal data integration and the

selection of suitable AI methodologies.
4.1 Multimodal data integration

Data fusion addresses inference problems by amalgamating data

from various modalities that provide different viewpoints on a shared

phenomenon (24, 25). Consequently, the integration of multiple

modalities may facilitate the resolution of such challenges with
T
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greater precision compared to the utilization of singular modalities

(26). This is particularly important in medicine, as similar results

from different measurement techniques might provide different

conclusions (27, 28). In recent years, the growing prevalence of

original studies utilizing imaging and pathology images in the field

of prostate cancer has created an opportunity for AI technology to

demonstrate its potential (29, 30). Additionally, DL approaches have

direct applications for segmentation, multimodal data integration

and model construction (31).

We used late-stage fusion, also known as decision-level fusion,

to train a separate model for each modality and then aggregate the
Frontiers in Oncology 08
predictions from each model to produce a final prediction.

Aggregation can be done by averaging, majority voting, and

Bayesian-based rules among other methods (32). During the data

collection phase, we found that some of the data were missing and

incomplete, while late fusion still maintained the predictive power.

Since each model is trained individually, aggregation methods, such

as majority voting, can be applied even if one mode is missing. In

contrast, if the unimodal data do not complement one another or

have weak interdependencies, late fusion may be preferred due to its

simpler design and fewer parameters in comparison to other fusion

procedures. This is also advantageous in instances with insufficient
FIGURE 5

Regions of attention in prostate cancer MRI analysis with different DL models. MRI, magnetic resonance imaging.
A B

FIGURE 4

Loss value of different DL models in the training set varied with the iteration steps. (A) radiomics model (B) pathomics model.
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data. In this study, MRI and H&E tissue sections were weakly

complementary to each other, and hence our post-fusion model

demonstrated good predictive ability. Examples of late fusion

include the integration of imaging data with non-imaging inputs,

such as the fusion of MRI scans and PSA blood tests for PCa

diagnosis (33). Survival prediction using the fusion of genomics and

histology profiles by Chen et al. was also performed (34).
4.2 Supervised method

In this study, we selected a supervised AI approach for training

radiomics models using radiology image annotations with patient

outcomes to input data into predefined labels (e.g., cancer/non-

cancer) (35). Since the feature extraction was not part of the

learning process, the models typically had more simple

architecture and lower computation costs. An additional benefit

was a high level of interpretability because the predictive features

could be related to the data. In contrast, the feature extraction was

time-consuming and could translate human bias to the models.

Based on the sample size included in this study, the supervised

method was sufficient due to its simplicity and ability to learn from

our radiomics model.

Self-supervised techniques effectively leverage accessible

unlabeled data to acquire superior image features, subsequently

transferring this acquired knowledge to supervised models.

Consequently, supervised methods like CNNs are employed to

address diverse pretexting tasks, wherein labels are automatically

generated from the data (36). Notably, self-supervised methods are

particularly well-suited for more robust computational systems and

higher-resolution images (37, 38).
4.3 Model selection for DL

DL is the current state-of-the-art ML algorithm, which simulates

the connections between the neurons of the human brain. It learns

and extracts complex high-level features from the input data through

multi-layer neural networks, thus realizing automatic classification,

recognition, and prediction of data. Traditional deep CNNs often

encounter the issues of gradient vanishing or gradient explosion as

the number of network layers increases, leading to challenging model

training. ResNet addresses this problem by introducing the concept of

residual connections. The structure promotes the flow of gradients

and information transfer, thereby facilitating the training of deeper

networks. In this study, we selected DL models including ResNet-50,

ResNet-34, ResNet-18, and Vgg19 for pre-training. Comparing these

models revealed that ResNet-50 outperformed the others. The main

advantage of ResNet-50 lies in its ability to effectively train very deep

neural networks while avoiding issues such as gradient vanishing and

gradient explosion. Consequently, it excels in image classification

tasks and can manage large and complex datasets. Due to its versatile

application and remarkable performance, ResNet-50 serves as a

benchmark model in various computer vision tasks and is widely
T
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utilized in target detection, image segmentation, and image

generation. In Lei et al.’s training study of MRI DL involving 396

patients with PCa, training a DL model for PCa classification using

pairs of ResNet-50 anti-paradigms improved the generalization and

classification abilities of the model (39). In another pathomics study,

texture features captured using the ResNet DL framework were able

to better distinguish unique Gleason patterns (40).
Frontiers in Oncology 10
4.4 Limitations

The study has limitations. First, this is a retrospective study from a

multicenter institution, and potential biases, such as differences in MRI

acquisition parameters, are inevitable. However, as mentioned

previously, we completed the data alignment and pre-processed the

images tominimize the impactof thesedifferenceson theresults. Second,
FIGURE 7

Nomodiagram of the combined model.
A

B D

EC

FIGURE 6

ROC curve analysis for each model. (A) Radiomics. (B-D) DL (ADC, DWI, and T2WI) (E) Pathomics. T2WI, T2-weighted imaging; DWI, diffusion-
weighted imaging; ADC, apparent diffusion coefficient images; ROC, receiver operating characteristic.
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key prognostic factors in clinical characterizationwere not considered in

this study due to incomplete clinical data for most patients. Third, our

sample sizewas relatively small, andthenumberofpatientswithdifferent

Gleason score classifications was unevenly distributed, whichmay affect

the stability and reproducibility of our model. Therefore, the results of

this study need to be validated externally using a large sample and a

multi-region, multicenter institution in the future.
Frontiers in Oncology 11
5 Conclusions

In summary, we collected a multimodal dataset from patients

who developed CRPC and used it to develop and integrate

radiological and histopathological models to improve CRPC risk

prediction. This result encourages to conduct further large-scale

studies utilizing multimodal DL.
FIGURE 8

ROC curve analysis for the combined model.
FIGURE 9

Calibration curve of the combined model indicates a better
agreement between the predicted probabilities and the actual
observed frequencies.
FIGURE 10

Decision curves showed that each model could achieve clinical
benefit and that the net benefit of the combined model was better.
FIGURE 11

KM survival curve analysis demonstrates that multimodal data can
serve as a reliable predictor of the risk of CRPC occurrence. CRPC,
castration-resistant prostate cancer.
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